湖北省黄冈市浠水县2017届九年级(上)期中数学试题(含答案)
- 格式:doc
- 大小:418.00 KB
- 文档页数:12
九年级(上)期中数学试卷一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1 C.D.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3 B.12 C.D.75.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF 的面积比为()A.1:2 B.1:4 C.4:9 D.1:36.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③ B.①③④ C.①②④ D.②③④7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.m C.m D.m11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.212.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m 的方向)平移,使m与⊙O相切,则平移的距离为()A.1cm B.2cm C.4cm D.2cm或4cm16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cm B.4cm C.6cm D.8cm17.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A. B.C.D.19.边长为a的正六边形的面积为()A. a B.4a2C.a2D.a220.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是.(写出一个即可)22.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似【分析】A、根据等腰三角形的性质和相似三角形的判定定理进行判断;B、根据等腰三角形的性质和相似三角形的判定定理进行判断;C、D根据相似图形的定义进行判断.【解答】解:A、若一个等腰三角形的顶角为70°,而另一个的顶角为40°,则此两个等腰三角形不相似,故本选项错误;B、95°的角只能是顶角,则顶角为95°的两个等腰三角形相似,故本选项正确;C、所有的矩形是形状不唯一确定的图形,不一定是相似形,故本选项错误;D、所有的菱形是形状不唯一确定的图形,不一定是相似形,故本选项错误;故选:B.2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1 C.D.【分析】先根据特殊角的三角函数值得出∠B,从而得出∠A,即可计算出结果.【解答】解:∵在Rt△ABC中,∠C=90°,∵sinB=,∴∠B=30°,∴∠A=60°,∴tanA=.故选A.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵角平分线上的点到角两边的距离相等,∴凉亭的位置应选在△ABC三条角平分线的交点上.故选C.4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3 B.12 C.D.7【分析】由公共角和已知条件证明△ADE∽△ACB,得出对应边成比例,即可求出BC的长.【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴,即,解得:BC=12.故选:B.5.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF 的面积比为()A.1:2 B.1:4 C.4:9 D.1:3【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,得出△DEF∽△CBF,得出对应边成比例EF:BF=DE:BC=1:2,得出△DEF与△BDF的面积比=EF:BF,即可得出结果.【解答】解:∵D、E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DEF∽△CBF,∴EF:BF=DE:BC=1:2,∴△DEF与△BDF的面积比=EF:BF=1:2;故选:A.6.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③ B.①③④ C.①②④ D.②③④【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形,进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,且相似比是:=2,③△ABC与△DEF的周长比等于相似比,即2:1,④根据面积比等于相似比的平方,则△ABC与△DEF的面积比为4:1.综上所述,正确的结论是:①③④.故选:B.7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似【分析】由两边成比例和夹角相等(对顶角相等),即可得出△AOB∽△COD,即可得出结果.【解答】解:∵OA:OC=OB:OD,∠AOB=∠COD,∴△AOB∽△COD,C正确;故选:C.9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.【分析】根据三角函数的定义即可求解.【解答】解:∵cosB=,∴BC=ABcosB=10cos50°.故选:B.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.m C.m D.m【分析】可利用勾股定理及所给的比值得到所求的线段长.【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选B.11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.2【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.12.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=DC﹣BC=20构造方程关系式,进而可解,即可求出答案.【解答】解:∵在直角三角形ADB中,∠D=30°,∴=tan30°∴BD==AB∵在直角三角形ABC中,∠ACB=60°,∴BC==AB∵CD=20∴CD=BD﹣BC=A B﹣AB=20解得:AB=10.故选A.13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个【分析】首先过点O作OC⊥AB于点C,连接OB,由垂径定理可求得OP的取值范围为3≤OP≤5,而OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,故符合条件的点P有5个.【解答】解:过点O作OC⊥AB于点C,连接OB,∵⊙O的直径为10cm,弦AB为8cm,∴BC=AB=4(cm),OB=5cm,∴OC==3(cm),∴3cm≤OP≤5cm,∵OP的长是整数,∴OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,∴满足条件的点P有5个.故选D.14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°【分析】根据三角形的内角和得到∠A=35°,根据圆周角定理即可得到结论.【解答】解:∵AC⊥BO于O,∠B=55°,∴∠A=35°,∴∠BOC=2∠A=70°,故选C.15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m 的方向)平移,使m与⊙O相切,则平移的距离为()A.1cm B.2cm C.4cm D.2cm或4cm【分析】直线m向右平移时,会与圆在左边相切,或者右边相切,有两种情况,分别讨论解答即可.【解答】解:∵圆心O到直线m的距离为3cm,半径为1cm,∴当直线与圆在左边相切时,平移距离为:3﹣1=2cm,当直线与圆在右边相切时,平移距离为:3+1=4cm,故选D.16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cm B.4cm C.6cm D.8cm【分析】连接OC和OB,根据切线的性质:圆的切线垂直于过切点的半径,知OC⊥AB,应用勾股定理可将BC的长求出,从而求出AB的长.【解答】解:连接OC和OB,∵弦AB与小圆相切,∴OC⊥AB,在Rt△OBC中,BC===4cm,∴AB=2BC=8cm.故选D.17.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π【分析】由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,然后利用四边形的内角和即可求出∠AOB然后利用已知条件和弧长公式即可求出∠AOB所对弧的长度.【解答】解:∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,而∠P=60°,∴∠AOB=120°,∠AOB所对弧的长度==2π.故选D.18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A. B.C.D.【分析】首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半+S△AOB﹣S扇形AOB可求出阴影部分的面积.圆【解答】解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.19.边长为a的正六边形的面积为()A. a B.4a2C.a2D.a2【分析】边长为a的正六边形的面积是边长是a的等边三角形的面积的6倍,据此即可求解.【解答】解:边长为a的等边三角形的面积=a2=a2,则边长为a的正六边形的面积等于6×a2=a2.故选C.20.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM 与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是∠D=∠B.(写出一个即可)【分析】先证出∠DAE=∠BAC,再由∠D=∠B,根据三角形相似的判定方法即可得出△ADE∽△ABC.【解答】解:这个条件可能是∠D=∠B;理由如下:∵∠DAB=∠CAE,∴∠DAB+∠BAE=∠CAE+∠BAE,即∠DAE=∠BAC,又∵∠D=∠B,∴△ADE∽△ABC.22.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=75°.【分析】根据偶次幂具有非负性可得sinA﹣=0,tanB﹣1=0,再根据特殊角的三角函数值可得:∠A=60°,∠B=45°,然后再利用三角形内角和定理可得答案.【解答】解:由题意得:sinA﹣=0,tanB﹣1=0,解得:∠A=60°,∠B=45°,则∠C=180°﹣60°﹣45°=75°,故答案为:75°.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为6.【分析】过C作直径CD,连AD,根据圆周角定理及推论得到∠CAD=90°和∠D=∠B=30°,再根据30度角所对的直角边等于斜边的一半即可得到圆的直径.【解答】解:过C作直径CD,连AD,∴∠D=∠B=30°,∠CAD=90°,∴CD=2AC=6,∴⊙O的直径为6;故答案为:6.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.【分析】由AB为直径和PC⊥CQ可得出∠PCQ=90°=∠ACB,又由∠P与∠A为同弦所对的圆周角,可得出∠P=∠A,从而得出△ACB∽△PCQ,即得出CQ=•CP,由tan∠ABC=得出CQ=CP,当CP最大时,CQ也最大,而CP为圆内一弦,故CP最大为直径,由此得出CQ的最大值.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°.∵CQ⊥PC,∴∠PCQ=90°=∠ACB,又∵∠P=∠A(同弦圆周角相等),∴△ACB∽△PCQ,∴.在Rt△ACB中,tan∠ABC=,∴=,∴CQ=•CP=CP.∵线段CP是⊙O内一弦,∴当CP过圆心O时,CP最大,且此时CP=5.∴CQ=×5=.故答案为:.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.【分析】过C作CD⊥AB于D,则∠CDA=∠CDB=90°,在Rt△ACD中,由∠A=30°,AC=4,求得CD=AC•sinA=2,AD=AC,cosA=2,根据三角形的内角和得到∠B=45°,在Rt△BCD中,根据BD=CD=2,BC=2,即可得到AB=2+2.【解答】解:过C作CD⊥AB于D,则∠CDA=∠CDB=90°,在Rt△ACD中,∵∠A=30°,AC=4,∴CD=AC•sinA=2,AD=AC,cosA=2,∵∠A=30°,∠ACB=105°,∴∠B=45°,在Rt△BCD中,BD=CD=2,BC=2,∴AB=2+2.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?【分析】由等边三角形的性质得出AB=BC=AC=5,∠B=∠C=60°,证明△ABE∽△ECD,得出对应边成比例=,即可求出CD的长.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=5,∠B=∠C=60°,∵∠AEC=∠AED+∠DEC,∠AEC=∠B+∠BAE,∴∠AED+∠DEC=∠B+∠BAE,又∵∠AED=∠B=60°,∴∠DEC=∠BAE,∴△ABE∽△ECD,∴=,∵BE=2,BC=5,∴EC=3,∴CD===.27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.【分析】(1)由互余两角的关系得出∠B=∠ACD,∠DCB=∠A,证出△ACD∽△CBD,得出对应边成比例,即可得出结论;(2)由相似三角形的性质得出,由勾股定理求出AB,由三角形的面积求出CD,得出BD,即可得出sin∠BCD的值.【解答】(1)证明:∵∠ACB=90°,∠ACD+∠DCB=90°,∵CD是斜边AB上的高,∴∠B+∠DCB=90°,∠A+∠ACD=90°,∴∠B=∠ACD,∠DCB=∠A,∴△ACD∽△CBD,∴,即CD2=AD•BD;(2)解:由(1)知:△ACD∽△CBD,∴,在Rt△ABC中,AC=3,BC=4,∴AB==5,由△ABC的面积得:AB•CD=AC•BC,∴5CD=3×4,∴CD=,∴,解得:BD=,sin∠BCD===.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.【分析】本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.【解答】(1)证明:连接OD,(1分)∵DE切⊙O于点D,∴DE⊥OD,∴∠ODE=90°,(2分)又∵AD=DC,AO=OB,∴OD是中位线,∴OD∥BC,(3分)∴∠DEC=∠ODE=90°,∴DE⊥BC;(4分)(2)解:连接BD,(5分)∵AB是⊙O的直径,∴∠ADB=90°,(6分)∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,(7分)∴,∴BC=,(9分)又∵OD=BC,∴OD=,即⊙O的半径为.(10分)29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.【分析】(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC 的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥EF,∴OC⊥EF,则EF为圆O的切线;(2)∵∠ACD=30°,∠ADC=90°,∴∠CAD=∠OCA=60°,∴△AOC为等边三角形,∴AC=OC=OA=2,在Rt△ACD中,∠ACD=30°,∴AD=AC=1,根据勾股定理得:CD=,∴S阴影=S△ACD﹣(S扇形AOC﹣S△AOC)=×1×﹣(﹣×22)=﹣.。
九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.2.在平面直角坐标系中,反比例函数y=﹣的图象分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.已知两条直线被三条平行线所截,截得线段的长度如图所示,则x的值为()A.3 B.4 C.5 D.64.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=95.如图所示,在⊙O中,OB⊥OC于点O,则∠BAC的度数为()A.30°B.45°C.60°D.90°6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条7.二次函数y=(x+1)(x﹣3)的图象的对称轴是()A.直线x=1 B.直线x=2 C.直线x=3 D.直线x=﹣18.如果△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形9.如图,先将一张长方形的纸沿虚线对折,再对折,然后按图中虚线剪下,将剪下的纸展开,一定可以得到一个()A.菱形B.矩形C.正方形D.梯形10.下列四个函数中,在各自的自变量的取值范围内,函数值y随x值的增大而增大的函数是()A.y=﹣x B.y=3﹣2x C.y=(x>0)D.y=x2(x>0)二、填空题(每小题4分,共16分)11.方程x2=2x的根为.12.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是度.13.二次函数y=2(x+3)2的图象向平移个单位长度就可以得到二次函数y=2x2的图象.14.如图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD•BC=.三、解答题(本大题共6个小题,共54分)15.(1)计算:|﹣2|﹣2sin30°+(﹣)2+(tan45°)﹣1(2)解方程:2x2﹣5x﹣3=0.16.已知关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,求k 的值.17.如图,甲、乙两楼的距离AC=30cm,甲楼高AB=40m,自甲楼楼顶的B处看乙楼楼顶的D处,仰角为28°,求乙楼的高CD的长.(结果精确到0.1m,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)18.如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色)小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)请用列表或画树状图的方法求两人转动转盘得到的两种颜色能配成紫色的概率;(2)两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?说说你的理由.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(2,m)两点,连接OA,OB.(1)分别求这两个函数的表达式;(2)直接写出使得一次函数y=kx+b的值大于反比例函数y=的值的x的取值范围,并求出△OAB的面积.20.如图,在⊙O中,直径AB=4,点C在⊙O上,且∠AOC=60°,连接BC,点P 在BC上(点P不与点B,C重合),连接OP并延长交⊙O于点M,过P作PQ⊥OM交于点Q.(1)求BC的长;(2)当PQ∥AB时,求PQ的长;(3)点P在BC上移动,当PQ的长取最大值时,试判断四边形OBMC的形状,并说明理由.四、填空题(每小题4分,共20分)21.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为.22.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的番号是.23.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.24.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB=.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.五、解答题(本大题共3个小题,共30分)26.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.27.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.28.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到2列正方形的个数依次为2,1,故选:D.2.在平面直角坐标系中,反比例函数y=﹣的图象分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质.【分析】直接根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=﹣中,k=﹣3<0,∴此函数图象的两个分支分别位于第二四象限.故选C.3.已知两条直线被三条平行线所截,截得线段的长度如图所示,则x的值为()A.3 B.4 C.5 D.6【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵两条直线被三条平行线所截,∴,解得:x=4,故选:B.4.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程﹣配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.5.如图所示,在⊙O中,OB⊥OC于点O,则∠BAC的度数为()A.30°B.45°C.60°D.90°【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵ON⊥OC,∴∠BOC=90°,∴∠BAC=∠BOC=×90°=45°.故选B.6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C7.二次函数y=(x+1)(x﹣3)的图象的对称轴是()A.直线x=1 B.直线x=2 C.直线x=3 D.直线x=﹣1【考点】二次函数的性质.【分析】先根据二次函数的解析式求出函数图象与x轴的交点,再根据两交点关于对称轴对称即可得出结论.【解答】解:∵二次函数的解析式为:y=(x+1)(x﹣3),∴此抛物线与x轴的交点为(﹣1,0),(3,0),∴抛物线的对称轴为直线x==1.故选A.8.如果△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,直接得出∠A,∠B的角度从而得出答案.【解答】解:∵sinA=cosB=,∴∠A=∠B=45°,∴△ABC是等腰直角三角形.故选C.9.如图,先将一张长方形的纸沿虚线对折,再对折,然后按图中虚线剪下,将剪下的纸展开,一定可以得到一个()A.菱形B.矩形C.正方形D.梯形【考点】剪纸问题;菱形的判定.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以进行从题后的答案中选择.【解答】解:由题意知,对折实际上就是对称,对折2次的话,剪下应有4条边,并且这4条边还相等,只有菱形满足这一条件.故选:A.10.下列四个函数中,在各自的自变量的取值范围内,函数值y随x值的增大而增大的函数是()A.y=﹣x B.y=3﹣2x C.y=(x>0)D.y=x2(x>0)【考点】反比例函数的性质;一次函数的性质;正比例函数的性质;二次函数的性质.【分析】画出函数的图象即可判断.【解答】解:函数y=x2(x>0)的图象如图所示,图象从左到右是上升的,y随x值的增大而增大,故选D.二、填空题(每小题4分,共16分)11.方程x2=2x的根为x1=0,x2=2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或x﹣2=0,x1=0,x2=2,故答案为:x1=0,x2=2.12.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是30度.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】设坡角为α,根据坡度的定义求出坡角的正切值,根据特殊角的三角函数值解答即可.【解答】解:设坡角为α,∵斜坡的坡度为i=1:,∴tanα==,∴α=30°,故答案为:30.13.二次函数y=2(x+3)2的图象向右平移3个单位长度就可以得到二次函数y=2x2的图象.【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”平移规律即可解决.【解答】解:根据二次函数图象的平移规律“左加右减,上加下减”,可知:二次函数y=2(x+3)2的图象向右平移3个单位长度就可以得到二次函数y=2x2的图象.故答案为:右,3.14.如图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD•B C=10.【考点】相似三角形的判定与性质.【分析】由条件可证明△ADE∽△ABC,可得=,即得到AD•BC=DE•AB,代入可求得答案.【解答】解:∵∠ADE=∠B,∠EAD=∠CAB,∴△ADE∽△ABC,∴=,∴AD•BC=DE•AB,且DE=2,AB=5,∴AD•BC=10,故答案为:10.三、解答题(本大题共6个小题,共54分)15.(1)计算:|﹣2|﹣2sin30°+(﹣)2+(tan45°)﹣1(2)解方程:2x2﹣5x﹣3=0.【考点】解一元二次方程﹣因式分解法;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值得到原式=2﹣2×+3+1﹣1,然后根据零指数幂和负整数指数幂的意义计算;(2)利用因式分解法求解.【解答】解:(1)原式=2﹣2×+3+1﹣1=2﹣2+3+1=4;(2)(2x+1)(x﹣3)=0,2x+1=0或x﹣3=0,所以x1=﹣,x2=316.已知关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,求k 的值.【考点】根的判别式.【分析】由方程的系数结合根的判别式即可得出关于k的一元二次方程,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,∴△=[2(k﹣1)]2﹣4=4k2﹣8k=0,解得:k1=0,k2=2.答:k的值为0或2.17.如图,甲、乙两楼的距离AC=30cm,甲楼高AB=40m,自甲楼楼顶的B处看乙楼楼顶的D处,仰角为28°,求乙楼的高CD的长.(结果精确到0.1m,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可以得到CD的长就是甲楼的高加上BE•tan28°的和,从而可以解答本题.【解答】解:作BE⊥CD,如右图所示,∴∠BED=90°,由题意可得,AC=BE,∴BE=30m,在Rt△BDE中,∠DBE=28°,∴,∴DE=30×tan28°,∵AB=40,AB=CE,∴CD=DE+CE=30×tan28°+40≈30×0.53+40=55.9m,即乙楼的高CD的长是55.9m.18.如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色)小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)请用列表或画树状图的方法求两人转动转盘得到的两种颜色能配成紫色的概率;(2)两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?说说你的理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意,用列表法将所有可能出现的结果,根据概率公式即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,继而可得小亮获胜,得到结论不公平.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.红蓝黄蓝(红,蓝)(蓝,蓝)(黄,蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)则两人转动转盘得到的两种颜色能配成紫色的概率为=;(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小明获胜的概率是;小亮获胜的概率为1﹣=,而>,即小亮获胜的概率大,∴这个“配色”游戏对双方是不公平的.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(2,m)两点,连接OA,OB.(1)分别求这两个函数的表达式;(2)直接写出使得一次函数y=kx+b的值大于反比例函数y=的值的x的取值范围,并求出△OAB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A(﹣1,2)代入反比例函数y=求出n的值即可得出其函数解析式,再把B(2,m)代入反比例函数的解析式即可得出m的值,把AB两点的坐标代入一次函数y=kx+b,求出k、b的值即可得出其解析式;(2)直接根据函数图象可得出x的取值范围,求出一次函数与x轴的交点坐标,再根据三角形的面积公式即可得出结论.【解答】解:(1)∵A(﹣1,2)在反比例函数y=的图象上,∴n=2×(﹣1)=﹣2,∴其函数解析式为y=﹣;∵B(2,m)在反比例函数的图象上,∴m=﹣=﹣1,∴B(2,﹣1).∵A(﹣1,2),B(2,﹣1)两点在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为:y=﹣x +1;(2)∵A (﹣1,2),B (2,﹣1),∴一次函数y=kx +b 的值大于反比例函数y=的值时,0<x <2或x <﹣1. ∵一次函数的解析式为:y=﹣x +1, ∴D (1,0), ∴OD=1,∴S △OAB =S △OAD +S △OBD =×1×2+×1×1=1+=.20.如图,在⊙O 中,直径AB=4,点C 在⊙O 上,且∠AOC=60°,连接BC ,点P 在BC 上(点P 不与点B ,C 重合),连接OP 并延长交⊙O 于点M ,过P 作PQ ⊥OM 交于点Q .(1)求BC 的长;(2)当PQ ∥AB 时,求PQ 的长;(3)点P 在BC 上移动,当PQ 的长取最大值时,试判断四边形OBMC 的形状,并说明理由.【考点】圆的综合题.【分析】(1)在Rt△ABC中,根据BC=AB•sin60°计算即可.(2)在Rt△POB中,求出OP,再根据勾股定理即可计算.(3)因为PQ=,OQ是定值,所以OP最小时,PQ最长,所以当OM ⊥BC时,OP最短,此时PQ最长,由此即可解决问题.【解答】解:(1)如图1中,连接AC.∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴∠A=60°,∵AB是直径,∴∠ACB=90°,∵AB=4,∴BC=AB•sin60°=4×=2.(2)如图2中,连接OQ.∵PQ∥AB,PQ⊥OM,∴OM⊥AB,∴∠POB=90°,∵∠B=30°,∴OP=OB•tan30°=,在Rt△OPQ中,PQ===.(3)如图3中,∵PQ=,OQ是定值,∴OP最小时,PQ最长,∴当OM⊥BC时,OP最短,此时PQ最长,PQ=BC=,∴PQ的最大值为.此时四边形OBMC为菱形.理由:连接BM、CM.∵OM⊥BC,OC=OB,∴∠POB=∠POC=60°,∵OB=OM=OC,∴△OMB,△OCM是等边三角形,∴OC=OB=BM=CM,∴四边形OBMC是菱形.四、填空题(每小题4分,共20分)21.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为3.【考点】根与系数的关系.【分析】由韦达定理可得m+n=2.将其代入原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1可得答案.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m,n,∴m+n=2,则原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1=4﹣1=3,故答案为:3.22.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的番号是①②④.【考点】二次函数图象与系数的关系.【分析】①由抛物线与x轴的交点在y轴正半轴可得出c>0,①正确;②由抛物线与x轴有两个不相同的交点可得出b2﹣4ac>0,②正确;③由抛物线的对称轴为x=﹣1可得出b=2a,③错误;④由抛物线的对称轴结合点A的坐标即可得出抛物线与x轴的另一交点坐标为(1,0),进而可得出a+b+c=0,④正确.综上即可得出结论.【解答】解:①∵抛物线与y轴交点在y轴正半轴,∴c>0,①正确;②∵抛物线与x轴有两个不同的交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴b2>4ac,②正确;③∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,③错误;④∵抛物线对称轴为直线x=﹣1,且点A的坐标为(﹣3,0),∴抛物线与x轴另一交点的坐标为(1,0),∴当x=1时,y=a+b+c=0,④正确.综上所述:正确结论的番号是①②④.故答案为:①②④.23.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.【考点】列表法与树状图法;二次函数的性质.【分析】根据题意可以所有的可能性,根据所得抛物线中,满足开口向下且对称轴在y轴左侧可以判断a、b的正负,从而可以得到所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率.【解答】解:由题意可得,所有的可能性是:(1,2)、(1,﹣1)、(1,﹣3)、(2,1)、(2,﹣1)、(2,﹣3)、(﹣1,1)、(﹣1,2)、(﹣1,﹣3)、(﹣3,1)、(﹣3,2)、(﹣3,﹣1),∵所得抛物线中,满足开口向下且对称轴在y轴左侧,∴a<0,b<0,∴所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是:,故答案为:.24.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB=24.【考点】三角形的外接圆与外心.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解答】解:作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,有圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴=,即=,解得,AB=24,故答案为:24.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为4+;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【考点】翻折变换(折叠问题);解直角三角形.【分析】①如图作AM⊥BC于M.在Rt△ABM中,由∠AMB=90°,∠B=45°,推出BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,根据AC2=AM2+CM2,可得方程52=x2+(4﹣x)2,求出x即可解决问题.②如图作FN⊥BC于N.由△ACF∽△ABC,得到AC2=AF•AB,推出AF=,BF=AB ﹣AF=,求出FN、CN,根据tan∠BCD=计算即可.【解答】解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.五、解答题(本大题共3个小题,共30分)26.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意即可求得y与x的函数关系式为y=(30﹣2x)x;(2)根据“种植园的面积不小于100m2”列出一元二次不等式,解之可得,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.【解答】解:(1)根据题意得:y=(30﹣2x)x=﹣2x2+30x,(2)由题意得:﹣2x2+30x≥100,解得:5≤x≤10,∵30﹣2x≤18,∴x≥6,∴6≤x≤10,∵y=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,这个种植园的面积的最大值,最大面积为112.5m2.27.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.【考点】三角形综合题.【分析】(1)如图1中,设AD与EF交于点O.首先证明∠AFE=∠EDB,∠FAE=∠B,由∠CAB+∠AFE+∠AEF=180°,∠B+∠BDE+∠DEB=180°,即可证明.(2)如图2中,过A作AG∥ED交BC的延长线于点G.是怎么CG=CD,由DE ∥AG,推出=,由△AEF∽△BED,推出=,推出=,推出DG=AF 即可解决问题.(3)分两种情形求解即可①如图3中,当DE=DF时,易知AD垂直平分线段EF,作DH⊥AB于H.列出方程求解.②当DE=EF时,由△AEF∽△BED,推出AF=BD,CF=CD,即x=y,由此即可解决问题.【解答】解:(1)如图1中,设AD与EF交于点O.∵AD⊥EF,∴∠FOD=∠C=90°,∴∠CDA+∠CFO=180°,∵∠CFO+∠AFE=180°,∴∠AFE=∠ADC=∠ADB,∵CA=CB,∴∠CAB=∠B=45°,∵∠CAB+∠AFE+∠AEF=180°,∠B+∠BDE+∠DEB=180°,∴∠AEF=∠BED.(2)如图2中,过A作AG∥ED交BC的延长线于点G.∵DE∥AG,∴∠G=∠BDE,∵∠BDE=∠ADG,∴∠G=∠ADG,∴AG=AD,∵AC⊥DG,∴GC=CD=x,∴=,∵∠FAE=∠B,∠AEF=∠DEB,∴△AEF∽△BED,∴=,∴=,∴DG=AF,∴2x=2﹣y,∴y=﹣2x+2.(0<x≤1).(3)①如图3中,当DE=DF时,易知AD垂直平分线段EF,作DH⊥AB于H.∵DA平分∠CAB,DC⊥CA,DH⊥AB,∴DC=DH=x,∵∠B=∠HDB=45°,∴BD=x,∴x+x=2,∴x=2﹣2,∴CD=2﹣2.②当DE=EF时,∵△AEF∽△BED,∴AF=BD,CF=CD,∴x=y,∴x=﹣2x+2,∴x=,∴CD=.∴当△DEF是以DE为腰的等腰三角形时,CD的长2﹣2或.28.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.【考点】二次函数综合题.【分析】(1)由直线解析式求出A 、B 坐标,然后得出C 点坐标,再用待定系数法求出抛物线解析式;(2)①过D 作DE ∥y 轴交AB 于E ,则S △ABD =S △BDE +S △ADE =,设出D 点的横标,纵坐标用横坐标表示,同时表示出E 点坐标,从而得出△ABD 的面积表达式,再根据△ABD 的面积为,列出方程解之即可;②分两种情况:第一种,D 为直角顶点;第二种,P 为直角顶点.对于第一种情况,可以验证抛物线的顶点与D 、A 一起刚好构成直角三角形,即P 点就是抛物线的顶点;对于第二种情况,过点P 作GH ∥x 轴,DG ⊥GH 于G ,AH ⊥GH 于H ,由△DGP ∽△PHA 列出相似比例关系求解.【解答】解:(1)当y=0时,2x ﹣10=0,解得x=5,则A (5,0),当x=0时,y=2x ﹣10=﹣10,则B (0,﹣10)∵点C 为OB 的中点,∴C (0,﹣5),把A (5,0),C (0,﹣5)代入y=﹣x 2+bx +c 得,解得,∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①过D 作DE ∥y 轴交AB 于E ,如图,设D (x ,﹣x 2+6x ﹣5),则E (x ,2x ﹣10),∵S △ABD =S △BDE +S △ADE =×5×DE=(﹣x 2+6x ﹣5﹣2x +10) ∴(﹣x 2+6x ﹣5﹣2x +10)=,整理得x 2﹣4x +4=0,解得x 1=x 2=2,∴D (2,3);②∵抛物线解析式为y=﹣x 2+6x ﹣5,∴抛物线的顶点为M (3,4),∴MD=,AD=3,AM=2,∴MD 2+AD 2=AM 2,∴MD ⊥AD ,若D 为直角顶点,则P 与M 点重合,即P (3,4),如图,此时P 点到抛物线对称轴的距离为0;若P 为直角顶点,如图,过点P作GH∥x轴,DG⊥GH于G,AH⊥GH于H,∵∠APD=90°,∴△DGP∽△PHA,∴,设P(t,﹣t2+6t﹣5),则:GP=t﹣2,DG=﹣t2+6t﹣5﹣3,PH=5﹣t,AH=﹣t2+6t﹣5,∴,∴,∴,∴t2﹣5t+5=0,∴t=,∴P点坐标为(,)或(,);若P点坐标为(,),则P点到抛物线对称轴的距离为,若P点坐标为(,),则P点到抛物线对称轴的距离为.。
绝密★启用前2017年人教版九年级上册数学期中试卷注意事项:1、认真审题2、由易到难3、不要漏题 一、选择题1.(本题3分)若关于x 的方程x 2-4x +m =0没有实数根,则实数m 的取值范围是( ) A .m <-4 B .m >-4 C .m <4 D .m >4 2.(本题3分)如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m ,水面最深地方的高度为1m ,则该输水管的半径为( ).A .2mB .2.5mC .4mD .5m3.(本题3分)若x 1,x 2是一元二次方程x 2﹣3x+2=0的两根,则x 1+x 2的值是( ) A .﹣2 B .2 C .3 D .1 4.(本题3分)如图,直线MN 与⊙O 相切于点M ,ME=EF 且EF ∥MN ,则∠E 的大小等于( )A .75° B.60°C.45° D.30° 5.(本题3分)下列几何图形中,即是中心对称图形又是轴对称图形的是( ) A .四边形B .等腰三角形C .菱形D .梯形6.(本题3分)已知实数..x 满足(x 2-x ) 2-4(x 2-x )-12=0,则x 2-x=________ ( )A .-2B .6或-2C .6D .3 7.(本题3分)某厂今年3月的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率为x ,则列出的方程正确的是( )A 、50(1+x )=72B 、50(1+x )+50(1+x )2=72C 、50(1+x )×2=72D 、50(1+x )2=72………○………※※题※※……8.(本题3分)将24y x=的图象先向左平移12个单位,再向下平移34个单位,则所得图象的函数解析式是()A.2134(24y x=++B.2134()24y x=--C.213(424y x=+-D.2134(24y x=+-9.(本题3分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t=-(的单位:秒,h的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71sB.0.70sC.0.63sD.0.36s10.(本题3分)若两个连续整数的积是56,则它们的和为()A.11 B.15 C.﹣15 D.±1511.(本题3分)当22<<-x时,下列函数:①xy2=;②xy312+-=;③xy6-=;④862++=xxy,函数值y随自变量x增大而增大的有()A.①②B.①②③C.①②④D.①②③④12.(本题3分)如果圆形纸片的直径是8cm,用它完全覆盖正六边形,那么正六边形的边长最大不能超过()A.2cm B..4cm D.13.(本题3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A. B.﹣ C.4 D.﹣1二、填空题14.(本题3分)方程3(x﹣5)2=2(x﹣5)的根是.15.(本题3分)二次函数y=ax2+bx+c的图像如图所示,则不等式ax2+bx+c>0的解集是.试卷第2页,总5页………装………○…………线…………○……__________姓名:_______班级:_____…………订……………………线…………………○…………装…………○…16.(本题3分)已知关于x 的一元二次方程(m-2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是. 17.(本题3分)二次函数y =ax 2+bx +c 的部分对应值如下表: x … ﹣3 ﹣2 0 1 3 5 … y …7﹣8﹣9﹣57…则当x =2时对应的函数值y =____________.18.(本题3分)如图,△ABC 内接于⊙O ,若∠OAB=28°,则∠C 的大小为__.19.(本题3分)二次函数的图象如图所示,给出下列说法:①ac >0; ②b a +2=0; ③0=++c b a ;④当时,函数y 随x 的增大而增大; ⑤当时,.其中,正确的说法有 .(请写出所有正确说法的序号)20.(本题3分)从一个边长为32cm 的正三角形钢板上裁下一个面积最大的圆,则这个圆的半径是cm .21.(本题3分)二次函数2y x bx =+的图象如图,对称轴为x =-2.若关于x 的一元二次方程20x bx t +-=(t 为实数)在-5<x <2的范围内有解,则t 的取值范围是___________.2y ax bx c =++1x >0y >13x -<<试卷第4页,总5页外…………○…※※…○…22.(本题3分)如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是.三、计算题23.(本题4分)按要求解方程:2x 2+1=3x (用配方法)24.(本题4分)(4分)解方程 : 0142=+-x x.25.(本题4分)解方程22)2(25)3(4-=+x x 四、解答题26.(本题8分)已知:如图,AC ⊙O 是的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,∠PBA=∠C .(1)求证:PB 是⊙O 的切线;(2)若OP ∥BC ,且OP=8,BC=2.求⊙O 的半径. 27.(本题8分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:……○…………装…………○……学校:___________姓名:____装…………○…………订…………○…装…………○…(1)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式(不需要写出函数自变量的取值范围); (2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价x 的取值范围;28.(本题8分)当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值. 29.(本题9分)如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E .(1)求证:直线CD 是⊙O 的切线; (2)若DE=2BC ,AD=5,求OC 的值.30.(本题9分)已知直线y kx b =+分别与y 轴、x 轴相交于A 、B 两点,与二次函数23y x mx =-+的图像交于A 、C 两点.(1)当点C 坐标为(112-,578)时,求直线AB 的解析式; (2)在(1)中,如图,将△ABO 沿y 轴翻折180°,若点B 的对应点D 恰好落在二次函数23y x mx =-+的图像上,求点D 到直线AB 的距离;(3)当-1≤x ≤1时,二次函数23y x mx =-+有最小值-3,求实数m 的值.。
九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)有下列关于x的方程是一元二次方程的是()A.3x(x﹣4)=0 B.x2+y﹣3=0 C. +x=2 D.x3﹣3x+8=02.(3分)方程3x2﹣8x﹣10=0的二次项系数和一次项系数分别为()A.3和8 B.3和﹣8 C.3和﹣10 D.3和103.(3分)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.5.(3分)抛物线y=x2﹣4x﹣5的顶点在第()象限.A.一B.二C.三D.四6.(3分)一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)若α、β是方程x2+2x﹣2017=0的两个实数根,则α•β的值为()A.2017 B.2 C.﹣2 D.﹣20178.(3分)二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣3 D.9.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=010.(3分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共18分)11.(3分)将方程化为一般形式:2x2﹣3x=3x﹣5是.12.(3分)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为.13.(3分)已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1y2.(用>、<、=填空).14.(3分)如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15.(3分)方程x2﹣2x﹣1=0根的判别式等于.16.(3分)关于x的一元二次方程x2+mx﹣3=0的一个根是1,则另一根为.三、解答题.(共52分)17.(10分)解方程.(1)x2﹣3x﹣4=0(2)(x﹣3)2=3x(x﹣3)18.(8分)在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.19.(9分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求出抛物线的顶点坐标,对称轴及二次函数的最大值.20.(9分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.21.(8分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,求原正方形空地的边长.22.(8分)某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)有下列关于x的方程是一元二次方程的是()A.3x(x﹣4)=0 B.x2+y﹣3=0 C. +x=2 D.x3﹣3x+8=0【解答】解:A、是一元二次方程,故此选项正确;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:A.2.(3分)方程3x2﹣8x﹣10=0的二次项系数和一次项系数分别为()A.3和8 B.3和﹣8 C.3和﹣10 D.3和10【解答】解:3x2﹣8x﹣10=0的二次项系数和一次项系数分别为3,﹣8,故选:B.3.(3分)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:A.4.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.5.(3分)抛物线y=x2﹣4x﹣5的顶点在第()象限.A.一B.二C.三D.四【解答】解:抛物线y=x2﹣4x﹣5的顶点坐标为:x=﹣=2,y==﹣9,即(2,﹣9),∵2>0,﹣9<0,∴顶点在第四象限.故选:D.6.(3分)一元二次方程x2+x+=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【解答】解:∵△=b2﹣4ac=12﹣4•1•=0,∴原方程有两个相等的实数根.故选:B.7.(3分)若α、β是方程x2+2x﹣2017=0的两个实数根,则α•β的值为()A.2017 B.2 C.﹣2 D.﹣2017【解答】解:∵α、β是方程x2+2x﹣2017=0的两个实数根,∴α•β=﹣2017.故选:D.8.(3分)二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣3 D.【解答】解:由二次函数的解析式可知此函数的最小值是2.故选:A.9.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0【解答】解:x2=x,移项得x2﹣x=0,提公因式得x(x﹣1)=0,解得x1=1,x2=0.故选:D.10.(3分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选:C.二、填空题(每小题3分,共18分)11.(3分)将方程化为一般形式:2x2﹣3x=3x﹣5是2x2﹣6x+5=0.【解答】解:2x2﹣3x=3x﹣5是一般形式是2x2﹣6x+5=0,故答案为:2x2﹣6x+5=0.12.(3分)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.【解答】解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.13.(3分)已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1>y2.(用>、<、=填空).【解答】解:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大,∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,﹣7>﹣8,∴y1>y2.故答案为:>.14.(3分)如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是x1=0,x2=2.【解答】解:把A(﹣1,0),B(3,0)代入y=ax2+bx+3得,解得,代入ax2+bx=0得,﹣x2+2x=0,解得x1=0,x2=2.故答案为:x1=0,x2=2.15.(3分)方程x2﹣2x﹣1=0根的判别式等于8.【解答】解:由题意得:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8,故答案为:8.16.(3分)关于x的一元二次方程x2+mx﹣3=0的一个根是1,则另一根为﹣3.【解答】解:根据题意可得x1+x2=﹣=﹣m,x1x2==﹣3,∵x1=1,∴1+x2=﹣m,x2=﹣3,∴m=2.故答案为:﹣3三、解答题.(共52分)17.(10分)解方程.(1)x2﹣3x﹣4=0(2)(x﹣3)2=3x(x﹣3)【解答】解:(1)x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1;(2)(x﹣3)2=3x(x﹣3),(x﹣3)2﹣3x(x﹣3)=0,(x﹣3)(x﹣3﹣3x)=0,x﹣3=0,x﹣3﹣3x=0,x1=3,x2=﹣1.5.18.(8分)在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.19.(9分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求出抛物线的顶点坐标,对称轴及二次函数的最大值.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4),对称轴为:直线x=1,二次函数的最大值是4.20.(9分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.【解答】解:(1)对于任意实数m,方程总有两个不相等的实数根,利用如下:∵△=(﹣m)2﹣4×1×(﹣2)=m2+8>0,∴对于任意实数m,方程总有两个不相等的实数根.(2)当m=2时,原方程为x2﹣2x﹣2=0,此时△=m2+8=12,∴x1=1﹣,x2=1+.21.(8分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,求原正方形空地的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=2,x2=3.经检验,x=2不符合题意,舍去答:原正方形的边长3m.22.(8分)某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?【解答】解:设房价为(180+10x)元,则定价增加了10x元,此时空闲的房间为x,由题意得,y=(180+10x)(50﹣x)﹣(50﹣x)×20=﹣10x2+340x+8000=﹣10(x ﹣17)2+10890故可得当x=17,即房间定价为180+170=350元的时候利润最大.答:房间定价为350元时,利润最大.11。
…○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………○…………绝密★启用前2017年人教版九年级上册数学期中试卷题号 一 二 三 四 总分 得分注意事项:1、认真审题2、由易到难3、不要漏题 评卷人 得分一、选择题1.(本题3分)若关于x 的方程x 2-4x +m =0没有实数根,则实数m 的取值范围是( ) A .m <-4 B .m >-4 C .m <4 D .m >4 2.(本题3分)如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m ,水面最深地方的高度为1m ,则该输水管的半径为( ).A .2mB .2.5mC .4mD .5m3.(本题3分)若x 1,x 2是一元二次方程x 2﹣3x+2=0的两根,则x 1+x 2的值是( ) A .﹣2 B .2 C .3 D .1 4.(本题3分)如图,直线MN 与⊙O 相切于点M ,ME=EF 且EF ∥MN ,则∠E 的大小等于( )A .75°B .60°C .45°D .30° 5.(本题3分)下列几何图形中,即是中心对称图形又是轴对称图形的是( ) A .四边形 B .等腰三角形 C .菱形 D .梯形6.(本题3分)已知实数..x 满足(x 2-x ) 2-4(x 2-x )-12=0,则x 2-x=________ ( )A .-2B .6或-2C .6D .3 7.(本题3分)某厂今年3月的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率为x ,则列出的方程正确的是( )A 、50(1+x )=72B 、50(1+x )+50(1+x )2=72C 、50(1+x )×2=72D 、50(1+x )2=72试卷第2页,总6页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ …………○…………线…………○…………8.(本题3分)将24y x =的图象先向左平移12个单位,再向下平移34个单位,则所得图象的函数解析式是( )A .2134()24y x =++B . 2134()24y x =--C . 213(4)24y x =+-D . 2134()24y x =+-9.(本题3分)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t =-(的单位:秒,h 的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s 10.(本题3分)若两个连续整数的积是56,则它们的和为( ) A .11 B .15 C .﹣15 D .±1511.(本题3分)当22<<-x 时,下列函数:①x y 2=;②x y 312+-=;③x y 6-=;④862++=x x y ,函数值y 随自变量x 增大而增大的有( ) A .①② B .①②③ C .①②④ D .①②③④ 12.(本题3分)如果圆形纸片的直径是8cm ,用它完全覆盖正六边形,那么正六边形的边长最大不能超过( )A .2cmB .23cmC .4cmD .43Cm13.(本题3分)已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1•x 2=1,则b a的值是( )A .B .﹣C .4D .﹣1 评卷人 得分二、填空题14.(本题3分)方程3(x ﹣5)2=2(x ﹣5)的根是 .15.(本题3分)二次函数y=ax 2+bx+c 的图像如图所示,则不等式ax 2+bx+c >0的解集是 .………装………○…………线…………○……__________姓名:_______班级:_____…………订……………………线…………………○…………装…………○…16.(本题3分)已知关于x 的一元二次方程(m-2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是 . 17.(本题3分)二次函数y =ax 2+bx +c 的部分对应值如下表: x … ﹣3 ﹣2 0 1 3 5 … y …7﹣8﹣9﹣57…则当x =2时对应的函数值y =____________.18.(本题3分)如图,△ABC 内接于⊙O ,若∠OAB=28°,则∠C 的大小为__.19.(本题3分)二次函数的图象如图所示,给出下列说法:①ac >0; ②b a +2=0; ③0=++c b a ;④当时,函数y 随x 的增大而增大; ⑤当时,.其中,正确的说法有 .(请写出所有正确说法的序号)20.(本题3分)从一个边长为32cm 的正三角形钢板上裁下一个面积最大的圆,则这个圆的半径是 cm .21.(本题3分)二次函数2y x bx =+的图象如图,对称轴为x =-2.若关于x 的一元二次方程20x bx t +-=(t 为实数)在-5<x <2的范围内有解,则t 的取值范围是___________.2y ax bx c =++1x >0y >13x -<<试卷第4页,总6页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ …………○…………线…………○…………22.(本题3分)如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是 .评卷人 得分三、计算题23.(本题4分)按要求解方程:2x 2+1=3x (用配方法) 24.(本题4分)(4分)解方程 : 0142=+-x x.25.(本题4分)解方程22)2(25)3(4-=+x x评卷人 得分四、解答题26.(本题8分)已知:如图,AC ⊙O 是的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,∠PBA=∠C .(1)求证:PB 是⊙O 的切线;(2)若OP ∥BC ,且OP=8,BC=2.求⊙O 的半径. 27.(本题8分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:………外…………○………○……学校:内…………○…………装…………○…装…………○…(1)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在一次函数关系,求y 关于x 的函数关系式(不需要写出函数自变量的取值范围); (2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价x 的取值范围;28.(本题8分)当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值. 29.(本题9分)如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E .(1)求证:直线CD 是⊙O 的切线; (2)若DE=2BC ,AD=5,求OC 的值.30.(本题9分)已知直线y kx b =+分别与y 轴、x 轴相交于A 、B 两点,与二次函数23y x mx =-+的图像交于A 、C 两点.(1)当点C 坐标为(112-,578)时,求直线AB 的解析式; (2)在(1)中,如图,将△ABO 沿y 轴翻折180°,若点B 的对应点D 恰好落在二次函试卷第6页,总6页数23y x mx =-+的图像上,求点D 到直线AB 的距离;(3)当-1≤x ≤1时,二次函数23y x mx =-+有最小值-3,求实数m 的值.。
2017-2018学年第一学期期中考试九年级数学试题一、选择题(共6小题,每小题3分,满分18分)1.计算(-332的结果是()A.3B. -3C. _3D.92.若P (x, —3)与点Q (4, y)关于原点对称,则x + y=()A 7 B、一7 C 1 D、一13.下列二次根式是最简二次根式的是()A. 1B. ,3C. 、4D. 、,84. 一元二次方程2x2 +3x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.用配方法解方程x2+4x+1=0,则配方正确的是()A(x +2)2=3 B、(x +2)2 = —5 C 、(x + 2)2 = —3 D、(x+4)2=36.如图,AB、AC都是圆O的弦,OM,AB, ON,AC,垂足分别为M、N ,如果MN = 3,那么BC =().A. 4B.5 C . 6 D.7二、填空题(共8小题,每小题3分,满分24分)7. W x=2在实数范围内有意义,则x的取值范围是8. 2x2 -1 =届的二次项系数是 , 一次项系数是 ,常数项是——9. 一只蚂蚁沿图中所示的折线由A点爬到了C点,则蚂蚁一共爬行了cm.(图中小方格边长代表1cm)10 .关于x 的一元二次方程(m+2)x 2 —mx+m 2_4=0有一根为0,则m=. 11 .对于任意不相等的两个数 a,b ,定义一种运算*如下:a * b =;J^ ,如3* 2=-3±2 = 5 ,那么 a-b 3-23* ( -5)= .12 .有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心 的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是 。
13 .有两个完全重合的矩形, 将其中一个始终保持不动, 另一个矩形绕其对称中心 O 按逆时针方向进行旋转,每次均旋转22.5◎,第2次旋转后得到图①,第 4次旋转后得到图②・,则第20次旋转后得到的14 .等腰三角形两边的长分别为方程 x 2 -9x+20 =0的两根,则三角形的周长是 三、解答题(共4小题,每小题6分,共24分)计算:.18 - 2-- ( ..5 -1)02 2' 17 .下面两个网格图均是 4X4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑, 使整个网格图满足下列要求.图形与图①〜图④中相同的是 图④ 15. 解方程:x(x-2) + x-2 = 0轴X 除图形 中心对称图形16. (填写序图②18.如图,大正方形的边长为,H5 +J5 ,小正方形的边长为J15 - J5 ,求图中的阴影部分的面积.四、(本大题共2小题,每小题8分,共16分)19.数学课上,小军把一个菱形通过旋转且每次旋转120。
2022-2023学年湖北省黄冈市浠水县兰溪中学九年级(上)期中数学试卷1. 一元二次方程x2+8x−9=0配方后得到的方程是( )A. (x−4)2+7=0B. (x+4)2=25C. (x−4)2=25D. (x+4)2−7=02. 三角形两边长分别为3和6,第三边的长是方程x2−13x+36=0的两根中的其中一根,则该三角形的周长为( )A. 13B. 15C. 18D. 13或183. 已知抛物线y=a(x−2)2+k(a>0,a,k为常数),A(−3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为( )A. y1<y2<y3B. y2<y1<y3C. y2<y3<y1D. y3<y2<y14. 已知二次函数y=ax2+bx+c(a<0)的图象如图,当−5≤x≤0时,下列说法正确的是( )A. 有最小值−5、最大值0B. 有最小值−3、最大值6C. 有最小值0、最大值6D. 有最小值2、最大值65. 如图,在Rt△OAB中,∠OAB=90°,点B的坐标是(−2√3,2),将△OAB绕点O顺时针旋转60°,得到△OA1B1,则点A的对应点A1的坐标是( )A. (2√3,2)B. (−√3,3)C. (√3,3)D. (2√3,−2)6. 在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是( )A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)7. 如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是( )A. 54°B. 27°C. 36°D. 108°8. 如图,四边形ABCD内接于⊙O,连接BD.若AC⏜=BC⏜,∠BDC=50°,则∠ADC的度数是( )A. 125°B. 130°C. 135°D. 140°9. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2−4ac>0;②2a+b<0;③4a−2b+c=0;④a+b+c>0.其中正确的是( )A. ①②B. ②③C. ③④D. ①④10. 二次函数y=x2−2x+3的最小值是______ .11. 若一元二次方程x2−6x−5=0的两根分别为x1,x2,则两根的和x1+x2=______.12. 已知二次函数y=(x+2)2+ℎ,当x______时,y随x的增大而减小.13. 一元二次方程x2−6x−1=0的解是______.14. 把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是______.15. 二次函数y=x2−bx+1的顶点在x轴上,则b=______.16. 如图,将边长为3cm的正方形ABCD绕顶点B逆时针旋转30°得到正方形EBCF,则两个图形重叠部分(阴影部分)的面积为______cm2.17. 如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为______.18. 如图,BC为⊙O的直径,AB交⊙O于点E,AC交⊙O于点D,AD=CD,∠A=70°,则∠BOE的度数是______.19. 汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2016年盈利1000万元,2018年盈利1440万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2019年盈利多少万元?20. 如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)围成鸡场的面积可能达到200平方米吗?21. 已知二次函数y=−x2+2x+k+2的图象与x轴有两个交点.(1)求k的取值范围.(2)当k=1时,求抛物线与x轴的交点A和B的坐标.22. 二次函数y=x2+bx+c的图象经过点A(1,0),C(0,3).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴方程;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象,并根据图象在抛物线的对称轴找点P,使得△ACP周长最短(直接写出点P的坐标).23. 商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示)(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2100元?24. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.25. 某公司电商平台在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x、周销售量y、周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围).(2)若该商品进价为a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润.26. 如图1,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC,MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)如图2,若MD恰好经过圆心O,求∠D的度数.27. 在平面直角坐标系中,抛物线y=−x2+4x+5与x轴交于A,B两点,与y轴交于点C.若点P是第一象限内抛物线上的一动点,当点P到直线BC的距离最大时,求点P的坐标.答案和解析1.【答案】B【解析】解:把方程x2+8x−9=的常数项移到等号的右边,得到x2+8x=9,方程两边同时加上一次项系数一半的平方,得到x2+8x+16=9+16,配方得(x+4)2=25.故选B.在本题中,把常数项−9移项后,应该在左右两边同时加上一次项系数8的一半的平方.本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.【答案】A【解析】解:解方程x2−13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选:A.先求出方程x2−13x+36=0的两根,再根据三角形的三边关系定理,得到符合题意的边,进而求得三角形周长即可.此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,解题的关键是检验三边长能否组成三角形.3.【答案】C【解析】解:抛物线y=a(x−2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(−3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选C.先根据顶点式得到抛物线y=a(x−2)2+k(a>0,a,k为常数)的对称轴为直线x=2,然后二次函数的性质和A点、B点和C点离对称轴的远近进行判断.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.4.【答案】B【解析】解:由二次函数的图象可知,∵−5≤x≤0,∴当x=−2时函数有最大值,y最大=6;当x=−5时函数值最小,y最小=−3.故选:B.直接根据二次函数的图象进行解答即可.本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.5.【答案】B【解析】解:如图,将△OAB绕点O顺时针旋转60°,得到△OA1B1,过点A1作A1C⊥y轴于点C,∵在Rt△OAB中,∠OAB=90°,点B的坐标是(−2√3,2),∴OA=2√3,AB=2,∴∠AOB=30°,OB=4,∴∠B=60°,将△OAB绕点O顺时针旋转60°,得到△OA1B1,∴∠A1B1C=60°,A1B1=AB=2,OB1=OB=4,∴B1C=1,A1C=√3,∴OC=OB1−B1C=3,∴A1(−√3,3).故选:B.根据在Rt△OAB中,∠OAB=90°,点B的坐标是(−2√3,2),可得OA=2√3,AB=2,再根据△OAB 绕点O顺时针旋转60°,得到△OA1B1,过点A1作A1C⊥y轴于点C,可求得点A1的坐标.本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质.6.【答案】D【解析】解:由点P(a,b)关于原点对称得到点P1,得P1(−a,−b),将点P1向左平移2个单位长度得到点P2,则点P2的坐标是(−a−2,−b),故选:D.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,点的坐标向左平移减,可得答案.本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.7.【答案】C【解析】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=1×(180°−∠AOB)=36°,2故选:C。
期中检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2016·朝阳)方程2x 2=3x 的解为( )A .0B .32C .-32D .0,322.抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3.(2016·攀枝花)若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a的值为( )A .-1或4B .-1或-4C .1或-4D .1或44.(2016·桂林)若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k <5B .k <5且k≠1C .k ≤5且k≠1D .k >55.某同学在用描点法画二次函数y =ax 2+bx +c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A .-11 B .-2 C .1 D .-56.若A(-6,y 1),B(-3,y 2),C(1,y 3)为二次函数y =x 2+4x -5图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 37.(2016·广州)定义运算:a b =a(1-b).若a ,b 是方程x 2-x +14m =0(m <0)的两根,则b b -a a 的值为( )A .0B .1C .2D .与m 有关8.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .x 2=21B .12x(x -1)=21C .12x 2=21 D .x(x -1)=219.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . 3 cm 2B .32 3 cm 2 C .92 3 cm 2 D .2723 cm 210.在某次足球训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y =ax 2+bx +c(如图).现有四个结论:①a-b >0;②a<-160;③-160<a <0;④0<b <-12a.其中正确的结论是( )A .①③B .①④C .①②D .②④二、填空题(每小题3分,共24分)11.(2016·牡丹江)已知抛物线y =ax 2-3x +c(a≠0)经过点(-2,4),则4a +c -1=________.12.(2016·三明)若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是________(写出一个即可).13.(2016·梅州)用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为____________________.14.将抛物线y =x 2-4x 向上平移3个单位,再向右平移4个单位得到的抛物线是____________.15.(2016·南通)设一元二次方程x 2-3x -1=0的两根分别是x 1,x 2,则x 1+x 2(x 22-3x 2)=________.16.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A(m ,n),B(m +6,n),则n =______.17.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.18.设x 1,x 2是方程x 2-x -2 017=0的两实数根,则x 13+2 018 x 2-2 017=________. 三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).20.(8分)(2016·绥化)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.21.(8分)已知抛物线y=-12x2-x+4.(1)用配方法确定它的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,抛物线在x轴上方?22.(8分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是____________斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?23.(8分)小区要用篱笆围成一个四边形花坛,花坛的一边利用足够长的墙,另三边所用的篱笆之和恰好为18米,围成的花坛是如图所示的四边形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.设AB边的长为x米.四边形ABCD面积为S平方米.(1)请直接写出S与x之间的函数关系式;(不要求写出自变量x的取值范围)(2)当x是多少时,四边形ABCD的面积S最大?最大面积是多少?24.(8分)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2的图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.25.(10分)近几年城市建设快速发展,对花木的需求逐年提高,某园林专业户计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的总利润最大,最大利润是多少万元?26.(10分)(2016·河池)在平面直角坐标系中,抛物线y=-x2-2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图①,在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图②,F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.。
九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.20183.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠04.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y28.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.410.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.2018【解答】解:把x=﹣1代入方程得:a﹣b+6=0,即a﹣b=﹣6,则原式=2017﹣(﹣6)=2023,故选:B.3.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.4.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵△ABC绕点C按顺时针方向旋转35°得到△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选:C.5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=【解答】解:A、s=2t2﹣2t+1是二次函数,故A正确;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、y=3x﹣1是一次函数,故C错误;D、y=x2+不是二次函数,故D错误;故选:A.6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)【解答】解:抛物线y=﹣2(x﹣3)2+4的顶点坐标是(3,4),故选:C.7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,∴抛物线开口向上,在对称轴的左侧,y随x的增大而减小,又∵﹣3<﹣1<,∴y1>y2.故选:A.8.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵BD是∠ABC的平分线,∴∠ABD=45°,∵∠D=∠C=55°,∴∠BAD=180°﹣∠ABD﹣∠D=80°.故选:C.9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.4【解答】解:如图,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos 30°=÷=2;故选:A.10.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.【解答】解:∵一次函数y=ax+b的图象经过第一、三、四象限,∴a>0,b<0,∴二次函数y=ax2+bx的图象的开口向上,对称轴在y轴的右侧,且过原点.故选:C.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0.【解答】解:一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0;故答案为:3x2+9x+13=0.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是1.【解答】解:∵点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),∴a=﹣3,1﹣b=1,解得b=0,所以,a b=(﹣3)0=1.故答案为:1.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是m<﹣.【解答】解:由题意可得出:,解得:m<﹣.故答案为:m<﹣.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为y=(x+6)2﹣1.【解答】解:抛物线y=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),∵向上平移2个单位长度,再向左平移4个单位长度,∴﹣2﹣4=﹣6,﹣3+2=﹣1,∴平移后的抛物线的顶点坐标为(6,﹣1),∴所得抛物线的解析式为y=(x+6)2﹣1.故答案为:y=(x+6)2﹣1.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是150°.【解答】解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故答案为:150°.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.【解答】解:(1)∵(x+3)(x+5)=0,∴x+3=0或x+5=0,解得:x=﹣3或x=﹣5;(2)∵a=3、b=1、c=﹣5,∴△=1﹣4×3×(﹣5)=61>0,则x=,即x1=、x2=.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.【解答】解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)∠OAB=45°.理由如下:设直线AB的解析式为y=kx+b(k≠0),∵A(6,﹣3),B(0,﹣5),∴,解得,∴y=x﹣5,当x=﹣3时,y=×(﹣3)﹣5=﹣6,∴点A1在直线AB上,∵OA=OA1,∠AOA1=90°,∴△AOA1是等腰直角三角形,∴∠OAB=45°.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【解答】(1)证明:如图,∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:如图,∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=1寸,CD=10寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【解答】解:(1)由题意可得:S=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000依题意:x≤40×1.9,即x≤76,对于二次函数S=﹣10(x﹣80)2+16000,当x≤80时,s随x的增大而增大,故当x最大为76时,s最大为15840元.23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点,∴方程x2+bx+c=0的两根为x=﹣2或x=6,∴﹣2+6=﹣b,﹣2×6=c,∴b=﹣4,c=﹣12,∴二次函数解析式是y=x2﹣4x﹣12.(2)∵y=x2﹣4x﹣12=(x﹣2)2﹣16,∴抛物线的对称轴x=2,顶点坐标(2,﹣16).(3)设P的纵坐标为|y P|,=32,∵S△PAB∴•AB•|y P|=32,∵AB=6+2=8,∴|y P|=8,∴y P=±8,把y P=8代入解析式得,8=x2﹣4x﹣12,解得,x=2±2,把y P=﹣8代入解析式得,﹣8=x2﹣4x﹣12,解得x=2±2,又知点P为y轴右侧抛物线上一个动点,即x=2±2(负值舍去)或x=2±2(负值舍去),综上点P的坐标为(2+2,8)或(2+2,﹣8).。
九年级(上)期中数学试卷一.选择题(每小题3分,共30分)1.(3分)在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个 B.3个 C.4个 D.5个2.(3分)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3) C.(﹣1,﹣3)D.(1,﹣3)3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=94.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.65.(3分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于()A.60°B.50°C.40°D.30°7.(3分)把抛物线y=﹣x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A.y=﹣(x﹣1)2+3 B.y=(x﹣1)2+3 C.y=﹣(x+1)2+3 D.y=(x+1)2+3 8.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=209.(3分)如图所示,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定正确的是()A.∠COE=∠DOE B.CE=DE C.AC=AD D.OE=BE10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二.填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.(3分)已知抛物线y=x2+4x+5的对称轴是直线x=.12.(3分)若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=.13.(3分)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程.14.(3分)钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了度.15.(3分)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.16.(3分)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是.17.(3分)若一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等实数根,则k的取值范围是.18.(3分)已知⊙O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数为.19.(3分)根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.20.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数a,b,x1,x2的大小关系为.三.解答题(本大题共8个小题,共60分)21.(12分)解方程(1)3(x﹣2)2=x(x﹣2)(2)x2﹣2x﹣3=0.22.(8分)已知一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.23.(9分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:(1)把△ABC绕点P旋转180°得△A′B′C.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.24.(9分)某百货商店从一制衣厂以每件21元的价格购进一批服装,若以每件衣服售价为x元,则可卖出(350﹣10x)件,但物价局限定每件衣服加价不能超过20%,商店计划要盈利400元,需要卖出多少件衣服?每件衣服售价多少元?25.(10分)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC ∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.26.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE 的最大面积及E点的坐标.参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【解答】解:H、I、N是中心对称图形,所以是中心对称图形的有3个.故选B.2.(3分)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3) C.(﹣1,﹣3)D.(1,﹣3)【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选:B.3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B.4.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.6【解答】解:依据一元二次方程根与系数得:x1+x2=5.故选:B.5.(3分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:旋转后得到的点A′与点A成中心对称,旋转后A′的坐标为(﹣2,﹣3),所以在第三象限.故选:C.6.(3分)如图,在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于()A.60°B.50°C.40°D.30°【解答】解:∵∠BOC=60°,∴∠BAC=∠BOC=30°.故选:D.7.(3分)把抛物线y=﹣x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A.y=﹣(x﹣1)2+3 B.y=(x﹣1)2+3 C.y=﹣(x+1)2+3 D.y=(x+1)2+3【解答】解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向右平移一个单位,再向上平移3个单位得到点的坐标为(﹣1,3),所以平移后的抛物线解析式为y=﹣(x+1)2+3.故选:A.8.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=20【解答】解:设墙的对边长为x m,可得方程:x×=20.故选:B.9.(3分)如图所示,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定正确的是()A.∠COE=∠DOE B.CE=DE C.AC=AD D.OE=BE【解答】解:如图,∵AB是⊙O的直径,CD是弦,CD⊥AB于点E,∴CE=DE,即AB为CD的垂直平分线,∴AC=AD;∴选项B、C正确;∵OC=OD,OE⊥CD,∴∠COE=∠DOE,∴选项A正确;故选:D.10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.二.填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.(3分)已知抛物线y=x2+4x+5的对称轴是直线x=﹣2.【解答】解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故答案为:﹣2.12.(3分)若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=1.【解答】解:设方程的另一根为x1,又∵x2+2x+k﹣1=0的一个根是0,∴x1•0=k﹣1,解得k=1.13.(3分)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程7800(x+1)2=9100.【解答】解:设人均年收入的平均增长率为x,根据题意可列出方程为:7800(x+1)2=9100.故答案为:7800(x+1)2=9100.14.(3分)钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了270度.【解答】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么45分钟,分针旋转了45×6°=270°.故答案为:270.15.(3分)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.【解答】解:连接AC,则∠ACB=90°.∵E是的中点,OE交弦BC于点D,∴OE⊥CD,CD=BD=BC=×8=4cm.设⊙O的半径为r,则OD=r﹣2,OB=r.故OB2=OD2+BD2,即r2=(r﹣2)2+42,解得:r=5.故AB=2r=2×5=10cm.在Rt△ABC中,AC===6cm.在Rt△ADC中,AC=6cm,CD=4cm,故AD===2(cm).16.(3分)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是(4,5).【解答】解:∵x=﹣=﹣=1.∴P(﹣2,5)关于对称轴的对称点Q的坐标是(4,5).故点Q的坐标是(4,5).故答案为:(4,5).17.(3分)若一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等实数根,则k的取值范围是k>且k≠1.【解答】解:∵a=k﹣1,b=﹣4,c=﹣5,方程有两个不相等的实数根,∴△=b2﹣4ac=16﹣4×(﹣5)×(k﹣1)=20k﹣4>0,∴k>,又∵二次项系数不为0,∴k≠1,即k≥且k≠1.18.(3分)已知⊙O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数为30°或150°.【解答】解:根据题意,弦AB与两半径组成等边三角形,∴弦AB所对的圆心角=60°,①圆周角在优弧上时,圆周角=30°,②圆周角在劣弧上时,圆周角=180°﹣30°=150°.∴圆周角的度数为30°或150°;故答案为:30°或150°.19.(3分)根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有n2﹣n+1个点.【解答】解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中有n×(n﹣1)+1=n2﹣n+1个点.20.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数a,b,x1,x2的大小关系为x1<a<b<x2.【解答】解:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,随便画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x﹣a)(x ﹣b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:x1<a<b<x2,故答案为:x1<a<b<x2.三.解答题(本大题共8个小题,共60分)21.(12分)解方程(1)3(x﹣2)2=x(x﹣2)(2)x2﹣2x﹣3=0.【解答】解:(1)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或3x﹣6﹣x=0,所以x1=2,x2=3;(2)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.22.(8分)已知一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k为何值,方程总有两个不相等的实数根;(2)解:∵△=1>0,∴AB≠AC,∴AB、AC中有一个数为5.当x=5时,原方程为:25﹣5(2k+1)+k2+k=0,即k2﹣9k+20=0,解得:k1=4,k2=5.当k=4时,原方程为x2﹣9x+20=0,∴x1=4,x2=5.∵4、5、5能围成等腰三角形,∴k=4符合题意;当k=5时,原方程为x2﹣11x+30=0,解得:x1=5,x2=6.∵5、5、6能围成等腰三角形,∴k=5符合题意.综上所述:k的值为4或5.23.(9分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:(1)把△ABC绕点P旋转180°得△A′B′C.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.【解答】解:(1)如图,△A'B'C'即为所求;(2)如图,A''B''C''即为所求;(3)如图,P'(2.5,0).24.(9分)某百货商店从一制衣厂以每件21元的价格购进一批服装,若以每件衣服售价为x元,则可卖出(350﹣10x)件,但物价局限定每件衣服加价不能超过20%,商店计划要盈利400元,需要卖出多少件衣服?每件衣服售价多少元?【解答】解:由题意,得(350﹣10x)(x﹣21)=400,解得:x1=25,x2=31.∵x<21(1+20%),∴x<25.2.∴x=31应舍去.∴x=25.答:每件衣服的售价为25元.25.(10分)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC ∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.【解答】(1)证明:∵DE是⊙O的切线,且DF过圆心O,∴DF是⊙O的直径所在的直线,∴DF⊥DE,又∵AC∥DE,∴DF⊥AC,∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分)(2)证明:由(1)知:AG=GC,又∵AD∥BC,∴∠DAG=∠FCG;又∵∠AGD=∠CGF,∴△AGD≌△CGF(ASA),(4分)∴AD=FC;∵AD∥BC且AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∴FC=CE;(5分)(3)解:连接AO,∵AG=GC,AC=8cm,∴AG=4cm;在Rt△AGD中,由勾股定理得GD2=AD2﹣AG2=52﹣42=9,∴GD=3;(6分)设圆的半径为r,则AO=r,OG=r﹣3,在Rt△AOG中,由勾股定理得AO2=OG2+AG2,有:r2=(r﹣3)2+42,解得r=,(8分)∴⊙O的半径为cm.26.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).。
湖北省黄冈市浠水县2017届九年级(上)期末数学试卷一、选择题(每小题3分,共21分)1.下列计算正确的是()A.+=B.=4 C.•=D.=4 2.以下五个图形中,是中心对称的图形共有()A.2个B.3个C.4个D.5个3.从n个苹果和3个雪梨中,任选1个,若选中苹果的概率是,则n的值是()A.6B.3C.2D.14.如图,直线y=x+2与双曲线y=在第二象限有两个交点,那么m的取值范围在数轴上表示为()5.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()6.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°7.方程的解的情况是()A.仅有一正根B.仅有一负根C.有一正根一负根D.无实根二、填空题(每小题3分,共24分)8.若点A(a﹣2,3)与点B(4,﹣3)关于原点对称,则a=_________.9.若化简|1﹣x|﹣的结果为2x﹣5,则x的取值范围是_________10.当m满足_________时,关于x的方程x2﹣4x+m﹣0.5=0有两个相等的实数根.11.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是_______.12.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表,则m的值为__.x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 713.一个密码锁的密码由四个数字组成,每个数字都是0﹣9这10个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.粗心的小华忘了其中中间的两个数字,他一次就能打开该锁的概率是_________.14.如图,一个扇形纸片OAB.OA=10cm,∠AOB=120°,小明将OA、OB合拢组成一个圆锥形漏斗(接缝忽略不计).则漏斗的底面圆的半径为_________cm.15.如上图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值_________.三、解答题(共75分)16.(10分)(1)计算:(7+4)(7﹣4)﹣2×(2)已知a+=,求a﹣的值.17.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若﹣1是方程的一个根,求m的值和方程的另一根;(2)证明:对于任意实数m,函数y=x2﹣mx﹣2的图象与x轴总有两个交点.CABNMD18.(5分)如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2)、B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(直接填写答案) (1)画出△A 1OB 1;(2)在旋转过程中,点B 经过的路径为弧BB 1,那么弧BB 1的长为 _________ .19.(8分)如图,已知A 、B 是线段MN 上的两点,MN =4,MA =1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB =x .(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值.20.(7分)如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.21.(8分)小莉的爸爸买了今年8月去深圳看世界大学生运动会的一张门票,她和哥哥两个人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为1、2、3、5的四张牌给小莉,将数字为2、4、6、8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张扑克牌中随机抽取一张,然后将抽取的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用树状图或列表的方法求小莉去看大运会的概率;(2)哥哥设计的游戏规则公平吗?若不公平,如何在原有游戏规则上改进,使之公平?22.(8分)随着人民生活水平的不断提高,家庭轿车的拥有量逐年增加.据统计,某小区2010年底拥有家庭轿车256辆,2012年底家庭轿车的拥有量达到400辆.(1)若该小区2010年底到2012年底家庭轿车拥有量的年平均增长率都相同,求该小区到2013年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.23.(9分)(2013•珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A。
(1)求证:BC为⊙O的切线;(2)求∠B的度数.24.(12分)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.CABNMD参考答案一、选择题(每小题3分,共21分)1.C 2.B 3.C 4.B 5.B 6.A 7.A 二、填空题(每小题3分,共24分)8.-2 9.1≤x ≤4 10.9/2 11.50° 12.-1 13.1/100 14.10/3 15.2 三、解答下列各题(共75分)16.解:(1)原式=-3 ……………5分 (2)解:∴a 2+21a =5, ……………………………………2分 ∴aa 1-=±3. ……………………………………5分 17.(1)m =1,……………2分 x 2=2 ……………4分 (2)△=m 2+8>0 ……………………………………8分 18.(1)图略 ……………………………………3分 (2)210π ……………………………………5分 19.解:(1)在△ABC 中,∵AC =1,AB =x ,BC =3-x ;∴⎩⎨⎧>-+->+xx xx 3131,解得1<x <2. ……………………………………3分(2)①若AC 为斜边,则1=x 2+(3-x )2,即x 2-3x +4=0,无解.……………4分②若AB 为斜边,则x 2=1+(3-x )2,解得x =35,满足1<x <2. ………6分 ③若BC 为斜边,则(3-x )2=1+x 2,解得x =34,满足1<x <2.∴ x =35或x =34. ……………………………………8分20.解:(1)把A (2,0)、B (0,―6)代入y =―212x +bx +c ,得:⎩⎨⎧-==++-622c c b ……………………………………1分解得⎩⎨⎧-==64c b ……………………………………2分∴这个二次函数的解析式为y =―212x +4x ―6. …………………………3分 (2)∵该抛物线对称轴为直线42124=-⨯-=)(x …………………4分 ∴点C 的坐标为(4,0), …………………5分 ∴AC =OC ―OA =4―2=2, …………………6分∴S △ABC =21×AC ×OB =6. ……………………………………7分21.解:(1)列表如图:共有16 种等可能的结果,和为偶数的有4种, ……………………………2分 故小莉去的概率为41164=. ……………………………………4分 (2)不公平, ……………………………………5分 ∵P (哥哥去=34,P (小莉去)=14,哥哥去的可能性大, ∴不公平. ……………………………………6分 可以修改为:和大于7,哥哥去,小于等于7,小莉去. ………………… 8分22.解:(1)设年平均增长率为x ,根据题意得:256(1+x )2 =400 ,…………… 2分解得:x =0.25, 400(1+x )=500 …………………4分 答:该小区到2013年底家庭轿车将达到500辆. (2)设建室内车位y 个,根据题意得:2y ≤10005000150000y≤2.5y ………… 6分解得:20≤y ≤2173………………… 7分 ∵ y 只能取整数,故有两种方案:室内车位20个,室外车位50个或室内车位21个,室外车位45个.……… 8分23.(1)证明:连结OA 、OB 、OC 、BD ,如图,∵AB 与⊙切于A 点,∴OA ⊥AB ,即∠OAB =90°, ……………………………………2分 ∵四边形ABCD 为菱形,∴BA =BC , 在△ABC 和△CBO 中,∴△ABC ≌△CBO , ……………………………………3分 ∴∠BOC =∠OAC =90°, ∴OC ⊥BC ,∴BC 为⊙O 的切线; ……………………………………4分 (2)解:∵△ABC ≌△CBO , ∴∠AOB =∠COB , ∵四边形ABCD 为菱形,∴BD 平分∠ABC ,CB =CD , ……………………………………6分 ∴点O 在BD 上,∵∠BOC =∠ODC +∠OCD , 而OD =OC ,∴∠ODC =∠OCD , ∴∠BOC =2∠ODC , 而CB =CD , ∴∠OBC =∠ODC ,∴∠BOC =2∠OBC , ……………………………………8分 ∵∠BOC +∠OBC =90°, ∴∠OBC =30°,∴∠ABC =2∠OBC =60°. ……………………………………9分24.解:(1)E (3,1),F (1,2). …………………………………2分yCOPFB EADx第22题图②第22题图③yOD DM E B FN F ′ CxA E ′yC y P y B y E yO y DyA y x yF第22题图① (2)在Rt △EBF 中,∠B =90°,∴EF =22BF EB +=2221+=5. ………………………………3分 设点P 的坐标为(0,n ),其中n >0,∵顶点F (1,2),∴设抛物线解析式为y =a (x ―1)2+2(a ≠0).…………4分①如图①,当EF =PF 时,EF 2=PF 2, ∴12+(n ―2)2=5.解得n 1=0(舍去); n 2=4.∴P (0,4).∴4=a (0―1)2+2.解得a =2.∴抛物线的解析式为y =2(x ―1)2+2 …………………………………6分 ②如图②,当EP =FP 时,EP 2=FP 2, ∴(2―n )2+1=(1―n )2+9. 解得n =―25(舍去). ……………………………………8分 ③当EF =EP 时,EP =5<3,,这种情况不存在.综上所述,符合条件的抛物线解析式是y =2(x ―1)2+2. ……………………9分 (3)存在点M 、N ,使得四边形MNFE 的周长最小.如图③,作点E 关于x 轴的对称点'E ,作点F 关于y 轴的对称点'F ,连接'E 'F ,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求点. ∴'E (3,―1),'F (―1,2).NF =N 'F ,ME =M 'E ∴B 'F =4,B 'E =3∴ FN +NM +ME =FN +NM +M 'E =F 'E =2243+=5又∵EF=5,∴FN+NM+ME+EF=5+5,此时四边形MNFE的周长最小值是5+5.……………………………………12分。