镍锰酸锂的国外文献10.10.18
- 格式:doc
- 大小:54.00 KB
- 文档页数:4
镍镁锰酸锂动力电池高能量密度与长循环寿命的平衡之道随着电动汽车的快速发展,动力电池作为电动汽车的核心组件之一,其性能优劣直接关系到电动汽车的续航里程和使用寿命。
镍镁锰酸锂动力电池作为一种常见的锂离子电池,具有高能量密度和较长的循环寿命,被广泛应用于电动汽车领域。
然而,高能量密度与长循环寿命之间存在一定的平衡关系,如何在这两者之间找到平衡,是制造商和研究人员亟需解决的问题。
一、材料选择和设计在提高镍镁锰酸锂动力电池能量密度的同时,必须注意材料的选择和电池的设计。
首先,正极材料的选择至关重要。
镍镁锰酸锂电池的正极通常由镍、锰和钴组成,比如NMC811(镍80%,锰10%,钴10%)。
增加镍的含量可以提高电池的能量密度,但过高的镍含量会导致电池循环寿命的下降。
因此,电池制造商需要权衡镍的含量与电池的寿命之间的平衡,选择适当的镍含量。
此外,电池的设计也起着至关重要的作用。
设计合理的电池结构和电池包装可以提供更高的能量密度和更好的热管理,进而延长电池的寿命。
优化电池的制程和工艺控制,减少电池内部的缺陷和不均匀性,也可以提高电池的寿命。
因此,制造商应该从材料的选择、电池的设计和工艺控制等方面综合考虑,寻找高能量密度和长循环寿命之间的平衡点。
二、电池管理系统优化电池管理系统(BMS)是控制和监测动力电池工作状态的关键系统。
通过BMS的优化,可以实现对电池进行精确控制和管理,从而提高电池的性能和寿命。
在镍镁锰酸锂电池中,BMS可以通过调节充放电电流、温度控制和SOC(电池的充放电状态)估算等操作,来平衡高能量密度和长循环寿命之间的关系。
例如,合理控制充放电电流可以减少电池的极化现象和电池内部的损伤,有效延长电池的寿命。
另外,在电池的充放电过程中,控制电池的温度在适当的范围内也是非常重要的。
过高或过低的温度都会对电池的性能和寿命造成不利影响。
因此,BMS必须精确监测和控制电池的温度,避免温度过高或过低。
同时,BMS还可以根据电池的SOC进行估算,提供准确的电池电量信息,并避免电池的过充或过放。
锂镍锰钴氧化物电池锂镍锰钴氧化物电池(Lithium Nickel Manganese Cobalt Oxide Battery),简称NMC电池,是一种高能量密度、高循环寿命的锂离子电池。
它是由锂离子电池的三元材料锂镍钴氧化物(LiNiCoO2)和锂锰酸锂(LiMn2O4)组成的复合材料。
NMC电池具有优异的性能和广泛的应用领域,因此备受关注。
NMC电池的主要优点之一是其高能量密度。
由于其材料中含有镍、锰和钴等多种金属元素,NMC电池能够提供更高的储能密度,使其在同等体积和重量下能够储存更多的电能。
这使得NMC电池成为电动汽车、无人机和便携式电子设备等领域的理想选择,能够更高效地提供持久的动力支持。
NMC电池还具有良好的循环寿命。
与其他锂离子电池相比,NMC电池的寿命更长,能够经受更多的充放电循环。
这得益于锂镍钴氧化物和锂锰酸锂的组合,使得NMC电池具有更好的电化学稳定性和更低的容量衰减速率。
这意味着NMC电池可以在更长的时间内保持高效的性能,延长了电池的使用寿命。
NMC电池还具有较高的安全性能。
NMC电池的设计和制造过程注重安全性,采用了多种安全措施以减少潜在的安全隐患。
例如,NMC电池中通常包含稳定的电解液和隔膜,以避免电池内部的短路和过热现象。
NMC电池的广泛应用领域包括电动汽车、储能系统、便携式电子设备等。
在电动汽车领域,NMC电池因其高能量密度和长循环寿命而备受青睐。
它可以提供更远的续航里程,减少电动汽车的充电次数,提高用户的使用体验。
在储能系统领域,NMC电池可以作为储能设备,储存太阳能和风能等可再生能源,以平衡电网负荷和应对突发用电需求。
在便携式电子设备领域,NMC电池可以为智能手机、平板电脑和笔记本电脑等设备提供持久的电力支持,延长使用时间。
然而,NMC电池也面临一些挑战和限制。
首先是成本问题。
由于NMC 电池的制造过程较为复杂,需要使用成本较高的原材料,因此其成本相对较高。
其次是充电速度的限制。
2023年 5月上 世界有色金属157化学化工C hemical Engineering共沉淀法制备镍钴锰三元材料的研究朱静薰(广西中伟新能源科技有限公司,广西 钦州 535000)摘 要:随着社会的发展,人们在日常生活中对于电能的使用更加广泛且具体。
电池作为储存电能的主要装置,在实际的运用过程中,有着较高的使用性能要求。
在我国研究人员不断的深入研究下,镍钴锰三元正极材料在近几年不断发展,并且有较高的实际应用价值。
镍钴锰三元正极材料结合了之间的优势,从而形成,从而在啊共沉淀法的制备下产生,更产生合成材料,结合这Ni-Co-Mn三类化合元素的主要优势,提升了镍钴锰三元材料在实际应用过程中的使用效能。
在三元正极材料的不断制备中,需要加强高比容量、高倍率、长循环寿命等因素的关注,加强前驱体物理质量的研究和选择。
本文以共沉淀法为主要的制备方式,讨论镍钴锰三元正极材料的主要制备过程以及发展情况。
关键词:共沉淀法;钴镍锰三元正极材料;制备研究中图分类号:TM912 文献标识码:A 文章编号:1002-5065(2023)09-0157-3Study on the preparation of nickel cobalt manganese ternary materials by co precipitation methodZHU Jing-xun(Guangxi Zhongwei New Energy Technology Co., Ltd,Qinzhou 535000,China)Abstract: With the development of society, people's use of electricity in their daily lives has become more widespread and specific. As the main device for storing electrical energy, batteries have high performance requirements in practical applications. Under the continuous in-depth research of researchers in China, nickel cobalt manganese ternary cathode materials have been continuously developed in recent years and have high practical application value. The nickel cobalt manganese ternary positive electrode material combines the advantages between them to form a composite material, which is produced under the co precipitation method. Combined with the main advantages of the Ni Co Mn three types of composite elements, the efficiency of the nickel cobalt manganese ternary material in practical applications is improved. In the continuous preparation of ternary cathode materials, it is necessary to pay more attention to factors such as high specific capacity, high magnification, and long cycle life, and to strengthen the research and selection of precursor physical quality. This article discusses the main preparation process and development of nickel cobalt manganese ternary cathode materials using co precipitation method as the main preparation method.Keywords: co precipitation method; Cobalt nickel manganese ternary cathode material; Preparation research收稿日期:2023-03作者简介:朱静薰,女,生于1987年,中级工程师,研究方向:镍钴冶炼、三元前驱体。
第3卷 第6期 2014年11月 储 能 科 学 与 技 术 Energy Storage Science and Technology V ol.3 No.6Nov. 2014尖晶石镍锰酸锂全电池常温循环寿命分析谢 佳, 彭 文, 杨续来(合肥国轩高科动力能源股份公司工程研究院,安徽 合肥 230011)摘 要:分别以石墨和钛酸锂为负极活性物质,制备了尖晶石镍锰酸锂的32131型圆柱锂离子电池。
石墨负极电池和钛酸锂负极电池容量分别为7.5 A ·h 和5.5 A ·h ,质量能量密度分别达到152 W ·h/kg 和81 W ·h/kg 。
常温充放电循环测试结果表明,石墨和钛酸锂两种负极体系电池循环寿命将分别达到400次和1000次,这种循环寿命的差别主要体现在负极上,即正极材料中溶解的Mn 在石墨负极表面沉积并持续催化SEI 膜生成,减少了电池中可使用的活性Li +,进而导致电池寿命快速衰减;相比而言,钛酸锂负极表面不存在明显SEI ,同时正极过量设计电池也使得钛酸锂体系电池的镍锰酸锂与电解液间的界面副反应低于石墨体系的负极过量设计电池。
关键词:镍锰酸锂;高电压;循环寿命;失效机理 doi: 10.3969/j.issn.2095-4239.2014.06.010中图分类号:TM 911 文献标志码:A 文章编号:2095-4239(2014)06-624-05The cycle life investigation for spinel LiNi 0.5Mn 1.5O 4 full cellsXIE Jia ,PENG Wen ,YANG Xulai(Institute of Engineering and Technology ,Hefei Guoxuan High-Tech Power Energy Co., Ltd.,Hefei 230011,Anhui ,China )Abstract :Due to the high specific energy and good cycle ability, secondary lithium-ion batteries have been adapted as the main power source for portable electronics in the past two decades. Recently this technology has been extended into the fast growing electric vehicle market. However such application posts further needs of battery technology advancement, especially higher energy density to ectend the driving range of electric vehicles. The higher energy density in batteries can be achieved by improving specific capacity of active materials or by increasing the working potential of the cathode materials. Among various high-voltage cathode materials, the spinel LiNi 0.5Mn 1.5O 4 has been investigated as a promising cathode material for Li-ion batteries with high energy density. In this paper, LiNi 0.5Mn 1.5O 4 / graphite and LiNi 0.5Mn 1.5O 4 / Li 4Ti 5O 12 are manufactured as the 32131-type cells, which offer more practical and reliable cell data compared with laboratory size coin-cells. The cathode electrode composite is LiNi 0.5Mn 1.5O 4 : SP : KS-6 : PVDF = 91.0 : 3.5 : 1.0 : 4.5, and the two anode electrodes are Li 4Ti 5O 12 : SP : KS-6 : PVDF = 90.0 : 4.0 : 1.0 : 5.0 and graphite : SP : CMC = 93.2 : 2.5 : 4.3, respectively. The cells are 7.5Ah (152 W ·h/kg) for LiNi 0.5Mn 1.5O 4/graphite with N/P=1.1 and 5.5 A ·h (81 W ·h/kg) for LiNi 0.5Mn 1.5O 4/Li 4Ti 5O 12 with N/P=0.9. The capacity retention is 90.1% for LiNi 0.5Mn 1.5O 4 /graphite after 250 cycles with 0.5 C charge/discharge rate at room temperature. For LiNi 0.5Mn 1.5O 4 /Li 4Ti 5O 12 cell, the capacity retention is 97.2% after 200 cycles with 1.0 C charge/1.5 C discharge rate at room temperature, the cycle performance is almost the same with LiNi 0.5Mn 1.5O 4/Li half cell. Therefore, the difference of cycle performance seems to be depended on the anodes. The capacity fading of the LiNi 0.5Mn 1.5O 4/graphite can be explained by the impact of Mn dissolution, and active Li + loss in the full-cell system through continuous SEI formation (electrolyte reduction) prompted by Mn reduced on the surface of graphite. LiNi 0.5Mn 1.5O 4/Li 4Ti 5O 12 cell whose capacity is limited by Li 4Ti 5O 12 anode showed almost no SEI and has better cycling performance.Key words :LiNi 0.5Mn 1.5O 4;high voltage ;cycling performance ;failure mechanism收稿日期:2014-08-09;修改稿日期:2014-09-20。
1. Yukai Fan, Jianming Wang, , Xuebo Ye, Jianqing Zhang,Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method[J] Materials Chemistry and Physics,2007,103:19-23 LiNi0.5Mn1.5O4 spinel has been prepared by a coprecipitation method, and the effects of calcination temperature on the physical properties and electrochemical performance of the samples have been investigated. The results of XRD and scanning electron microscopy (SEM) showed that as calcination temperature increases, the crystallinity of the samples is improved, and their grain sizes obviously increase. It was found that the samples calcined at relatively high temperatures present large initial discharge capacity (>125 mAh g−1) and excellent cycling stability with a capacity retention rate larger than 95% after 100 cycles at 1 ◦C and 25 ◦C. This probably derives from their higher crystallinity and larger grain sizes. 此文介绍了利用共沉淀法制备尖晶石镍锰酸锂,并对制备出来的产品进行常规的物性及电化学性能表征。 4. Zhaorong Chang, Dongmei Dai, Hongwei Tang, Xu Yu, Xiao-Zi Yuan, Haijiang Wang, Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4 [J] , Electrochimica Acta,2010,55:5506-5510 LiNi0.5Mn1.5O4, a lithium-ion battery cathode material, is prepared using co-precipitation via a twostep drying method with Ni–Mn mixed hydroxide as the precursor. This study examines the effects of precursor pretreatment with hydrazine (a reductant) or with H2O2 (an oxidant) in solutions of NiSO4 and MnSO4. The results indicate substantial differences in the structure and electrochemical properties of LiNi0.5Mn1.5O4 depending on whether the precursor is pretreated with reductant or oxidant. For the hydrazine-treated precursor, the synthesized LiNi0.5Mn1.5O4 has a very pure spinel phase and an ordered, octahedral crystal morphology (ca. 100–300 nm). In contrast, the material synthesized using the H2O2-treated precursor shows numerous impurity phases (Na0.7MnO2.05) with a layer-by-layer crystal structure. The control sample (prepared without precursor pretreatment) maintains an octahedral structure but still retains a few impurity phases of Na0.7MnO2.05. The electrochemical results show that LiNi0.5Mn1.5O4 synthesized using a hydrazine-treated precursor has a higher specific capacity (especially under high discharge current) and a higher cyclic life than the control sample, whereas the sample using H2O2-treated precursor shows almost no special capacity due to changes in crystal structure. 此文介绍了利用共沉淀法制备尖晶石镍锰酸锂,并对制备出来的产品进行晶体结构及电化学性能表征。 8. Dongqiang Liu, Jiantao Han, John B. Goodenough, Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid [J], Journal of Power Sources,2010,195:2918-2923 The cathode materials Li1-x[Ni0.5Mn1.5]O4 prepared by coprecipitation from acetate solution by oxalic acid and annealing at 900℃ Cinair had the preferred disordered Ni and Mn on the 16d octahedral sites of a spinel Fd3m structure. The coprecipitation method provides better crystallinity than the Fd¯3mphase previously obtained by quenching from the melt. Polycrystalline octahedral-shaped particles with smooth surfaces contained trace amounts of a LiyNi1−yO impurity that introduced some Mn(III) into the spinel phase. Halfcells cycled at 0.2 C rate between 3.5 and 4.8V versus Li exhibited a flat voltage V≈4.7V with a small step at x≈0.5 and a capacity at room temperature of 130mAhg−1 that showed no fade after 50 cycles. A small capacity fade was initiated with a cut-off voltage ≥4.9 V; a significant capacity loss between 2 and 5 C cycling rates was reversible to 134mAhg−1 on returning to 0.1 C after 50 cycles at 10 C between 3.5 and 5.0 V. 此文介绍了利用共沉淀法制备尖晶石镍锰酸锂,并对制备出来的产品进行晶体结构及电化学性能表征。 喷雾 2. Decheng Li Atsushi Ito, Koichi Kobayakawa, Hideyuki Noguchi, YuichiSato, Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing [J] Electrochimica Acta,2007,52:1919-1924 LiNi0.5Mn1.5O4 was prepared by a spray drying and post-annealing process. The re-annealing treatment in O2 could not only decrease the Mn3+ content, but also increased the reversible capacity and significantly improve the rate capability compared to the untreated material. Moreover, the cyclic performance of the LiNi0.5Mn1.5O4 depends on both the cycling rate and operating temperature, which was ascribed to the difference between the phase transition rates between cubic I cubic II and cubic II cubic III. 此文介绍了利用喷雾干燥法制备镍锰酸锂,并分析了退火后处理对其电化学性能的影响。 7. Chih-Yuan Lin, Jenq-Gong Duh, Chia-Haw Hsu, Jin-Ming Chen,LiNi0.5Mn1.5O4 cathode material by low-temperature solid-state method with excellent cycleability in lithium ion battery [J] Materials Letters,2010,64:2328-2330 LiNi0.5Mn1.5O4 cathode material was synthesized from a mixture of LiCl, NiCl2 6H2O and MnCl2 4H2O with 70 wt.% oxalic acid by a low-temperature solid-state method. The calcination temperature was adjusted to form disorder Fd3m structure at 700–800 °C for 10 h. XRD patterns and FTIR spectroscopy showed that the LiNi0.5Mn1.5O4 cathode material exhibited an impurityfree spinel Fd3m structure. Electrochemical property results revealed that the LiNi0.5Mn1.5O4 cathode material charged at 1C rate to 4.9 V and discharged at 2 and 3 C to 3.5 V delivered initial capacity of 120 mAh/g and maintained a capacity retention over 80% at room temperature after 1000 charge/discharge cycles. 此文介绍了利用喷雾干燥法制备镍锰酸锂,并对制备出来的产品进行晶体结构及电化学性能表征。 10. Yukai Fan, Jianming Wang , Xuebo Ye, Jianqing Zhang. Physical properties and electrochemical performance of LiNi0.5Mn1.5O4cathode material prepared by a coprecipitation method [J]. Materials Chemistry and Physics,2007,103:19-23 LiNi0.5Mn1.5O4 spinel has been prepared by a coprecipitation method, and the effects of calcination temperature on the physical properties and electrochemical performance of the samples have been investigated. The results of XRD and scanning electron microscopy (SEM) showed that as calcination temperature increases, the crystallinity of the samples is improved, and their grain sizes obviously increase. It was found that the samples calcined at relatively high temperatures present large initial discharge capacity (>125 mAh g−1) and excellent cycling stability with a capacity retention rate larger than 95% after 100 cycles at 1 ◦C and 25 ◦C. This probably derives from their higher crystallinity and larger grain sizes. 此文介绍了利用喷雾干燥制备尖晶石镍锰酸锂,并对制备出来的产品进行常规的物性及电化学性能表征。