盖梁计算方法
- 格式:doc
- 大小:600.00 KB
- 文档页数:4
六、盖梁设计(一)荷载计算1.恒载计算上部结构恒载见表62.活载计算(1)活载横向分布系数计算活载横向分布系数计算时荷载对称布置及非对称布置均采用杠杆原理方法进行计算。
单列车对称布置时见图11单列车非对称布置时见图12双列车对称布置时见图13单列车非对称布置时见图141 2 300.12210.8750.437 2ηηη===⨯=1 2 310.560.27821(0.4340.315)0.375 210.6480.3242ηηη=⨯==⨯+==⨯=图110.8750.8750.566图120.6840.434 0.31512310.2860.143210.7010.350210.950.4752ηηη=⨯==⨯==⨯=12310.5560.27821(0.4340.315)0.37521(0.6480.355)0.5022ηηη=⨯==⨯+==⨯+=(2)按顺桥向活载移动情况,求支座活荷载反力的最大值 布载长度L 取15.96m a. 单孔荷载(见图15)0.556 0.7011 0.951 0.4340.3150.648 0.355图14 图130.286b.单列车时支座反力R 2=140×(1+0.913)+120×(0.474+0.386)×30×0.199=236.99KN 两列车时支座反力2×R 2=2×236.99=473.96 KN b.双孔荷载(见图16)单列车时支座反力R 1=140×(0.562+0.65)=169.68 KN R 2=120×(1+0.913)+30×0.725=251.31KN R=R 1 +R 2=169.68+251.31=420.99KN 双列车时支座反力2×(R 1 + R 2)=2×420.99=841.98KN (3)载横向分布后各梁支点反力计算见表9表9 主梁支点反力计算120 140 30140 120 图150.913 0.474 0.3860.199120 140 30140120 0.650.913 1.00 0.7250.562R 2图16(4)各梁恒载、活载反力组合各梁恒载、活载反力组合计算见表10,表中均取主梁最大值。
中交设计师步步解析桥梁盖梁设计计算,设计师都在看!桥梁设计中,柱式桥墩是普遍采用的结构型式。
对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。
在设计中,由于桥梁的跨径、斜度、桥宽、车辆荷载标准的变化,对盖梁设计的影响很大,很难完全套用标准图和通用图。
盖梁设计的标准化程度很低,经常是非标准设计,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。
一、盖梁的受力特点及分析1盖梁的受力特点盖梁的主要荷载是由其上梁体通过支座传递过来的集中力,盖梁作为受弯构件,在荷载作用下在各截面除了引起弯矩外,同时伴随着剪力的作用。
此外,盖梁在施工过程中和活载作用下,还会承受扭矩,产生扭转剪应力。
扭转剪应力的数值很小且不是永久作用,一般不控制设计。
实际计算中一般只考虑弯剪的组合,因为考虑弯、剪、扭三种内力同时组合,需要空间分析,计算工作会很繁琐,而且实际意义也不大。
可见盖梁是一种典型的以弯剪受力为主的构件。
2盖梁的受力分析盖梁除了自重荷载之外,主要承受由支座传递过来的上部结构的恒载。
对不同桥宽、不同跨径简支梁板桥的盖梁内力计算结果进行分析,以双柱式桥墩盖梁墩顶负弯矩为例:盖梁自重所占比例很小,为9%左右;上部恒载所占比例很大,为63%左右;而活载只占总荷载比例的28%左右。
表1为笔者在设计工作中对双柱式桥墩盖梁墩顶内力计算结果的一个归纳。
二、盖梁的计算要点盖梁的计算要点是如何建立准确而且简化的计算模型。
盖梁的几何外形简单,且是以弯矩、剪力及轴力为主,受力特点明确。
将它模拟成平面杆单元比模拟成空间体单元计算要简单许多,而且能满足控制要求。
空间计算结果虽然准确,但是计算复杂,对于盖梁计算必要性不大。
采用盖梁平面基本的简化模式进行计算是最简单且比较实用的,但使用时要对局部区域的峰值如墩顶截面进行适当的折减削峰处理,因为盖梁的实际控制截面往往不在墩顶而在墩柱边缘附近,这样能避免造成较大的浪费。
盖梁模板角度如何计算公式盖梁模板角度计算公式。
在建筑施工中,盖梁模板是一种常见的模板结构,用于支撑和固定混凝土梁的浇筑。
在安装盖梁模板时,需要根据具体的设计要求和施工现场的实际情况来确定模板的角度,以确保梁的浇筑质量和结构稳定性。
盖梁模板的角度计算是一个重要的工作,下面将介绍盖梁模板角度计算的相关公式和方法。
盖梁模板角度计算公式的推导。
在盖梁模板的安装过程中,需要确定模板的倾斜角度,以便确保混凝土在浇筑时能够均匀流动并填满整个梁的空间。
盖梁模板的角度计算公式可以通过以下步骤推导得出:1. 确定梁的设计要求,首先需要了解梁的设计要求,包括梁的长度、宽度、高度和混凝土的配合比等参数。
2. 确定模板的安装高度,根据梁的设计要求和施工现场的实际情况,确定模板安装的高度,即模板顶部距离梁底部的距离。
3. 计算模板的倾斜角度:根据模板安装高度和梁的设计要求,可以计算出模板的倾斜角度。
一般来说,可以使用三角函数来计算模板的倾斜角度,具体公式如下: tanθ = H/L。
其中,θ为模板的倾斜角度,H为模板安装高度,L为梁的长度。
通过以上公式,可以计算出模板的倾斜角度,从而确定模板的安装位置和角度。
盖梁模板角度计算的注意事项。
在进行盖梁模板角度计算时,需要注意以下几点:1. 确保梁的设计要求准确无误,在进行模板角度计算之前,需要确保梁的设计要求准确无误,包括梁的长度、宽度、高度和混凝土的配合比等参数。
2. 考虑施工现场的实际情况,在进行模板角度计算时,需要考虑施工现场的实际情况,包括地形、环境条件、施工设备和人员等因素。
3. 选择合适的模板材料和结构,在安装盖梁模板时,需要选择合适的模板材料和结构,以确保模板的稳定性和可靠性。
4. 进行施工现场的实际测量,在确定模板的倾斜角度之前,需要进行施工现场的实际测量,包括梁的长度、模板安装高度和倾斜角度等参数。
通过以上注意事项,可以确保盖梁模板角度计算的准确性和可靠性,从而保证梁的浇筑质量和结构稳定性。
盖梁计算书1 16m跨径空心板单幅双柱桥墩盖梁计算1.概况桥墩盖梁采用桥梁通计算,盖梁宽1.4m,跨中高度1.3m,端部高度0.65m。
盖梁按简支梁计算,盖梁结构简图如下图:图1 盖梁结构图2.荷载取值①恒载:各板自重产生支反力反向加载至盖梁上,二期恒载按平均分布于各板上计算。
②横向分布系数:活载横向分布系数采用左右偏载按偏心受压法,对称布置采用杠杆法。
③冲击系数:16m板冲击系数为1.26。
④活载加载:采用车道荷载及车辆荷载分别按双孔加载、单孔加载计算,按最不利情况,求出支点最大反力。
3.盖梁复核计算①持久状况极限承载能力验算:经计算最不利组合下弯矩包络图及盖梁承载力校核图如下:图2 盖梁承载力校核图可以看到,本桥盖梁极限承载力满足规范要求,并有适当安全储备。
②正常使用阶段抗裂验算:规范要求长期效应作用下混凝土裂缝宽度应小于0.2mm,按照裂缝控制配筋验算校核图如下图所示,可以看出均满足规范要求。
图3 盖梁裂缝验算校核图③斜截面抗剪验算:计算时按混凝土和箍筋承担剪力的100%计算,各截面抗剪验算如下表所示。
表1 梁板作用截面抗剪验算表2 墩柱截面抗剪验算由表中结果可知,混凝土截面及箍筋可提供的抗剪力已大于组合剪力。
盖梁中配有斜筋可作为安全储备。
4.主要结论综上,盖梁持久状况承载能力极限状态验算、抗剪验算、抗裂验算均满足规范要求。
2 20m跨径空心板单幅双柱桥墩盖梁计算1.概况桥墩盖梁采用桥梁通计算,盖梁宽1.6m,跨中高度1.3m,端部高度0.65m。
盖梁按简支梁计算,盖梁结构简图如下图:图1 盖梁结构图2.荷载取值①恒载:各板自重产生支反力反向加载至盖梁上,二期恒载按平均分布于各板上计算。
②横向分布系数:活载横向分布系数采用左右偏载按偏心受压法,对称布置采用杠杆法。
③冲击系数:20m板冲击系数为1.221。
④活载加载:采用车道荷载及车辆荷载分别按双孔加载、单孔加载计算,按最不利情况,求出支点最大反力。
一、设计荷载1、钢筋砼自重盖梁钢筋砼自重统一按15.15m×1.8m×1.8m计算。
每个盖梁设计砼方量V=45.9m³,钢筋砼每方按25KN/m³《建筑结构荷载规范》GB 50009-2012砼自重G=45.9×25=1147.5KN,盖梁长15.15m,平均每延米荷载为q1=1147.5/15.15=75.74KN/m2、盖梁组合钢模板及连接件重量为9吨。
组合钢模板自重G=9000×9.8/1000=88.2KN均布每延米荷载q2=88.2/15.15=5.82kN/m3、[12槽钢按照30cm间距布置,需要44根槽钢,每根长1.8m。
[12槽钢自重G=44×1.8×12.318×9.8/1000=9.56KN平均每延米荷载q3=9.56/15.15=0.63KN/m4、I56a工字钢每个盖梁设置2根,单根长16m。
工字钢自重G=2×16×106.316×9.8/1000=33.34KN平均每延米荷载q4=33.34/15.15=2.2KN/m5、施工荷载(1)小型机具、施工人员、邻边防护按1500kg计算,G=1500×9.8/1000=14.7KN平均每延米荷载q5=14.7/15.15=0.97KN/m(2)振捣混凝土产生的荷载:q6=4*1=4KN/m(按最大垂直模计算)(3)倾倒混凝土时产生的荷载q7=8*1=8KN/m(8为容量为lm³~3m³的运输器具)6、荷载分项系数二、受力模型1、[12槽钢[12槽钢分布梁直接承受底模以上的自重,[12槽钢分布在圆柱两侧的56a工字钢上,两工字钢主梁紧贴圆柱,间距按圆柱直径150cm,故[12槽钢分布梁计算跨径为150cm,盖梁底宽为180cm,分布梁两端各悬臂15cm,悬臂有利跨中受力,不计悬臂部分,按简支梁计算,实际偏安全,如下图:2、I56a工字钢工字钢主梁承受由每根[12槽钢分布梁传来的重力,按均布荷载考虑,两根工字钢各承受一半的力,工字钢搭在两圆柱预埋的钢棒上,故工字钢计算跨径为两圆柱中心的间距,取为9.05m,按两端外伸悬臂计算。
施工平台受力计算书一、工程概况盖梁设计尺寸:双柱式盖梁设计为长11.86m ,宽2.1m ,高1.8m ,混凝土方量为43.56方,悬臂长2.23m ,两柱中心距7.4m 。
二、总体受力计算1、荷载计算1) 混凝土自重荷载W 1=43.56×26=1133kN ;2)模板荷载A 、定型钢模板,每平米按1.2kN 计算。
W 2=(11.86×1.8×2+1.8×2.1×2)×1.2=60.3kN ;3)施工人员、机械重量按每平米1kN ,则该荷载为:W 3=11.86×2.1×1=25kN ;4)振捣器产生的振动力盖梁施工采用50型插入式振动器,设置3台,每台振动力5kN 。
施工时振动力:W 4=5×3=15kN ;总荷载:W=W 1+ W 2+ W 3+ W 4 =1133+60.3+25+15=1233.3kN5)荷载集度计算横桥向最大荷载集度:q h1=(W+0.9×1.23×2.1×26)/11.86=(1233.3+60.4)/11.86=109kN/m ;最小荷载集中度q h2= q h1/2=55kN/m顺桥向荷载集度取跨中部分计算:q s = q h1/2.1=109/2.1=51.9kN/m2、强度、刚度计算1)木材强度验算取盖梁跨中横向一米段对木方进行计算,其中横向一米荷载共有2根方木2根10#槽钢承担,顺桥向荷载集度:q s = q h1/2.1=109/2.1=51.9kN/m ,受力图:弯矩图剪力图其中最大弯矩为:M=20.4kN ·m ,最大剪力为:Q=46.7kN单条10cm ×10cm 的方木的抗弯模量W x =166.67×10-6m 3,抗剪面积A=0.01m 2单条10#槽钢抗弯模量W x =39.4×10-6m 3,抗剪面积A=12.74×10-4m 2 根据应力公式可以得出最大拉应力:σ=M/W x =20.4×1000/39.4/3=172MPa <[σ]=200MPa;根据剪应力公式可以得出剪切应力:τ=1.5Q/A=70×1000/12.74/3=18.3MPa <[σ]=85MPa;2)纵梁45b 工字钢计算实际施工中盖梁两端部分模拟为梯形荷载,最小值为55kN/m ,最大值为109kN/m ,跨中模拟均布荷载109kN/m ,实际施工中立柱顶部混凝土完全由立柱承受,但为安全起见,计算模型将此部分混凝土考虑在内,工字钢计算模拟图形如下图:弯矩图(荷载组合)剪力图(荷载组合)荷载组合其中荷载组合后最大弯矩为:M=-562kN·m,最大剪力为:Q=48.7kN,最大支撑力F=78.7kN2)工字钢强度验算单片45b工字钢抗弯模量W=1500×10-6m3,x单片工字钢抗剪面积A=111.4×10-4m2实际为两片工字钢受力,工字钢弯拉应力为:=562×103/1500/2=187MPa[σ]=200MPa;σ=M/Wx3)工字钢剪力验算τ=1.5Q/A=1.5×48.7×1000/2/111.4/2=1.6MPa <[σ]=85MPa;三、穿心棒法施工钢棒验算钢棒作为主要承重构件,承受来自上部结构的全部荷载,保证安全稳定,对钢棒的抗剪和抗弯强度进行验算。
桥梁盖梁抱箍法的施工及计算桥梁是交通基础设施中重要的构造物之一,其结构设计和施工方法对于道路安全和保障交通流畅具有重要的作用。
在桥梁施工中,盖梁抱箍法是一种广泛应用的梁体合拢方法。
本文将介绍盖梁抱箍法的施工原理及计算方法。
盖梁抱箍法的施工原理盖梁抱箍法是将两个混凝土梁体(上梁体和下梁体)采用抱箍拉合,形成一个整体的构造法。
在施工过程中,首先将混凝土下梁体放在桥墩上,然后将上梁体或预制梁放置在下梁体之上,再使用抱箍拉合将两个梁体合拢成一个整体。
具体施工方法如下:1.安装抱箍:在下梁体上设置抱箍,抱箍位置应符合桥梁设计要求,通常是分布在桥梁梁端、拱顶和支座处等。
2.安装支撑:在拱桥和大跨度桥梁中,由于梁体自重和施工荷载很大,因此需要在拱腰和拱脚处设置支撑,以支撑梁体的自重和施工荷载。
3.安装上梁体或预制梁:将上梁体或预制梁放置在下梁体之上,两者的尺寸和重量应符合设计要求,并避免发生滑动和倾斜等现象。
4.抱箍拉合:通过手动或机械方式拉动抱箍,使其与上梁体与下梁体之间形成紧密的连接。
5.脱模:当混凝土凝固后,即可拆除抱箍、支撑和模板,完成梁体的合拢和下放。
盖梁抱箍法的计算方法盖梁抱箍法的计算包括了拉力的计算和抱箍的设计。
以下是具体的计算步骤:拉力的计算1.计算梁体的自重和施工荷载,确定抱箍的数量和位置。
2.计算梁体的拉伸应力,以确定抱箍的拉力。
3.根据抱箍的位置和数量确定抱箍的拉力分配。
4.选择抱箍张力设备,如电动液压拉紧器和手动液压拉紧器等。
抱箍的设计1.确定抱箍的数量和位置,一般应符合桥梁设计规范的要求。
2.确定抱箍的直径,一般为50-70毫米。
3.设计抱箍的拉伸强度和切断强度,以确定抱箍的材质和尺寸。
4.确定抱箍的受力状态,包括抱箍的轴力、剪力和弯矩等。
5.根据抱箍的材料和受力状态,确定抱箍的整体稳定性和局部稳定性。
总结盖梁抱箍法是一种常用的桥梁梁体合拢方法,在混凝土预制梁和梁体施工中广泛应用。
本文介绍了盖梁抱箍法的施工原理和计算方法,知道如何设计和施工合适的抱箍对于桥梁的安全和稳定性至关重要,因此在实践中要认真执行计算和设计规范,确保桥梁的质量和安全性。
盖梁施工验算坝沟1号桥(2。
8宽m)盖梁一、荷载计算1、模板自重:模板面积为113。
63m2,模板单位重取0。
75kn/m2,则模板自重=113.63m2x0.75kn/m2/15.05m=5.66kn/m2、主梁自重:盖梁长度15.05米,主梁长度取16米,双肢工45a单位重为80.384kg/m,主梁自重=4x80.384kg/mx(16/15.05) *9。
8/1000=3。
36kn/m3、钢筋混凝土重:盖梁钢筋用量9902.225kg,混凝土设计方量91。
76m3,混凝土容重取25kn/m3,则钢筋砼自重=(9902。
225kg x9。
8n/kg/1000+91.75m3x25kn/m3)x(30。
69/42.14)/15。
05=115。
69kn/m(已扣除柱顶钢筋及砼)4、人员机具荷载:施工人员、机具材料荷载取以2。
5kn/m2计,振捣混凝土产生的荷载,按照2kn/m2考虑,面积为盖梁投影底面积30。
69 m2,盖梁等效宽度2.04m,则施工人员、机具材料、振捣荷载=(2+2。
5)kn/m2x2。
04m =9.18kn/m5、主梁顶上用槽钢([10或[14)做分配梁来支撑底模。
每根槽钢长度为3.3m=2.7m+0.3mx2二、确定分配梁的规格及间距1、确定荷载:分配梁=模板自重+钢筋砼重+人员机具荷载=5.66kn/m+115。
69kn/m+9。
18kn/m=130.53kn/m。
所有钢材均取A3钢,弯应力[σw]=145mp 剪应力[τ]=85mpa2、因此选用[14,间距25cm满足要求,τ=22.915<[τ]=85mpa,σ=136.764<[σw]=145mp,弯应力安全系数较小,施工过程中分配梁间距不应大于25cm。
3、间距25cm槽钢需要45根,因此分配梁荷载=45x3。
3mx14.53kg/mx9。
8n/kg/15.05m=1.41kn/m三、主梁验算1、主梁承受荷载=130.53kn/m+1.41kn/m=131.94kn/m2、则单侧主梁承受荷载为65.75kn/m3、主梁受力图4、支反力Ra=Rb=65。
盖梁抱箍受力计算一、工程概况赣县南互通主线1#桥左幅1#墩盖梁,结构尺寸为长18.442m,宽1.8m,高1.5m;为三柱式盖梁,墩柱间距为6.773m,混凝土强度等级为C30,计47.6m3。
二、编制依据(1)交通部行业标准、公路桥涵钢结构及木结构设计规范(JTJ025-86);(2)施工计算手册(汪国荣、朱国梁编著);(3)路桥施工计算手册(人民交通出版社);(4)赣州至大余高速公路赣县南互通式立体交叉工程《两阶段施工图设计》;(5)现行的标准、规范、规程等;(6)我单位的综合施工能力、类似工程的施工经验及资源状况。
三、盖梁支架结构设计3.1 、抱箍抱箍采用12mn钢冈板制作,高40cn。
每个抱箍由两个半圆形的钢箍组成,两个半圆钢箍在墩柱上安装后相接面有2cm的间隙,以保证钢箍与墩柱之间用M24 (性能等级为8.8s )高强螺栓连接好后紧密。
抱箍内壁用万能胶粘上5mm厚的橡胶垫,以提高墩柱与抱箍间的摩擦力,并避免钢抱箍与墩柱间的刚性接触,损伤混凝土表面。
3.2、纵梁在钢抱箍上采用单层两排贝雷片(标准贝雷片规格:3000cmX 1500cm 连接形成纵梁,长21m贝雷梁位于墩柱两侧,净距130cm贝雷梁之间采用拉杆连接以增加其稳定性,贝雷片之间采用销连接。
3.3、横梁底模为定型钢模板,面模厚度为S 5mm肋板高为10cm。
在底模下部采用15 x 15cm 方木作横梁,横梁长4m,间距0.4m。
盖梁悬出端底模下设三角支架支撑,三角架放置在横梁上。
3.4、侧模与端模支撑侧、端模为定型钢模板,面模厚度为S 5mm肋板高为10cm在侧模外侧采用间距1.2m 的2[14b作竖带,竖带高1.7m,在竖带上下各设一条直径22的拉杆,上下拉杆间距1.5m,在竖带外设直径48的钢管斜撑,支撑在横梁上。
3.5、防护栏杆与与工作平台(1)栏杆采用© 48的钢管搭设,在横梁上每隔2.4米设一道1.2m高的钢管立柱,竖向间隔0.5m设一道钢管横杆,钢管之间采用扣件连接,栏杆四周应挂好安全网。
桥墩盖梁张拉理论伸长值计算书一、根据设计要求桥墩盖梁预应力张拉采用一端张拉工艺,理论伸长值计算公式:依据《公路桥涵施工技术规范》(JTJ041-2000)Pl 1-e-(kx+µө)△L= ×AgEg kx+µө其中:ΔL:理论伸长值;L:预应力筋的长度;P:预应力筋张拉端的张拉力;A g:预应力筋的截面面积;E g:预应力筋的弹性模量;K:孔道每米局部偏差对摩擦的影响系数;X:从张拉端至计算截面的孔道长度;µ:预应力筋与孔道壁的摩擦系数;θ:从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。
二、桥墩盖梁:1. 盖梁采用后张法一端张拉工艺0 10%δk 30%δk 100%δk (持荷5分钟)锚固。
2. 设计数据:预应力钢束采用Φ15钢绞线,钢束规格5×7Φ5,截面积700mm²,锚具为15-5及15-5P,波纹管D内=5.5cm。
预应力钢绞线标准抗拉强度为1860Mpa,张拉控制应力δk=1339.2Mpa,一束张拉力P=937.4KN。
3.相关数据:(1)孔道转角计算:N1、N2束πθ=67.64°×=1.1803(rad)180N3、N4束πθ=66.41115°×=1.1591(rad)180(2)X、L取值N1、N2束X=12.764m 、L=1341.4cmN3、N4束X=11.934m 、L=1258.4cm4、K值取0.0015(规范要求);µ1=0.22 Ep=1.95×1055、理论伸长值的计算:N1、N2束911000×1341.4 1-e-(0.0015×12.764+0.22×1.1802)ΔL= ×=7.8cm 700×1.95×105 0.0015×12.764+0.22×1.1802 N3、N4束911000×1258.4 1-e-(0.0015×11.934+0.22×1.1591)ΔL= ×=7.4cm 700×1.95×105 0.0015×11.936+0.22×1.1591三、张拉设备标定内插计算:根据2005年04月06日测试结果通知书(后附)计算,张拉内插计算:盖梁:P=911KN;20%P=182.2KN;40%P=364.4KN。
斜交桥梁盖梁横坡计算公式引言。
斜交桥梁是一种常见的桥梁结构形式,其盖梁横坡是斜交桥梁中的重要组成部分。
盖梁横坡的设计和计算是斜交桥梁设计中的重要环节,对桥梁的安全和稳定性具有重要影响。
本文将重点介绍斜交桥梁盖梁横坡计算公式,希望能为相关工程技术人员提供一定的参考和帮助。
斜交桥梁盖梁横坡计算公式。
在斜交桥梁设计中,盖梁横坡的计算是一个复杂的过程,需要考虑多个因素的影响。
一般来说,盖梁横坡的计算公式涉及到桥梁的跨度、荷载、材料强度等多个因素。
下面将介绍一些常见的盖梁横坡计算公式。
1. 盖梁横坡的跨度计算公式。
盖梁横坡的跨度是指盖梁在桥梁上的横向跨度,是盖梁设计中的重要参数。
一般来说,盖梁横坡的跨度计算公式可以表示为:L = K H。
其中,L为盖梁横坡的跨度,K为一个与桥梁结构特点相关的系数,H为桥梁的高度。
这个公式可以根据具体的桥梁结构特点和设计要求进行调整,以满足实际工程的需要。
2. 盖梁横坡的荷载计算公式。
盖梁横坡的荷载是指盖梁在使用过程中承受的荷载,是盖梁设计中需要重点考虑的因素之一。
一般来说,盖梁横坡的荷载计算公式可以表示为:Q = P L。
其中,Q为盖梁横坡的荷载,P为单位长度的荷载值,L为盖梁横坡的跨度。
这个公式可以根据实际的使用情况和荷载要求进行调整,以确保盖梁在使用过程中能够承受所需的荷载。
3. 盖梁横坡的材料强度计算公式。
盖梁横坡的材料强度是指盖梁所使用的材料的强度特性,是盖梁设计中需要重点考虑的因素之一。
一般来说,盖梁横坡的材料强度计算公式可以表示为:S = F / A。
其中,S为盖梁横坡的材料强度,F为材料的抗拉强度或抗压强度,A为盖梁横坡的截面积。
这个公式可以根据实际的材料特性和设计要求进行调整,以确保盖梁所使用的材料具有足够的强度。
结论。
斜交桥梁盖梁横坡计算公式是斜交桥梁设计中的重要内容,涉及到多个因素的影响。
在实际的工程设计中,需要根据具体的桥梁结构特点和设计要求,结合盖梁横坡的跨度、荷载、材料强度等因素,合理选择和调整计算公式,以确保盖梁在使用过程中具有足够的安全性和稳定性。
盖梁计算内容⑴持久状况极限状态抗弯承载能力计算。
⑵持久状况正常使用极限状态计算。
①抗裂验算·正截面抗裂验算――正截面混凝土拉应力验算。
·斜截面抗裂验算――斜截面混凝土主拉应力验算。
②挠度验算⑶使用阶段正截面混凝土压应力验算⑷预应力钢筋最大拉应力验算.计算方法预应力混凝土盖梁计算按平面杆系理论,并采用桥梁博士计算。
⑴将计算对象作为平面梁划分单元作出结构离散图;⑵根据盖梁的实际施工过程和施工方案划分施工阶段;⑶进行荷载组合,求得结构在施工阶段和使用阶段时的应力、内力和位移;⑷根据规范中所规定的各项容许指标,验算盖梁是否规范规定的各项要求。
计算依据及参数取值⑴《公桥规》、《城市桥梁设计荷载标准》及《公路桥涵设计通用规范》(JTG D60-2004)。
⑵主要材料及设计参数根据设计文件及规范取值,见表1。
2-1.⑶预应力钢筋按规范中提供的钢绞线参数确定。
⑴荷载取值①一期恒载主要是箱梁自重。
混凝土容重取2。
6t/m3,盖梁按实际断面计取重量.②二期恒载包括防撞护栏、盖板和桥面铺装仅作为恒载施加,不参与结构受力,防撞墙荷载按边梁80%,中梁20%分配,见表1.2-2。
汽车荷载采用公路I级荷载,考虑多车道加载时的横向折减系数为: 5车道折减系数0.6,冲击系数1。
3,汽车短期荷载折减系数0.7,详见附表。
表1。
2—3 活载横向分布系数·体系升温20℃,体系降温—20℃。
⑵荷载组合①短期效应组合②长期效应组合计算结果⑴结构构造及离散模型①盖梁悬臂及跨中横断面图具体构造请参见构造图图—1 9#盖梁悬臂及跨中断面⑵持久状况极限状态抗弯承载能力计算根据《公桥规》第5.1。
5条的规定,桥梁构件的承载能力极限状态计算应满足: γ0M d ≤R式中:γ0-桥梁结构重要性系数;M d -弯距组合设计值; R -构件(抗弯)承载力设计值。
图—2为承载能力计算结果。
从图中可以看出,承载能力验算满足规范要求.图—2 构件纵向抗弯承载能力图 ② 斜截面抗剪承载能力验算根据《公桥规》第5。
盖梁计算原理1、行车方式分单向行驶和双向行驶,默认单幅为双向行驶,双福为单向行驶。
2、横向分布系数由用户控制,可选择杠杆法,偏心受压法等。
3、输出控制可以调整计算书内力输出方式,是柱中截面还是柱子左中右三个截面。
4、当计算桥台盖梁时,盖梁计算模块中的搭板长度为实际长度的0.7倍。
程序把放置在路基上的搭板,模拟成跨径为0.7倍搭板长度的简支梁来计算,这样能比较准确的模拟桥台盖梁所受的活载作用。
5、横向加载方式分为:左偏加载,右偏加载,左右对称加载,中间对称加载。
这四种加载方式基本上可以囊括盖梁截面作用的最不利位置。
6、纵向加载一般车道荷载的集中力都是加载在所要计算的盖梁墩顶处,这样才能获得汽车对应盖梁的最大作用效应。
计算原理:一、根据主梁截面和连接形式计算横向分配系数。
1、计算主梁的抗弯惯性矩和抗扭惯性矩。
主梁根据截面可分为T梁、箱梁、空心板,每种形式又分有悬臂和无悬臂两种,有悬臂的主梁除计算主截面惯性矩外还要单独计算悬臂部分惯性矩。
2、计算横向分配影响线。
根据加载位置可分为支点处和跨中处,一般支点处采用杠杆法,跨中采用偏心受压。
主梁根据连接形式可分为刚接和铰接。
刚性连接考虑时连接部产生的弯矩,采用力法建立线性方程组,通过矩阵计算可获得单位力在任一点处对主梁上任一点产生的影响从而计算出横向分配影响值。
铰接时不考虑结点处的弯矩,从而形成相应的紧缩矩阵,求解该矩阵可计算出横向分配影响值。
二、内力计算内力计算采用有限元计算。
根据最大车道数n,从1列车开始,逐步增大到n列车,分为左偏加载,右偏加载,左右对称加载,中间对称加载几种情况,在每次加载的过程中,按照如下步骤计算列车在该位置时,盖梁上各个有限元节点处的弯矩值和剪力值,这样对应于任意一种加载方式,每个节点能够得到一组弯矩值和剪力值,分别求出所有节点的最大和最小弯矩值、最大和最小剪力值。
从而得到盖梁的内力包络图。
计算方法:1、根据横向影响线,计算横向分配系数。
桥梁盖梁设计与计算,都是直观实用的盖梁设计数据!柱式桥墩是桥梁设计中普遍采用的结构型式。
对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础。
桥梁的跨径、斜度、桥宽、荷载标准,对盖梁设计的影响最大,一般很难完全套用标准图和通用图,所以盖梁设计的标准化程度很低,经常是非标准设计,需要对盖梁进行较多的计算,因此盖梁设计是桥梁设计中的一个关键步骤。
1.盖梁受力特点盖梁承受的主要荷载是由其上梁体通过支座传递过来的集中力,盖梁作为受弯构件,在荷载作用下各截面除了引起弯矩外,同时伴随着剪力的作用。
此外盖梁在施工过程中和活载作用下,还会承受扭矩,产生扭转剪应力。
扭转剪应力数值很小且不是永久作用,一般不控制设计。
由此可见盖梁是一种典型的以弯剪受力为主的构件。
预应力钢筋混凝土盖梁的预应力可以看成是盖梁的外加轴力。
盖梁还会受到横桥向和纵桥向的荷载,但这些荷载一般只用于控制墩柱和基础的设计。
2.盖梁受力组成分析盖梁除了自重荷载之外,主要承受由支座传递过来的上部结构的恒活载。
对不同桥宽、不同跨径简支梁板桥的盖梁内力计算结果进行分析,以双柱式桥墩盖梁墩顶负弯矩为例:盖梁自重所占比例很小,为9%左右;上部恒载占比例很大,为63%左右;而活载只占总荷载的28%左右。
表1为在设计工作中对双柱式桥墩盖梁墩顶内力计算结果的一个归纳。
此表可用来估算盖梁活载内力。
桥梁越宽,活载所占比例越小;上部跨径越小,活载所占比例越大。
3.盖梁的计算要点盖梁的计算要点是如何建立准确而且简化的计算模型。
(1)盖梁平面简化的规定现行《公桥规》规定:多柱式墩台的盖梁可近似地按多跨连续梁计算;对于双柱式墩台,当盖梁的刚度与柱的刚度之比大于5时,可忽略桩柱对盖梁的约束作用,近似地按简支(悬臂)梁计算。
柱顶视为铰支承,柱对盖梁的嵌固作用被完全忽略。
这种计算图式是以往设计实践中用得最多也最普遍的一种。
目前一些盖梁计算程序,如“中小桥涵CAD 系统”等一些平面计算的软件,基本上都是采用这种简化计算模式来分析盖梁的内力。
盖梁计算
2009-10-23 22:28:27| 分类:道路桥梁| 标签:|字号大中小订阅
个人文章,转载请注明。
桥墩桥台盖梁在桥梁结构中广泛应用,其计算也是桥梁设计中经常接触的问题,06年我曾就此专门写过一个ppt总结盖梁的计算,温故知新,贴上来和大家一起交流。
1本文讨论的范围
本文仅对常规的使用方式给出一种盖梁计算的方法供探讨,力求简单、实用,便于掌握。
2概述
盖梁的作用
将上部结构荷载传递到下部,转换受力特点。
盖梁的形式
常见的盖梁多为矩形。
为节省材料根据桥墩盖梁的受力特点,桥墩盖梁也常在悬臂下部切去部分呈变截面状;在多联相连的桥梁中,梁高不等时在伸缩缝位置会出现“L”形盖梁,对多孔简支结构,有时会出现倒
“T”形盖梁。
盖梁的受力特点
盖梁为典型的受弯、受剪连续梁,暂不深究其更深的东西,探讨起来没完了。
采用的计算程序
选用最常用的杆系计算程序作为计算工具,例如gqjs、桥博等,本文选用桥梁博士作为计算工具。
3 盖梁计算
桥梁运营过程中,盖梁承担上部结构传递来的恒载和活载,并转换为竖向力传递给基础。
本文以一普通钢
筋混凝土盖梁为例进行分析,分以下步骤逐步进行。
计算数据准备
1)计算盖梁承受的上部结构恒载:梁重+二期恒载,从桥梁纵向计算结果文件中提取恒载在该墩处的支反
力。
注意:二期恒载主要指铺装、护栏等上部附属结构荷载,本步要计算出各个支座传递给盖梁的恒荷载。
2)计算盖梁上作用的活载:
从桥梁纵向计算结果文件中提取单车道汽车荷载引起的该墩处的支反力,以该支反力作为横向加载的车重。
3)根据上部结构桥面宽度确定横向加载区域。
建模计算
1)根据盖梁构造图对盖梁进行单元离散;
注意:进行单元离散时特征截面及支撑位置需要设置节点,同时确定盖梁上恒荷载作用的位置。
2)根据单元离散图在桥梁博士中建立计算模型,在施工阶段将恒载作用输入,在使用阶段输入活载信息,
输入完毕进行计算。
在桥博的视频教程中,有关于桥博模拟盖梁计算的完整视频,是很好的参考材料。
对于桥博模拟盖梁计算的关键在于如何模拟汽车的横向加载,注意下图中汽车车道数、
横向分布系数中的汽车荷载和横向加载有效区域3处数据的填写。
注意:在使用阶段输入活载信息时,该对话框中下图划线部分的输入需注意。
根据桥博的帮助文件,桥博
在进行横向加载计算时,其荷载效应解释如下:
如果是横向加载,则:(假设汽车车道数输入为3)
如果计入折减系数,则折减系数=(公路技术规范),不计入折减系数,则折减系数=。
汽车效应=三辆汽车加载的效应(每辆汽车的总重为1KN,每轮重1/2KN)x汽车横向分布系数x折减系数。
汽车冲击力=汽车效应x冲击系数。
(此时用户应自己输入汽车冲击系数,因为横向加载不知道桥梁的实际
纵向跨径,但冲击系数是根据纵向跨径计算的。
)
从以上横向加载效应可以看出,将汽车横向分布系数填成纵向加载时单车道对该墩的支反力则模拟了盖梁
上实际活载的作用。
利用计算结果进行设计
1)首先查看计算结果的弯矩、剪力图是否正确,在正确的前提下再查看计算结果;
2)桥梁博士带有估算配筋功能,可先估算出配筋,然后将配筋信息输入截面进行验算,桥博依据规范对各个截面进行承载能力和正常使用状态的验算并给出验算结果;
3)绘制成设计所需图纸,盖梁设计计算完毕。