6
5
坐标平面中描点(x,y),
4
再用平滑曲线顺次连
3 2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1
2
3
4
5
x
图像.
请画函数y=-x2的图像 解:(1) 列表 x … -3 -2 -1 0 1 2 3 …
(2) 描点 y=-x2 … -9 -4 -1 0 -1 -4 -9 …
(3) 连线
当x=0时,y最小值=0
当x=0时,y最大值=0
在对称轴左侧递减 在对称轴右侧递增
在对称轴左侧递增 在对称轴右侧递减
对称轴、顶点、最低点、最高点
y x2
这条抛物线关于 y轴对称,y轴就 是它的对称轴.
对称轴与抛物 线的交点叫做 抛物线的顶点.
y x2
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
都是轴对称图形,y轴是它们的对称轴.
抛物线与对称轴的交点(0,0)叫做抛物线的顶点.
抛物线y=x2的顶点(0,0)是它的最低点.
抛物线y=-x2的顶点(0,0)是它的最高点.
例2:在同一直角坐标系中,画出函数 y 1 x2, y 2x2
2
的图象. 解:分别填表,再画出它们的图象,如图
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
1、函数y=2x2的图象的开向口上 ,对称y轴轴 ,顶点(0是,0) ; 2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点(是0,0) ;
3、已知抛物线y=ax2经过点A(-2,-8).
(1) 求此抛物线的函数解析式 (2)写出这个二次函数图象的对称轴,顶点坐标及开口方向;