脱硫效率低的原因分析
- 格式:docx
- 大小:63.32 KB
- 文档页数:14
影响循环流化床炉内脱硫效率的因素及实例摘要:循环流化床锅炉的燃烧属于低温燃烧(燃烧温度在850~950℃),比较大的热灰颗粒在燃烧系统内循环燃烧,携带密相区的热量,把热量传递给蒸发受热面或过热受热面。
正是由于热灰的循环和燃烧生成SO2在850~900℃的条件下极易与CaO结合为锅炉提供廉价的脱硫措施创造了条件。
关键词:循环流化床锅炉;Ca/S摩尔比;脱硫效率前言:循环流化床锅炉因其环保性能受到中小热电厂的青睐,但因影响脱硫的因素复杂,需要控制的因素较多,使用单位往往片面追求脱硫效率,导致锅炉运行和碱性灰渣处理增加成本以及热效率降低,下面根据循环流化床锅炉的特点具体分析影响脱硫效率的因素及具体计算实例。
一、影响循环流化床脱硫效率的因素1.Ca/S摩尔比的影响Ca/S摩尔比是影响脱硫效率和SO2排放的首要因素。
不加石灰石时,燃料硫约有28.5%的硫分残留于灰渣中,71.5%则以气体的形式排放出来。
采用添加石灰石进行脱硫,脱硫效率在Ca/S比低于2.5时增加很快,而继续增加Ca/S比或脱硫剂量时,脱硫效率增加很少,同时继续增加脱硫剂会增加灰渣热物理损失、增加灰渣处理成本、影响燃烧工况、富余的CaO将使N0x排放升高等。
对循环流化床而言,较为经济的Ca/S比一般在1.5~2.5之间。
2.床温的影响床温的影响主要在于改变了脱硫剂的反应速度、固体产物分布及孔隙堵塞特性,从而影响脱硫效率和脱硫剂的利用率。
从燃烧效率、CO和氮氧化物的排放上考虑,循环流化床锅炉的最佳运行温度在900℃左右,并在900℃左右达到最高的脱硫效率。
3.粒度的影响采用较小的脱硫剂粒度,脱硫效果较好,脱硫粒度越小,对NOX 的刺激作用也越小,而且对于小的脱硫粒度,脱硫温度也可以较高。
循环流化床锅炉的分离和返料系统保证了细颗粒的循环,故一般采用0~2mm,平均100~500μm的石灰石粒度。
粒度太小或者太易磨损的石灰石会增大飞灰的逃逸量,增加静电除尘器负担,并使脱硫效率下降。
石灰石-石膏湿法脱硫效率分析关键词:湿法脱硫脱硫工艺脱硫废水针对脱硫运行中可能造成脱硫效率低的各种原因,提出具体分析和解决办法。
1.脱硫效率低的原因和解决方法1.1吸收剂的pH值脱硫反应的基础是溶液中H+的生成,只有H+的存在才促进了Ca2+的生成,因此,吸收速率主要取决于溶液的pH值。
因此湿式脱硫工艺的应用中控制合适的pH值和保持pH值的稳定是保证脱硫效率的关键。
PH值为6.0时,二氧化硫吸收效果最佳,但此时易发生结垢,堵塞现象。
而低的pH值有利于亚硫酸钙的氧化,石灰石溶解度增加,但二氧化硫的吸收受到抑制,脱硫效率大幅度降低;当pH值为4.5时,二氧化硫的吸收几乎无法进行,且吸收液呈酸性,对设备也有腐蚀。
为此,除热工班组定期校验PH表计外,化验室每周定点化验吸收塔浆液PH值,供运行人员和热工人员作参考。
所以最为合适的PH 值应维持在5.4。
1.2液气比及浆液循环量液气比增大,表明气液接触机率增加,脱硫率增大。
但二氧化硫与浆液液有一个气液平衡,液气比超过一定值后,脱硫率将不再增加。
初始的石灰石浆液喷淋下来后与烟气接触,SO2等气体与石灰石浆液的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了脱硫效率。
若脱硫吸收塔浆液循环泵出口的部分喷嘴堵塞,喷淋效果就会较差;脱硫系统停运后,就需要通过吸收塔检查孔对吸收塔喷淋层进行喷淋检查,查看喷嘴堵塞情况是否严重;若吸收浆液循环泵内部腐蚀或磨损严重,运行压力不足,均会导致脱硫效率下降。
故每次机组停运检修时,都需安排人员对喷淋层喷嘴进行逐个检查,并根据浆液循环泵运行周期定期更换腐蚀和磨损的部件。
吸收塔浆液循环泵叶轮磨损程度很大,而吸收塔浆液循环泵叶轮的使用寿命为8000小时左右,所以吸收塔浆液循环泵叶轮应定期进行修复。
1.3烟气与吸收剂接触时间烟气自进入吸收塔后,自下而上流动,与喷淋而下的石灰石浆液雾滴接触反应,接触时间越长,反应进行得越完全。
脱硫专业技术问答汇编1、FGD(烟气脱硫)系统脱硫率低的原因有哪些?怎样处理?答案:FGD系统脱硫率低可能是以下原因造成的:(1)吸收塔出口和入口的二氧化硫的浓度测量不准确;(2)循环浆液的pH值测量不准确;(3)烟气流量增大,超出系统处理能力(4)烟气中二氧化硫的浓度过高(5)吸收塔的pH值偏低(小于5.5)(6)循环浆液流量减小可采取以下措施进行处理:(1)校准二氧化硫监测仪的测量(2)校准pH计的测量(3)申请锅炉降负荷运行(4)检查并增加石灰石浆液的投配(5)检查脱硫循环泵的运行情况(6)增加脱硫循环泵的运行数量2、脱硫转机设备试运合格的条件有哪些?答案:脱硫转机设备试运合格的条件有:(1)转动方向正确;(2)转动机械应无摩擦、撞击等异声;(3)轴承温度与振动应符合有关规定;(4)轴承油室油镜清晰,油位线标志清楚,油位正常,油质良好,轴承无漏油、甩油现象;(5)检查转机各处无油垢、积灰、积浆、漏风、漏水等现象;(6)各风门应关闭严密,以防止停用中的风机反转;(7)皮带应无跑偏、打滑现象;(8)转机试转后,将试转情况及检查中所发现的问题,做好记录,汇报班长、值长及有关部门。
3、脱硫运行调整的主要任务有哪些?答案:脱硫运行调整的主要任务有:(1)在主机正常运行的情况下,满足机组脱硫的需要。
(2)保证脱硫装置安全运行。
(3)精心调整,保持各参数在最佳工况下运行,降低各种消耗。
(4)保证石膏品质符合要求。
(5)保证机组脱硫率在规定范围内。
4、脱硫率、pH值及石灰浆液给浆量如何调整?答案:脱硫率、pH值及石灰浆液给浆量应按以下要求调整:(1)给浆量的大小对脱硫装置的影响很大。
如果给浆太少,就不能满足烟气负荷的脱硫要求,出口烟气含硫量增加,从而降低脱硫率。
如果给浆太多,就可能使石膏中石灰石含量增加,从而降低石膏纯度,严重时还易造成吸收塔内石灰石浆液反应盲区,从而降低脱硫效率。
(2)正常运行时,给浆量可根据pH值、出口SO2浓度及石灰浆液浓度联合进行调节。
影响脱硫效率的因素知多少关键词:脱硫效率近年来,随着经济的发展,我国工业生产造成的二氧化硫排放量逐年递增,对环境的影响极大。
因此,控制二氧化硫的排放,已经成为电力工业环境治理的主要任务。
国家对于十二五期间的“节能减排”也作出了具体的规划。
然而,脱硫效率决定了节能减排计划的进程。
然而,分析得出,影响脱硫效率的因素很多,如吸收温度,进气S02浓度,脱硫剂品质、粒度和用量(钙硫比),浆液pH值,液气比,粉尘浓度等。
以下就其影响因素进行具体分析。
首先是浆液pH值,它可作为提高脱硫效率的调节手段。
据悉,当pH~在4~6之间变化时,CaC03的溶解速率呈线性增加,pH值为6时的速率是pH值为4时的5~10倍。
因此,为了提高S02的俘获率,浆液要尽可能地保持在较高的pH值。
但是高pH值又会增加石灰石的耗量,使得浆液中残余的石灰石增加,影响石膏的品质。
另一方面浆液的pH值又会影响HS03的氧化率,pH值在4~5之间时氧化率较高,pH值为4.5时,亚硫酸盐的氧化作用最强。
随着pH值的继续升高,HS03的氧化率逐渐下降,这将不利于吸收塔中石膏晶体的生成。
在石灰石一石膏法湿法脱硫中,pH值应控制在5.O~5.5之间较适宜。
因此在调节pH值时,必须根据每天的石膏化验结果、实际运行工况及燃煤硫分等进行合理调整,这样才能更好的调节脱硫效率。
其次是钙硫比,据悉,在诸多影响脱硫效率的因素中,钙硫比中90%比对脱硫效率的影响是最大。
但在其他影响因素一定时,钙硫比为1时的湿法烟气脱硫效率可达90%以上。
这是很重的影响因素。
再者是液气比,它是决定脱硫效率的主要参数,液化比越大气相和液相的传质系数提高利于SOz的吸收,但是停留时间减少,削减了传质速率提高对S02吸收有利的强度,因此存在最佳液气比。
这也是影响脱硫效率的因素之一。
当然,石灰石的影响也是存在的。
当出现pH值异常,可能是加入的石灰石成分变化较大引起的。
如果发现石灰石中Ca0质量分数小于50%,应对其纯度系数进行修正。
烟气脱硝除尘脱硫装置存在问题分析与改进针对烟气脱硝除尘脱硫装置存在的问题进行分析和改进,本文主要从以下几个方面进行探讨。
一、问题分析1. 脱硝效率低:当前脱硝技术主要是选择性催化还原法和选择性非催化还原法两种。
但是,这两种技术都存在某些不足,如对氧化氮的还原效率不高、设备成本高、对氨气需求大等,导致脱硝效率低。
2. 除尘效果不佳:烟气中颗粒物主要来自固体废物焚烧、锅炉燃烧等,这些粉尘颗粒会对环境和人体造成极大的危害。
但是,除尘技术的效果不够理想,颗粒物排放水平高,存在二次污染的风险。
3. 脱硫工艺存在问题:当前脱硫工艺主要是石灰石法和海水法两种。
但是,石灰石法存在石膏化处理难度大、废水排放难处理等问题,而海水法则存在海水的稳定性不够、对设备材料腐蚀严重等问题。
二、改进方案1. 提高脱硝效率:提高氨气的利用率可以提高脱硝效率,因此可以考虑在反应器顶部放置氨氧化催化剂,使氨氧化反应在顶部进行,去除过程中的氮氧化物。
此外,采用催化剂在低温下催化氮氧化物的还原也是一种有效的改进方案。
2. 改进除尘技术:采用高效的滤料和过滤介质,增加风机的风量,提高过滤效果。
另外,在电除尘器中加入一些化学试剂,可以使粉尘颗粒在降温段被捕捉,提高除尘效果。
3. 优化脱硫工艺:采用催化剂或吸附剂,增加反应器的催化剂体积和表面积,提高脱硫效率。
同时,选择低温脱硫工艺,使原料气体在低温下经反应器处理后,可有效地脱除二氧化硫。
三、结论当前烟气脱硝除尘脱硫装置存在一系列问题,包括脱硝效率低、除尘效果不佳和脱硫工艺存在问题等。
为此,我们提出了一系列合理有效的改进方案,包括提高脱硝效率、改进除尘技术和优化脱硫工艺等。
这些措施可以在实际生产过程中得到有效应用,进一步提高烟气处理技术的效果和效率,保障环境和人体健康。
浅谈湿法脱硫技术问题及脱硫效率摘要:随着我国家国民经济的持续发展,对工业生产的需求和生活在电力上的人们日益增加。
但同时电厂所提供的生产力是会对环境产生影响的,为了尽可能的达到国家制定的安全标准,严格控制了过程中生成的二氧化硫。
基于此,讨论和分析湿脱硫技术和脱硫效率的问题。
关键词:湿法脱硫;技术问题;脱硫效率引言:脱硫是工业生产中防治大气污染的重要技术措施之一。
一般指燃料燃烧前从燃料中脱硫的过程和燃烧气体排放前脱硫的过程。
脱硫有很多选择。
总的来说,脱硫技术的选择原则主要有:脱硫技术比较成熟,脱硫效率高,能满足环保控制要求,并已得到推广应用;脱硫成本相对便宜且合理,包括初期投资和后续运行;无论副产品是否易于处理,最好不要造成二次污染或具有可回收价值;不影响发电用燃煤质量,硫含量应用范围广;脱硫剂可长期供货,价格低廉。
目前最常用的方法只有三种,即干法脱硫、湿法脱硫和半干半湿法脱硫。
其余的原因是成本高、技术要求高、使用频率低。
一般来说,三类硫排放控制工艺是:在燃烧前向其他化学原料中添加物质以改变其性质,减少污染;燃烧中选择封闭式鼓风炉,对这些污染气体进行均匀回收;燃烧后经过专业处理,达到国家统一脱硫标准。
工艺的种类很多,化学法有石膏法和磷铵肥法,用得比较多,化学法有喷雾干燥法。
湿法脱硫技术在我国燃煤发电项目中应用广泛。
下面就湿法脱硫和脱硫效率的技术问题进行分析探讨。
一、燃煤电厂脱硫废水的来源及特点在燃煤电厂中,烟气污染物主要包括二氧化硫、硫化物、氯化物、氟化物、重金属离子和烟尘等。
为防止硫污染,必须对含硫烟气进行脱硫处理。
根据工艺特点,目前烟气脱硫技术有湿法、半干法和干法三种,大部分燃煤电厂采用石灰石-石膏湿法脱硫工艺。
为避免污染物在厂内堆积,湿法脱硫工艺为避免系统内污染物富集,须排放一部分废水以维持系统内污染物浓度,这部分废水主要含有大量悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属等污染物。
二、湿法脱硫技术出现问题原因1结垢、堵塞等问题分析在湿法脱硫技术中,使用的主要材料是石灰石或石膏。
浅谈半干法脱硫技术问题及脱硫效率1. 引言1.1 概述半干法脱硫技术是一种常用的烟气脱硫方法,可以有效地去除燃煤电厂等工业排放中的二氧化硫。
随着环保政策的逐渐加强和对空气质量的要求日益提高,半干法脱硫技术在大气污染防治中扮演着重要的角色。
半干法脱硫技术通过将石灰石喷入烟气流中,通过与二氧化硫反应生成石膏而实现脱硫的效果。
相比于传统的湿法脱硫技术,半干法脱硫技术具有投资成本低、运行费用低、处理废水少等优势,因此受到了广泛应用。
半干法脱硫技术也存在一些问题,比如喷雾器堵塞、石膏结垢等,这些问题会影响脱硫效率。
如何提高半干法脱硫技术的效率成为了一个重要的研究课题。
本文将深入探讨半干法脱硫技术的原理、问题及解决方法,以及影响脱硫效率的因素,希望能为今后的研究和实践提供一定的参考。
1.2 研究背景研究背景:随着工业化进程的加快和环境污染的日益严重,大气中的二氧化硫排放成为一个突出的环境问题。
二氧化硫的排放不仅会造成酸雨的形成,还会对人体健康和大气环境产生严重影响。
脱硫技术的研究和应用显得尤为重要。
在这样的背景下,本研究将对半干法脱硫技术进行深入探讨,分析其存在的问题及影响脱硫效率的因素,通过实验和数据分析,寻找出提高脱硫效率的方法,希望为半干法脱硫技术的改进和发展提供一定的参考和借鉴。
1.3 研究意义半干法脱硫技术是当前燃煤电厂中广泛应用的一种脱硫方法,其研究意义主要体现在以下几个方面:随着大气污染治理的压力日益增大,对燃煤电厂脱硫技术的要求也越来越高。
半干法脱硫技术以其高效、经济、环保等特点备受关注,研究其脱硫效率及影响因素具有重要的实践意义。
半干法脱硫技术在脱硫效率方面存在一些问题和挑战,如脱硫效率不稳定、反应产物回收难度大等。
研究提高脱硫效率的方法以及分析影响脱硫效率的因素,对于完善该技术具有重要的指导意义。
进一步了解半干法脱硫技术的原理及现有问题,有助于推进该技术的改进和创新,提高其应用效果和经济效益,为煤炭清洁利用和大气污染治理作出积极贡献。
脱硫效率低的原因分析 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT 1号机组脱硫系统效率低的报告分析 一、脱硫添加剂的试验影响 添加剂的试验目的:促进石灰石的溶解和SO2的吸收,增加溶液的反应活性,总反应速度得到提高。添加剂具有分散作用,可以增强石灰石的表面活性,增加石灰石的分散性,降低其沉降速度,增大有效传质面积,减少设备的结垢。 4月22日-4月24日进行的脱硫添加剂提高脱硫效率试验,其中添加剂的主要成分:复合硫质催化剂、CP活性剂、含羧基类盐。复合硫质催化剂的作用:缓冲作用,促进SO2吸收和CaCO3溶解。CP活性剂:增加浆液反应活性,提高总反应速率。含羧基类盐:促进SO2的溶解。 试验过程:4月23日向1号JBR地坑注入吨添加剂,搅拌均匀后23日8时按照试验要求进行参数调整,10:30基本到位,效率%、负荷500MW以上、PH值—之间,10:40开始开用地坑泵加药,打入吸收塔,23号加药后至25号期间负荷在300MW以上效率最高上至%,PH值在23号加药有降低现象,后调整至—,24号上午调至,下午调回;于24号上午补充添加剂至地坑15袋,9时开始打入吸收塔,24号下午参数开始有运行人员自行掌握。 数据分析: 1、在同等条件下(负荷500MW,ph值—,入口1200mg/nm3左右,JBR液位在100mm以
下),与添加前效率起始值%比较,可认为提高3%--4%的。 23日11:00—12:00,%; 14:00—16:00,94%; 19:00—20:00,%; 2、1#系统在使用添加剂后,系统效率提升有改善,之前效率基本在95%以下,现在可轻松维持在96%以上。 结论及建议: 1、脱硫添加剂有提效作用,但由于机组目前运行状况较好,燃煤含硫量较低,添加前效率运行在94%左右,致使添加剂提效作用效果缩水(添加剂的最好使用效果是含硫量超设计值30%以内)。 2、再做试验前,应储存适量的超设计值含硫量的燃煤,如在%—%之间,确实使系统的脱硫效率降下来,再使用添加剂,效果会更好。 入口SO2浓度与负荷因素
2浓度 根据双膜理论,入口SO2浓度的升高,使烟气中的SO2分压增大,降低了气相传质
阻力,有利于SO2吸收,但在SO2浓度增大的同时吸收浆液的碱性并未随之增大,这就使
得吸收反应的增强因子减小。但后一种作用的影响更为明显,这两种作用的综合结果使得传质单元数减小从而降低了脱硫效率。
时间 1#机负荷 (MW) 脱硫效率 ﹪
FGD入口含硫量 mg/Nm3
FGD入口粉尘 mg/Nm3
PH
值
石膏浓度 (wt﹪)
石灰石浆液浓度 (wt﹪)
石灰石浆液流量 m3/h 01:378..843 03:
05: 07: 09: 11: 13: 15: 17: 445. 19:
. 21: 23: 01: 03: 05: 07: 09: 11: 13: 15: 17: 19: 21: 最大值 522440 96229
最小值 294630
平均值 从上图中红色区域我们可以看到,在升负荷期间FGD入口含硫量逐渐增大脱硫效率
降低,必然要提高PH值来维持脱硫效率,此时进入JBR的石灰石浆液量及石膏浆液浓度随之增加,然而脱硫效率并为提高,PH值接近后石灰石浆液的利用率反而会降低脱硫效果也不明显,脱硫效率下降到了最低点,经调整此时PH值为,但是石灰石浆液供给量还在逐渐增加,因为石灰石浆液量与脱硫系统入口烟气流量和进口烟气SO2含量进行前馈控制,与JBR的pH值进行反馈控制。 在机组降负荷(上图中蓝色区域)达到脱硫效率,但是FGD入口含硫量还是偏高。 上图中粉红色区域为一组再次升负荷参数,经调整PH值后脱硫效率仍然达不到,且石灰石浆液浓度降低。 上图中海绿色区域也是一组升负荷参数,在没有什么调整的情况下能够达到脱硫效率,跟前两次升负荷不同的是FGD入口含硫量不高,但是石灰石浆液随着流量的增加浆液密度在下降。 上图中褐色同样还是一组升负荷参数,这时的FGD入口含流量增加,调整PH值脱硫效率没有达到要求,石灰石浆液浓度随流量的增加而降低。 为什么脱硫系统在机组满负荷的情况下脱硫效率很难达标:由于台电1、2脱硫系统设计煤含硫量为%,当含硫量增加,带给脱硫运行有两个最大的问题:一是石灰石制浆、石膏脱水出力能否满足,二是脱硫效率能否维持在95%以上。 入炉煤含硫量与SO2浓度对应表
S(含硫量)% SO2
(mg/Nm3) 830 1162 1661 1993
根据上表所示我们可以计算出9号到10号之间S中的含硫量,在这两天中FGD的入口含硫量平均值为 S平均增长所对应的SO2: 1661-830 =(mg/Nm3)
x +=
计算得出9号到10号之间S中的含硫量接近1、2脱硫系统设计煤含硫量%将近达到了饱和状态,、所以脱硫效率一直低的原因。 通过钙硫摩尔比方程式粗略计算: S CaCO3 CaSO4 32 100 136
- = - = - x y x=(×100×)/32=h(按照95%脱硫滤计算,并且是按照石灰石纯度为100%来计
算,所以当石灰石纯度再降低时,制浆系统更不能供给足够的石灰石浆液。) 设计中:单台球磨机的制浆量为 t/h,共2台球磨机。 通过反推法:计算出石灰石制浆系统最大出力连续运行,并且石灰石纯度为100%时条件下,脱硫率按照95%计算,所能容许的最大含硫量为%,实际我们石灰石纯度不足60%,这算后所能容许的最大含硫量为为%。 随着机组升降负荷时,带入的热量增大,导致吸收塔整体浆液温度上升,从而影响SO2也石灰石的化学反响。其次机组负荷上升机组的烟气量也将随之变化,脱硫系统的容纳烟气量是一定的,当机组满负荷时,这时烟气量达到最大值,那么这是烟气在系统里停留的时间也是最短的,这也是为什么机组满负荷脱硫效率为什么较低的原因之一。 吸收塔浆液位与PH值 浆液的pH值是石灰石湿法烟气脱硫工艺中的重要运行参数。浆液pH值升高,降低了液相的传质阻力,将随之增大,进而KG和NTU也随之增大,有利于SO2的吸收。
还可以从烟气中SO2与吸收塔浆液接触后发生的一系列化学反应中可以看出:
S O2 吸 收:SO2 + H2O= H2SO3 →H2SO3=H+ + HSO3- 石灰石溶解:CaCO3 + H2O = Ca2+ + HCO3
- + OH-
氧 化: HSO3- + 1/2O2 = H+ + SO4
2-
沉 淀: Ca2+ + SO42- + 2H2O = CaSO4·2H2O
高PH的浆液环境有利于SO2的吸收,而低PH则有助于Ca2+的析出,二者互相对立,因此选择一合适的PH值对烟气脱硫反应至关重要。在一定范围内随着吸收塔浆液PH的升高,脱硫率一般也呈上升趋势,因为高PH意味着浆液中存在有较多的CaCO3,对脱硫当然有益,理论上PH>6后脱硫率不会继续升高,反而降低,原因是随着H+浓度的降低,Ca2+的析出越来越困难,显然此时SO2与脱硫剂的反应不彻底,既浪费了石灰
石,又降低了石膏的品质。PH下调时,CaSO4·2H2O含量又回升,CaCO3用量也随之降低。
因此,浆液PH值既不能太高又不能太低。因此,选择合适的PH值,对FGD系统的良好 运行有着重要的意义。一般认为吸收塔PH值选择在~为宜,避免PH值>5。浆液的pH值和脱硫效率的关系如图1所示: 图1.浆液成分随PH值的变化曲线 液气比(L/G)与烟气流速因素 2吸收表面积的大小。在其它参数恒定的情况下,提高液气比相当于增大了吸收塔内的浆液喷淋密度从而增大了气液传质表面积;同时,提高液气比也增大了可用于吸收SO2的浆液的碱度使增大,因此传质单元数也随之增大,提高了脱硫效率。液气比增
大,代表气液接触机率增加,脱硫率增大。但二氧化硫与吸收液有一个气液平衡,液气比超过一定值后,脱硫率将不在增加。新鲜的石灰石浆液喷淋下来后与烟气接触后,SO2
等气体与石灰石的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大
了CaCO3与SO2的接触反应机会,从而提高了SO2的去除率。
胡满银等在文献中建立了湿法脱硫系统脱硫效率的数学模型,并给出了脱硫效率
和液气比L/G之间的关系式: 其中, L——石灰石浆液喷淋量,L/s; G——处理烟气量,m3/s; L/G——液气比,L/m3;
a——吸收速率系数,定义为吸收液中SO2浓度增量占烟气内SO2浓度的比值。 该式是液气比的理论计算方法,实际液气比的计算中还要考虑吸收塔型式、运行经济性等因素的影响。文献中给出了液气比与脱硫效率的关系曲线,如图2所示。 图2液气比