直流 直流变换器
- 格式:ppt
- 大小:2.78 MB
- 文档页数:52
第3章 直 流 变 换 器直流变换器,即直流-直流变换器,是将一种直流电源变换为另一种具有不同输出特性的直流电源。
直流变换是为解决系统效率,特别是大功率系统的效率而提出的解决方案。
它是一种将直流电能变换成负载所需的电压或电流可控的直流电能的电力电子装置。
它通过对电力电子器件的快速通、断控制而把恒定直流电压斩成一系列的脉冲电压,通过控制比的变化来改变这一脉冲序列的脉冲宽度,以实现输出电压平均值的调节,再经输出滤波器滤波,在被控负载上得到电压或电流可控的直流电能。
直流变换器按照电路拓扑可以分为基本的不带隔离变压器的直流变换器和带隔离变压器的直流变换器两大类。
基本的直流变换器是通过开关管,再经电容、电感等储能滤波元件将输入的直流电压变换为符合负载要求的直流电压或电流。
这种变换器适用于输入输出电压等级相差不大,且不要求电气隔离的应用场合。
基本的直流变换器有多种电路接线形式,根据其电路结构及功能分类,本章将讨论以下四种基本类型:(1)Buck 直流变换器;(2)Boost 直流变换器;(3)Buck-Boost 直流变换器;(4)Boost-Buck 直流变换器。
其中,(1)、(2)两种是直流变换器最基本的结构;(3)、(4)是前两种基本结构的组合形式。
本章将详细分析上述四种变换器的基本原理和稳态工作特性,分析过程中,为便于理解把变换器中的功率器件看作理想开关,并且对电路中电感和电容的损耗忽略不计。
此外还假定变换器的直流输入电源为理想的恒压电压源。
直流变换器输出端所带负载常用一等效电阻来表示。
而在直流电机驱动中,电机负载可表示为直流电压与绕组电阻和电感的串联等效电路。
3.1 基本直流变换器3.1.1 Buck 直流变换器Buck 变换器(又称作降压变换器)就是将直流输入电压变换成相对低的平均直流输出电压。
它的特点是输出电压比输入的电压低,但输出电流比输入电流高。
它主要用于直流稳压电源中,在这些应用场合,变换器的输出电压可根据输入电压和负载阻抗进行调节。
buck直流变换器研究现状(一)直流变换器当今科学技术日益发展,直流电源系统或直流驱动设备发展迅速,在各种场合中的应用越来越普遍。
对直流变换器的需求和对直流变换器的性能、参数指标要求都越来越高。
直流变换器的发展趋势是从大体积向小体积发展,功率密度、转换效率是从低到高发展。
效率的提高使发热减少,可靠性也就大大提高。
双向直流变换器的提出和应用,实现了上述要求。
双向dc-dc变换器是通过对传统的单向直流变换器改进而成,将有源开关代替无源开关,双向基本变换单元代替单向基本变换单元,通常把二极管D和开关管Q反向并联,在把电容分别并联在输出输入两端即能实现。
双向dc-dc变换器改进了单向dc-dc变换器,实现能量双向传输,在生产应用中减少了器件数目,降低了成本,提高了效率,提高了性能,是直流变换器发展历程中重要的改进。
上世纪八十年代,美国学者提出双向Buck/Boost直流变换器,主要用来应用于人造卫星。
上世纪九十年代,香港大学陈清泉教授进行了电动车用双向dc-dc变换器的研究实验。
同年,F.Caricchi教授提出了Buck-Boost级联型双向dc-dc变换器,克服了双向直流变换器因输出输入极性相反而不适合于电动车的问题。
98年,美国弗吉尼亚大学的李择元教授开展用于燃料电池的双向dc-dc 变换器的研究和试验工作。
综上可见,航天技术和电动车技术对直流变换器的发展应用产生了重要推动作用。
1994年Felix A.Himmelstoss 发表的文章阐述了不隔离双向直流变换器的拓扑结构。
主要有已下几种: Buck、Boost、Buck-Boost、Cuk 、Sepic、Zeta 双向直流变换器。
隔离式双向dc-dc变换器有:正激、反激、推免和桥式等拓扑结构。
在所有结构中,Buck和Boost是最基本的电路。
直流变换器应用很普遍,主要有:远程及数据通讯,计算机,工业仪器仪表,电动汽车,太阳能电池阵,分布式电站,军事航天等方面。
直流-直流(DC/DC)变换器DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
还有Sepic、Zeta电路。
上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。
直流-直流变换器功能模块介绍直流-直流变换器(DC-DC converter)内部一般具有PWM(脉宽调制)模块,E/A(差错放大器模块),比较器模块等几大功能模块。
直流-直流变换器工作原理其工作原理为:输出经过FB(反馈电路)接到FB pin,反馈电压VFB与设定好的比较电压Vcomp比较后,产生差错电压信号,差错电压信号输入到PWM模块,PWM根据差错电压的大小调节占空比,从而达到控制输出电压的目的,振荡器的作用是产生PWM工作频率的三角波,三角波经过斩波电压斩波后,产生方波,其方波就是控制MOSFET的导通时间从而控制输出电压的。
直流变换器调制方法开关管导通时,输出电压等于输入电压Ud;开关管断开时,输出电压等于0。
输出电压波形如上图所示,输出电压的平均值Uo为(4-1)式中Ts—开关周期D—开关占空比, 变负载端输出电压有3种调制方法:1.开关周期Ts保持不变,改变开关管导通时间ton。
也称为脉宽调制(PWM)。
2.开关管导通时间ton保持不变,改变开关周期Ts。
3. 改变开关管导通时间ton,同时也改变开关周期Ts。
方式1的PWM是最常见的调制方式,这主要是因为后2种方式改变了开关频率,而输出级滤波器是根据开关频率设计的,显然,方式1有4-2(a)是脉宽调制方式的控制原理图。
三端口隔离型直流变换器的简化分析与性能优化方法汇报人:2024-01-10•引言•三端口隔离型直流变换器的基本原理目录•三端口隔离型直流变换器的简化分析方法•三端口隔离型直流变换器的性能优化方法•实验验证与结果分析目录•结论与展望01引言三端口隔离型直流变换器的特点三端口隔离型直流变换器具有三个独立的端口,可以实现能量的双向流动,具有较高的功率密度和能量转换效率。
简化分析与性能优化的重要性为了更好地应用三端口隔离型直流变换器,需要对其进行分析和优化,简化分析方法并提高其性能。
电力电子技术的快速发展随着电力电子技术的快速发展,直流变换器在能源转换、电机控制等领域的应用越来越广泛。
背景介绍1 2 3通过对三端口隔离型直流变换器的简化分析和性能优化,可以更好地解决实际应用中的问题,提高设备的效率和稳定性。
解决实际应用问题对三端口隔离型直流变换器的研究可以推动电力电子技术的发展,为相关领域的技术进步做出贡献。
推动电力电子技术的发展三端口隔离型直流变换器在新能源和节能技术领域有广泛的应用前景,对其的优化可以促进这些领域的技术进步。
促进新能源和节能技术的发展研究意义02三端口隔离型直流变换器的基本原理工作原理基于开关管的控制,通过改变开关管的导通和关断状态,实现电压和电流的转换。
开关管的控制信号通常由控制电路产生,控制电路根据输出电压或电流的反馈信号调整开关管的开关状态。
三个端口:输入、输出和辅助电源端口。
工作原理主要由输入滤波电路、主开关电路、输出滤波电路、辅助电源电路和控制电路等部分组成。
输入滤波电路用于减小输入电压的波动和抑制电磁干扰;主开关电路实现电压和电流的转换;输出滤波电路减小输出电压的纹波;辅助电源电路为控制电路提供工作电源;控制电路产生开关管的控制信号。
电路结构根据工作方式的不同,可以分为连续导通模式(CCM)和断续导通模式(DCM)。
根据输出电压和输入电压的关系,可以分为降压型、升压型和隔离型。
什么是直流pwm变换器
什幺是pwn
PWM是脉冲宽度调制的意思,PWM输出波形是一系列占空比变化的脉冲。
这里提到了调制的概念,也就是说,PWM波中包含了方波和一个调制信号。
通过解调(一般采用低通滤波器或积分器)可以获取调制信号。
比如说,变频器输出的PWM信号就是以方波为载波,以正弦波为调制信号的脉冲宽度调制波。
PWM电压信号施加在电机上,由于电机是感性负载,流过电机绕组的主要就是调制波(正弦波)。
从信号构成上看,PWM包含了基波(调制正弦波波)和谐波,由于载波是方波,因此,谐波含量很丰富,且具有很高频率的谐波。
DC-DC直流变换器第⼀章绪论本章介绍了双向DC/DC变换器(Bi-directional DC/DC Converter,BDC)的基本原理概述、研究背景和应⽤前景,并指出了⽬前双向直流变换器在应⽤中遇到的主要问题。
1.1 双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输⼊、输出电压极性不变的情况下,根据具体需要改变电流的⽅向,实现双象限运⾏的双向直流/直流变换器。
相⽐于我们所熟悉的单向DC/DC 变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上⼀般都需要⼆极管,因此单个变换器能量的流通⽅向仍是单向的,且这样的连接⽅式会使系统体积和重量庞⼤,效率低下,且成本⾼。
所以,最好的⽅式就是通过⼀台变换器来实现能量的双向流动,BDC就是通过将单向开关和⼆极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2 双向直流变换器的研究背景在20世纪80年代初期,由于⼈造卫星太阳能电源系统的体积和重量很⼤,美国学者提出了⽤双向Buck/Boost直流变换器来代替原有的充、放电器,从⽽实现汇流条电压的稳定。
之后,发表了⼤量⽂章对⼈造卫星应⽤蓄电池调节器进⾏了系统的研究,并应⽤到了实体中。
1994年,⾹港⼤学陈清泉教授将双向直流变换器应⽤到了电动车上,同年,F.Caricchi 等教授研制成功了⽤20kW⽔冷式双向直流变换器应⽤到电动车驱动,由于双向直流变换器的输⼊输出电压极性相反,不适合于电动车,所以他提出了⼀种Buck-Boost级联型双向直流变换器,其输⼊输出的负端共⽤。
1998年,美国弗吉尼亚⼤学李泽元教授开始研究双向直流变换器在燃料电池上的配套应⽤。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应⽤具有很⼤的推动⼒,⽽开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳⼤利亚Felix A.Himmelstoss发表论⽂,总结出了不隔离双向直流变换器的拓扑结构。
直流变换器工作原理小伙伴们!今天咱们来唠唠直流变换器这个超有趣的东西。
直流变换器呢,就像是一个超级魔法师,能把一种直流电压变成另外一种直流电压。
这可太酷了,就好像把一个小盒子里的东西变个模样再放到另一个小盒子里一样。
那它到底是怎么做到的呢?这得从它的内部结构说起啦。
直流变换器里面有好多小零件,它们就像一个小团队一样合作得特别默契。
咱们先来说说电感这个小成员。
电感呀,就像是一个小仓库,它可以储存能量呢。
当电流通过电感的时候,电感就开始储存电能啦,就像小松鼠储存松果一样,把电能一点一点地攒起来。
还有电容这个小可爱。
电容就像是一个小水库,它可以储存电荷。
当直流变换器工作的时候,电容就起到了稳定电压的作用。
如果电压有波动,就像小水波动荡一样,电容就能把这些波动给抚平,让电压变得更稳定。
那在直流变换器里,还有一个非常重要的东西,那就是开关管。
这个开关管就像一个小门卫,它一会儿打开,一会儿关上。
当开关管打开的时候,电流就可以通过电感流向负载,同时电感开始储存能量。
这时候,电容也在旁边帮忙稳定电压呢。
可是当开关管突然关上的时候,有趣的事情就发生了。
电感因为之前储存了能量,它可不想就这么把能量憋在自己肚子里呀。
于是,电感就会释放它储存的能量,继续给负载供电。
这个过程就像是一个接力赛,开关管和电感配合得超级好。
你看,通过这样不断地打开和关闭开关管,直流变换器就能够把输入的直流电压进行调整,变成我们想要的直流电压啦。
而且呀,直流变换器还有不同的类型呢。
有一种是降压型的直流变换器,就像是把一个高高的台阶变成矮矮的台阶一样,把高的直流电压降下来,变成比较低的直流电压。
这种在很多电子设备里都很常见呢,比如说手机充电器,它就把家里的高电压变成手机能接受的低电压,这样手机才能安全地充电呀。
还有一种是升压型的直流变换器。
这就像是把小土坡变成大山一样,把低的直流电压升高。
像有些移动电源,当它给一些需要高电压的设备充电的时候,就会用到升压型的直流变换器,把它自身的低电压升高到合适的数值。
直流直流变换器设计背景与意义
直流直流变换器(DC-DC Converter)是一种将一种直流电压转换为另一种直流电压的电子器件。
它的设计背景与意义如下:
1. 电力供应:由于电网中常用的是交流电,但很多电子设备需要使用直流电供电,如计算机、手机等。
因此,需要将电网中的交流电转换为需要的直流电,这时就需要使用直流直流变换器进行转换。
2. 电能转换:在一些电力系统中,需要将电能从一个直流电源传输到另一个直流负载,如电动车、电动机等。
直流直流变换器能够实现这种电能的高效转换,提高能量转移的效率。
3. 电压匹配:不同的电子设备或电子组件需要不同的电压供电,直流直流变换器能够将一个直流电源的电压转换为所需的电压,满足不同设备的需求。
4. 节能降耗:直流直流变换器能够提高能量的传输效率,减少能量转换过程中的能量损耗。
在一些需要长时间工作的设备中,使用直流直流变换器可以显著降低耗能,延长设备的使用寿命。
5. 转换器拓扑:直流直流变换器的设计主要涉及转换器的拓扑结构选择、功率集成电路的选用、控制算法的设计等方面。
这些设计是电力电子领域的重要研究内容,对提高电力转换效率、减少成本、改善系统可靠性具有重要意义。
总之,直流直流变换器的设计背景与意义在于实现不同电压间的转换,满足电子设备、电力系统中的电能转换与供电要求,提高能量转换效率、降低能量损耗,并推动电力电子领域的研究和应用。
UPS中的直流变换器和半桥逆变器及单相全桥逆变器的详细介绍逆变器在电路中常被使用,本文中,小编将对UPS中的逆变器予以介绍。
本文介绍内容包括直流变换器、半桥逆变器、单相全桥逆变器以及三相全桥逆变器等知识,如果你对逆变器相关内容具有兴趣,不妨在本文下述内容中进行探索哦。
一、直流变换器直流变换器是一种最简单最基本的逆变器电路,主要应用于后备式UPS 中,它分为自激式和它激式两种。
1、自激式推挽变换器图1 自激式直流推挽变换器图1(a)所示是自激式直流推挽变换器电路,所谓自激就是不用外来的触发信号,UPS就可以利用自激振荡的方式输出交流电压,其交流电压的波形为方波,如图1(b)所示的波形UN。
UN是当电源电压E为额定值时的输出情况(其中阴影部分除外)。
自激直流变换器电路主要用于对电压稳定度要求不高但不能断电的地方,如电冰箱、紧要照明用的白炽灯、高压钠灯和金属卤素灯等,供电条件差的农村居民也有不少采用了这种电路作不间断电源。
由于它的电路简单、价格便宜、可靠性高,故也很受欢迎。
该电路的工作原理如下:在时间t=t0加直流电压E,这时由于晶体管V1和V2的基极电压Ub1=Ub2=0,(1)所示二者不具备开启条件,但在它们的集电极和发射极之间却都有漏电流,如图中的I1和I2所示,且二电流在变压器绕组中的流动方向相反,由于器件的分散性,使得I1-I2=ΔI≠0,(2)这个差值电流ΔI就在绕组中产生一个磁通量,于是就在基极绕组中感应出电压Ub1和Ub2,由同名端的标志可以看出,这两个电压的极性是相反的,即一个Ub给晶体管基极加正电压,使其开通,另一个Ub给另一个晶体管基极加负压,使其进一步截止。
电路的设计正好是漏电流大的那一个晶体管基极所感应出的Ub给自己基极加正压,而漏电流小的那一个晶体管基极所加的是负压,基极加正压管子的集电极电流进一步增加,又进一步使它的基极电压增大,这样一个雪崩式的过程很快使该管(设为V1)电流达到饱和值,即V1集电极-发射极之间的压降UCE1=0,绕组N1和N2上的电压也达到了最大值UN1=UN2=E,此后由于磁芯进入饱和阶段,磁芯中磁通的变化量减小,各绕组感应的电压也相应减小,原来导通的管子由于集电极电流增大(磁芯饱和所致)和基极电流减小而脱离饱和区,使绕组感应的电压进一步减小,这样一个反变化过程使得V1雪崩式地截止而V2达到饱和,如图1(b)t1所示。
dcdc工作原理
DCDC工作原理是指直流-直流变换器的工作原理。
它的主要
功能是将输入直流电压转换为输出直流电压,同时保持输出电压的稳定性。
DCDC变换器由输入端、输出端、开关管和滤波电感组成。
当输入电压加到开关管时,开关管将打开并导通,将电流通过滤波电感传递到输出端。
此时能量存储在滤波电感中,电容也开始储存能量。
当开关管导通时,滤波电感的电流增加,同时输出电容的电压也随之增加。
当开关管关闭时,滤波电感中的电流不能瞬间消失,而是继续流过输出电容,维持输出电压的稳定。
同时,滤波电感和输出电容中储存的能量也开始驱动输出端的负载。
DCDC变换器通过不断地开关管的导通和关闭,实现了将输入直流电压转换为输出直流电压的过程。
通过控制开关管的开关频率和占空比,可以调节输出电压的大小。
同时,通过反馈回路,可以实现对输出电压的稳定控制。
总之,DCDC变换器通过利用开关管的导通和关闭,通过电感和电容储存和传输能量,将输入直流电压转换为输出直流电压,并通过控制开关管和反馈回路实现输出电压的稳定控制。
这种工作原理使得DCDC变换器在许多电子设备中得到广泛应用。