线路无功补偿方式
- 格式:doc
- 大小:66.00 KB
- 文档页数:18
电力电子• Power Electronics208 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】铁路 电力线路 动态补偿1 铁路电力线路动态无功补偿方式分析充分利用补偿技术对铁路电力线路的电容电流进行合理补偿是确保铁路能够持续、稳定的运行的关键所在。
现阶段存在集中补偿、分散补偿、固定补偿、动态补偿四种补偿方式。
但是,因为高速铁路电力供电系统在不同时间会有不同的运行方式,不同的运行方式会造成负荷电流的变化,而电缆线路的电流也会随着负荷电流的变化而变化,所以,我国目前采用的是固定补偿和动态补偿相结合的方式,即固定补偿是在沿着铁路线路建立的作为沿线信号中继站的箱式变电站安装并联电抗器,动态补偿是在电力铁路线路的变电站中安装动态补偿装置。
目前高速铁路电力供电系统中采用的动态无功补偿方式有以下几种:1.1 分组投切电抗器的补偿方式分组投切电抗器的补偿方式所利用到的装置是成套补偿装置、计算机、真空接触器、大数据分析等技术。
其中成套补偿装置是3个不同容量的电抗器;计算机是分析功率因素、线路无功情况对成套补偿装置进行控制;真空接触器是接收到计算机命令,对电抗器进行自动投切;大数据技术是根据无功补偿数据做出合理化的投切方案。
分组投切电抗器的补偿方式是出现无功-大数据做出优化方案-计算机根据方案发出命令-真空接触器进行自动投切。
分组投切电抗器补偿方式可以设置自动操作,用计算机不仅可以控制分组投切装置的动作和次序,还可以设定功率因数,这样不仅避免了铁路电力线路动态无功补偿方案文/曹永亮投切过程中振荡情况的出现,还保证了装置动作的精准性,有利于系统可靠性的提高。
1.2 相控电抗器的补偿方式相控电抗器的补偿方式,可以自动跟踪供电系统电压和无功的变化,通过控制晶闸管的导通角来连续调节电抗器的电流,把功率因数补偿至要求的范围之内,从而实现无功补偿。
无功补偿的多种方式及各自的优缺点有哪些无功补偿是指通过投入无功功率来改善电力系统的功率因数和电压质量。
无功补偿的多种方式根据实现的方法和装置的种类,可以分为静态无功补偿和动态无功补偿。
下面将对这两种方式及其各自的优缺点进行详细说明。
静态无功补偿常见的方式有电容补偿、电抗补偿和混合补偿等。
电容补偿主要通过并联接入电容器的方式进行,它能够提高电力系统的功率因数,提高电源的容量利用效率,减小线路功率损耗,并改善电压的稳定性。
电容补偿的优点有:1.无需响应时间,能实现快速无功补偿;2.功率因数改善明显,系统稳定性较好;3.维护成本低,装置体积小;4.可靠性高,寿命长。
但电容补偿也存在一些缺点:1.稳态补偿效果受负荷变化的影响较大;2.补偿效果受谐波干扰的限制;3.对电源电压波动敏感,需配合电压调整设备。
电抗补偿主要通过串联电抗器的方式实现,它能够提高电力系统的电压质量,改善电网稳定性,减小潮流损耗,提高电能质量。
电抗补偿的优点有:1.对电源电压波动不敏感,较适合对电力系统进行长距离补偿;2.补偿稳态性能好,可适用于任意负荷;3.能抵抗系统谐波干扰。
电抗补偿的缺点是:1.响应速度较慢,不能实现快速的动态无功补偿;2.在低频部分容易产生谐振问题;3.需要较大的设备体积和投资成本。
混合补偿通常综合了电容补偿和电抗补偿的优点,通过同时串联接入电容器和并联接入电抗器的方式进行补偿。
混合补偿的优点有:1.能够综合利用电容补偿和电抗补偿的优点,使补偿效果更好;2.适用于各种负荷类型和负荷变化的场合;3.能够抑制谐波,提高电压质量;4.稳态和动态补偿效果均较好。
混合补偿的缺点是:1.需要更大的设备容量,增加了投资成本;2.响应时间相对较长。
动态无功补偿是指通过高速的开关装置来实现无功功率的补偿。
常见的动态无功补偿装置包括静态无功发生器(SVG)、静止补偿装置(SSC)和可变补偿器(VSC)等。
动态无功补偿的优点有:1.响应速度极快,可以实现毫秒级的无功补偿;2.能够实现连续调整补偿功率,适应负荷变化;3.能够抑制谐波,提高电压质量;4.对电源电压波动不敏感。
无功功率补偿的常见方式方法
1、无功功率补偿的常见方法
(1)并联电容器组
电力电容器是一种静止的无功补偿设备。
它的主要作用是向电力系统供应无功功率,提高功率因数。
采纳就地无功补偿,可以削减输电线路输送电流,起到削减线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。
(2) 静止无功补偿器
静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。
它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。
电容器可发出无功功率(容性的),可控电抗器可汲取无功功率(感性的)。
通过对电抗器进行调整,可以使整个装置平滑地从发出无功功率转变到汲取无功功率(或反向进行),并且响应快速。
(3) 同步补偿
运行于电动机状态,不带机械负载也不带原动机,只向电力系统供应或汲取无功功率的同步电机。
用于改善电网功率因数,维持电网电压水平。
2、无功功率补偿的方式
(1)、集中补偿:装设在企业或地方总变电所6~35KV母线上,可削减高压线路的无功损耗,而且能提高本变电所的供电电压质量。
(2)、分散补偿:装设在功率因数较低的车间或村镇终端变、配电所的
高压或低压母线上。
这种方式与集中补偿有相同的优点,但无功容量较小,效果较明显。
(3)、就地补偿:装设在异步电动机或电感性用电设备四周,就地进行补偿。
这种方式既能提高用电设备供电回路的功率因数,又能转变用电设备的电压质量。
无功补偿的补偿方式优缺点无功功率补偿,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的特别紧要的位置。
合理的选择补偿装置,可以做到最大限度的削减网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
今日我带大家了解13种无功补偿方式,各自有什么优点和缺点。
(1)同步调相机基本原理:同步电动机无负荷运行,在过励时发出感性无功;在欠励时汲取感性无功;重要优点:既能发出感性无功,又能汲取感性无功;重要缺点:损耗大,噪音大响应速度慢,结构维护多而杂;适用场合:在发电厂尚有少量应用。
(2)就地补偿基本原理:一般将电容器直接与电动机变压器并联,二者共用1台开关柜;重要优点:末端补偿,能最大限度的降低线损;重要缺点:台数较多,投资量大;适用场合:水厂、水泥厂应用较多;(3)集中补偿基本原理:集中装设在系统母线上,一般设置单独的开关柜;重要优点:可对整个变电所进行补偿,投资相对较小;重要缺点:一般为固定补偿,在负载低时可能显现过补偿;适用场合:适用于负载波动小的系统;(4)自动补偿(机械开关投切电容器)基本原理:采纳机械开关(接触器、断路器)等依据功率因数掌控器的指令投切电容器;重要优点:能自动调整无功出力,使系统无功保持平衡,技术成熟,占地小、造价低;重要缺点:响应时间较慢,受电容器放电时间限制;适用场合:目前主流补偿方式,充足大多数行业用户需求;(5)晶闸管投切电容器基本原理:采纳晶闸管阀组依据功率因数掌控器的指令过零投切电容器;重要优点:响应速度快,无涌流,无冲击;重要缺点:占地面积大,造价高;适用场合:多用于港口等负荷变化快速的场合;(6)晶闸管掌控电抗器基本原理:一般由固定并联电容器和晶闸管掌控的并联电抗器并联构成,通过更改晶闸管导通角更改电感电流,从而掌控整套装置的无功输出;重要优点:响应速度快,无级调整,既能补偿容性无功,又能补偿感性无功;重要缺点:占地面积大,造价高,同时对大多企业用户而言,不需要感性无功;适用场合:多用于钢铁、电气化铁路和输变电系统;(7)磁控电抗器基本原理:通过可控硅掌控励磁电流的大小和铁芯饱和度更改电感电流,从而掌控整套装置的无功输出;重要优点:动态响应,无级调整,双向补偿,晶闸管耐压低,无须多级串联,产生谐波小;重要缺点:响应时间较TCR稍慢,噪声大;适用场合:在高压系统中占有优势;(8)串联补偿基本原理:串联电容器组用来补偿输电线路的电感,以提高线路的输电本领和稳定性。
电缆线路无功补偿
电缆线路无功补偿主要是为了解决电缆线路的无功问题。
电缆线路由于其电容大,整体阻抗表现为容性,因此会向系统输送无功。
无功补偿通常采用的方法主要有低压个别补偿、低压集中补偿和高压集中补偿。
在110kV电网中,有功的流动主要与功角相关,无功的流动主要与电压相关。
无功从电压高处流向电压低处。
当线路重载时,电压从电源流向负荷侧;轻载或者空载时,线路也充当了无功电源的角色,无功可能从负荷侧流向电网。
对于城区110kV电缆线路线损,可以通过潮流计算推导出其数学公式,并建立以线损最低为目标的城区110kV电缆线路末端最优无功补偿容量的数学模型。
研究发现,YJLW03-1×800型110kV电缆线路不论负载率为多少,线路末端消耗适当的感性无功功率均有利于降低线损。
电缆线路无功补偿是一个复杂的过程,需要根据具体情况进行选择和配置,以保证电力系统的稳定运行和电能质量。
无功补偿方式无论是工业负荷还是民用负荷,大多数均为感性。
所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。
如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。
由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。
而由补偿电容器就地提供无功功率,就可以防止由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。
理论上而言,无功补偿最好的方式是在哪里需要的无功,就在哪里补偿,整个系统将没有无功电流的流动。
但在实际电网当中这是不可能做到的。
因为无论是变压器、输电线路还是各种负载,均会需要无功。
所以实际电网当中就补偿装置的安装位置而言有如下几种补偿方式:①变电所集中补偿;②配电线路分散补偿;③负荷侧集中补偿;④用户负荷的就地补偿。
对于低压配网无功补偿,通常采用负荷侧集中补偿方式,即在低压系统(如变压器的低压侧)利用自动功率因数调整装置,随着负荷的变化,自动地投入或切除电容器的部分或全部容量。
1.补偿容量确实定考虑到动力类负荷,估计配变的功率因数在0∙75左右,设计在满负荷状态下功率因数提高到0.90。
假设配变容量为S,补偿前有功功率、无功功率和功率因数角分别为P1.Qh和e1,补偿后有功功率、无功功率和功率因数角分别为P2、Q2和Φ2,Qb为需补偿的容量。
由此可得出应补偿的容量为:Qb=Q1-Q2=S×sinΦI-SXsinΦ2=SX(0.661-0.436)=0.225S补偿百分比为:η%=Qb∕S×100%=22.5%根据电网的运行经验可以得出,补偿容量一般为变压器额定容量的20%~30%o2.补偿方式的选择补偿方式分为三相共补、分相补偿和混合补偿(即共补加分补),一般而言当需要补偿的容量超过60kvar时,采用混合补偿是比较合适的,即可照顾到三相之间的不平衡,与分相补偿的效果完全一样,又可以降低成本。
1 绪论1.1概述无功功率补偿,简称无功补偿,在电子供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素[3]。
在配电网中电源供给负载的电功率有有功功率和无功功率两种,有功功率是用电设备将电能转换成其他形式能量以保证正常运行所需的电功率,而无功功率也不是无用的功率,在电网中作用也很大。
接在电网中的大多数用电设备是利用电磁感应实现能量转换和传递的。
如发电机、变压器、电动机等,就是通过磁场来完成机械能与电能之间的转换的。
以异步电动机为例,电机从电网吸收的大部分电功率转换成了机械功率从转轴上输出给了机械设备,这部分功率就是有功功率;而电动机还要从电网吸收另外一部分电功率,用来建立交变磁场,这部分功率不是被消耗,而是在电网与电动机之间不断的进行交换(吸收与释放),这就是无功功率。
在电网中没有纯阻性的设备,因而功率因数都在01之间,而大部分用电设备如电动机、变压器等在运行时因电磁感应原理为建立感应磁场都需要Q>0的无功功率,此外电网中线路线损、变压器自损(铁损、铜损等)也增加不少无功,无功补偿就是利用电容提供Q<0的无功来提高功率因数,减少电网输送的无功功率,也就是在电能计量表上减少了电能的消耗,达到节能、降损的目的。
因此,解决无功补偿问题,对提高电能质量,降低电网损耗,节约能源有着极为重要的意义。
1.2课题研究背景随着科学技术发展和人民生活水平的提高,各种类型用电设备得到了广泛的应用,对电压质量的要求也越来越高。
但是,由于配电网结构,运行变化等原因,我国配电网损耗,电压合格率等技术指标与发达国家相比有较大差距。
由于电压不合格等原因造成用户电器烧毁的现象仍然存在,而网损过高使得生产的宝贵电能白白浪费,并且影响电力企业的经济效益。
配电网中常用的无功补偿方式有哪些无功补偿可以改善电压质量,提高功率因数,是电网采用的节能措施之一。
配电网中常用的无功补偿方式为:在系统的部分变、配电所中,在各个用户中安装无功补偿装置;在高低压配电线路中分散安装并联电容机组;在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台电动机附近安装并联电容器,进行集中或分散的就地补偿。
1、就地补偿对于大型电机或者大功率用电设备宜装设就地补偿装置。
就地补偿是最经济、最简单以及最见效的补偿方式。
在就地补偿方式中,把电容器直接接在用电设备上,中间只加串熔断器保护,用电设备投入时电容器跟着一起投入,切除时一块切除,实现了最方便的无功自动补偿,切除时用电设备的线圈就是电容器的放电线圈。
2、分散补偿当各用户终端距主变较远时,宜在供电末端装设分散补偿装置,结合用户端的低压补偿,可以使线损大大降低,同时可以兼顾提升末端电压的作用。
3、集中补偿变电站内的无功补偿,主要是补偿主变对无功容量的需求,结合考虑供电压区内的无功潮流及配电线路和用户的无功补偿水平来确定无功补偿容量。
35KV变电站一般按主变容量的10%-15%来确定;110KV变电站可按15%-20%来确定。
4、调容方式的选择(1)长期变动的负荷对于建站初期负荷较小,以后负荷逐渐增大的情况,组装设无载可调容电容器组。
户外安装时可选用可调容集合式电容器;户内安装时可选用可调容柜式电容器装置。
其基本原理为将电容器按二进制方式分成二组,通过分接开关或隔离开关选择投切组合,可以实现三档容量可调。
随着负荷的改变,可以人工断电后改变投切组合满足某一时间段的无功平衡。
这种场合可以装设无功自动调容装置,该装置可以满足无人值守综合自动化的要求。
(3)短时段内负荷频繁变化的场合该场合宜装可快速跟踪的瞬态无功补偿装置。
由于电容器每次投切前却必须保证电容器没有残存的电荷,而电容器放电即使通过放电线圈亦需要数秒的时间,所以高压瞬态无功补偿装置(也称SVC)一般都是固定补偿最大容量的电容器,同时并联一组容量可调的电抗器,通过快速调整电抗器的输出无功,从而达到无功瞬态平衡的目的。
输电线路无功补偿方法分析摘要:随着我国社会经济的不断发展,人们的生活水平有了显著的提高。
对于用电的需求也变得越来越多样化,这对电力企业来说,属于一种新的发展机遇与挑战。
用电企业只有不断进行优化与创新,才能在新时期的背景下满足人们的用电需求,并创建良好的供电环境。
在电力企业的供电系统中,输电线路的无功补偿十分关键。
只有确保输电线路无功补偿装置的正常运转,才能确保电力供电系统的供电质量。
本文先概括了输电线路无功补偿的原理,并从多方面阐述了输电线路无功补偿的方法。
希望本文能够具有一定的参考价值。
关键词:输电线路;无功补偿;方法分析引言:输电线路的无功补偿就是无功功率的补偿,会对电力供电系统的电网功率起到决定性的作用。
输电线路无功补偿能够有效提高电力企业供电的效率和质量,使得企业能够朝着高质量的方向发展。
但是由于电力企业以往在运行的过程中,都只关注电力供电系统本身,导致输电线路的无功补偿难以发挥真正的作用。
输电线路无功补偿的装置也无法得到合理的选择,会对电网的质量等方面造成影响。
甚至有可能会导致电压的大幅度波动,危害到人民群众的生命财产安全。
这也足以看出输电线路无功补偿方法的重要性,需要结合实际情况选择适当的方式。
1.输电线路无功补偿原理无功功率补偿,又称无功补偿,在电子供电系统中可以起到增加所供电的设备功率因数的作用,从而减少对电源变压器和输送线的损失,从而增加电能利用率,并改变电能环境。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,若选择或使用不当,可能导致供电系统,负载变化,谐波增加等一系列影响。
通常,在工业系统中所说的无功负荷主要是指感性无功负载,把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当感性无功负载吸收能量时,容性电流负载也在接受电能,而能量则在容性电流负载与感性负荷之间传递,这样容性电流负荷将所吸收的在无功功率控制与可从容性负荷装置所输出的在无功功率控制器中进行补偿,而无功功率控制器也就地平衡掉,可以减少线路损失,增加带载负荷,减少电流损失以及减少发电厂的供电负担,这也便是劳而无功补偿的基础原理[1]。
编号X X X X 学院论文课题名称线路无功补偿方式学生姓名 XXX学号20XXX0XXXXXX专业 XXX技术班级(X)指导教师 XXX20XX年X月XX日结课论文目录1无功补偿按投切方式分类2功功率补偿无控制器3滤波补偿系统4配电网无功补偿的主要方式4.1配电线路补偿4.2随机补偿4.3随器补偿4.4跟踪补偿5无功补偿常出现的问题6低压配电网中常用的无功补偿方式全文共17 页10660字线路无功补偿方式姓名 XXX (学号:XXXXXXXXX)(院系:XXXX学院XX系班级:XX级XXXX术X班内蒙古 XX区 012000)指导教师:XX摘要:交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功.也就是说没有消耗电能,即为无功功率.当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿. 无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素关键词:补偿按投切方式 ; 功功率补偿无控制器; 滤波补偿系统 ;无功补偿的主要方式; 低压配电网中常用的无功补偿方式1按投切方式分类1.1 延时投切方式延时投切方式即人们熟称的"静态"补偿方式。
这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。
当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。
通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
下面就功率因数型举例说明。
当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。
当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。
当检测到超前信号如cosΦ>0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。
要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。
如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为45分钟,切除也这样。
在这段时间内无功损失补只能是逐步到位。
如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。
当控制器监测到cosΦ〈0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。
是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。
1.2 瞬时投切方式瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。
通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。
动态补偿方式作为新一代的补偿装置有着广泛的应用前景。
现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生产出很不错的装置。
当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。
1.2.1动态补偿的线路方式1 LC串接法原理,这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。
从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。
从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。
既然有这么多的优点,应该是非常理想的补偿装置了。
但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被广泛采用或使用者很少。
2采用电力半导体器件作为电容器组的投切开关,这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。
作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。
其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。
当解决了保护问题,作为电容器组投切开关应该是较理想的器件。
动态补偿的补偿效果还要看控制器是否有较高的性能及参数。
很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。
当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。
需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。
当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。
关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。
元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。
1.3 混合投切方式实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。
这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。
补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。
还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。
在无功功率补偿装置的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。
对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。
一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装置能完成这个过程。
2 无功功率补偿控制器无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。
选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。
控制器是无功补偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。
十几年来经历了由分立元件--集成线路--单片机--DSP芯片一个快速发展的过程,其功能也愈加完善。
就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。
在选用时需要注意的另一个问题就是国内生产的控制器其名称均为"XXX无功功率补偿控制器",名称里出现的"无功功率"的含义不是这台控制器的采样物理量。
采样物理量取决于产品的型号,而不是产品的名称。
2.1 功率因数型控制器功率因数用cosΦ表示,它表示有功功率在线路中所占的比例。
当cosΦ=1时,线路中没有无功损耗。
提高功率因数以减少无功损耗是这类控制器的最终目标。
这种控制方式也是很传统的方式,采样、控制也都较容易实现。
"延时"整定,投切的延时时间,应在10s-120s范围内调节 "灵敏度"整定,电流灵敏度,不大于0-2A 。
投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。
过压保护设量显示设置、循环投切等功能这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。
即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。
举例说明:设定投入门限;cosΦ=0.95(滞后)此时线路重载荷,即使此时的无功损耗已很大,再投电容器组也不会出现过补偿,但cosΦ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。
2.2 无功功率(无功电流)型控制器无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。
一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下功能:四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cosΦ、U、I、S、P、Q及频率。
由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装置的效果发挥得淋漓尽致。
如线路在重负荷时,那怕cosΦ已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。
采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。
当然,不是所有的无功型控制器都有这么完备的功能。
国内的产品相对于国外的产品还存在一定的差距。
2.3用于动态补偿的控制器对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。
由于这类控制器也都基于无功型,所以它具备静态无功型的特点。
目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。