浅谈10KV线路的无功补偿
- 格式:doc
- 大小:110.50 KB
- 文档页数:4
10kV配电网低压侧无功补偿常见的问题及解决办法1. 引言1.1 介绍10kV配电网低压侧无功补偿的重要性和普遍存在的问题10kV配电网低压侧无功补偿是电力系统中非常重要的一个环节。
在电力系统中,由于电动机、变压器等设备的存在,会导致电网中产生大量的无功功率,使得电网中的功率因数下降,影响电网的稳定运行。
低压侧无功补偿是为了提高电网的功率因数,维护电网的稳定运行而设立的。
在10kV配电网中,低压侧无功补偿往往存在一些普遍问题。
最常见的问题包括:无功电流过大导致设备发热、设备寿命缩短;无功补偿容量不足导致电网功率因数仍然较低;无功补偿设备故障频繁导致停电等问题。
这些问题严重影响了电网的供电质量和稳定性,需要及时解决。
加强10kV配电网低压侧无功补偿的重要性不能被忽视。
只有合理规划和维护好无功补偿系统,才能确保电网的正常运行和稳定性。
通过对低压侧无功补偿系统的原理、常见问题及解决办法的深入了解,可以更好地指导实际工作中的操作和管理,从而提升电网的运行效率和可靠性。
2. 正文2.1 低压侧无功补偿的原理及作用低压侧无功补偿是指在10kV配电网系统中,通过接入无功补偿设备,来提高系统的功率因数,降低系统的无功功率,以改善系统的电能质量和稳定性。
其原理主要是通过调节无功功率的大小和方向,来使系统中的总功率因数达到设定值,提高系统的运行效率和质量。
1. 改善电网功率因数:通过补偿无功功率,使系统的功率因数接近1,减少因谐波而导致的能量损失和电力系统的稳定性问题。
2. 提高电能质量:降低电网中的电压损耗和电流谐波,减少线路和设备的过载,提高供电质量和可靠性。
3. 节约能源和降低成本:减少系统中的无功功率流动,减少输电损耗,节约能源的同时也减少了电力系统运行的成本。
低压侧无功补偿对于提高电网的运行效率、稳定性和经济性都具有重要作用。
合理选择和配置无功补偿设备,定期检查和维护设备,是保障电网正常运行和供电质量的关键措施。
浅谈10KV线路无功补偿摘要:现代化进程的加快,带动了电力行业的快速兴起,城市供电基础设施的建设也不断完善。
因而近些年以来,如何有效改善电压质量以提高运行效率一直是供电部门所仔细研究的问题之一。
本文主要从10kv线路无功补偿系统的影响与必要性出发,分析10kv 线路无功补偿的补偿方式以及安装地点的选择,进而对无功补偿的实际节能方案进行理论性探讨。
关键词:10kv线路;无功补偿;补偿方式;安装地点;实际节能方案中图分类号:tm726.4 文献标识码:a 文章编号:1001-828x (2013)06-0-01一、对10kv线路方面无功补偿系统的阐述从通常情况下来讲,所谓10kv线路方面无功补偿系统,主要指的是通过优化原有的管理系统以便供电部门能够随时对全线路无功电压的各种状况进行了解与掌握,继而在分析整体线路的负荷分布以及电压是否合格的基础上,能够促使供电部门有效提高电能数据和检测、计量以及检测整线路数据的准确程度。
另一方面,当前10kv线路方面的无功补偿主要有在变电站10kv母线按主变容量的15%左右集中安装补偿电容器组,在用户配变低压侧分散安装低压补偿电容器柜,在10kv线路若干符合中心处或线路2/3处集中安装10kv线路补偿电容器组等三种补偿方式。
从另一层面上来讲,以上第三种补偿方式较之前两种具有补偿装置集中、减少线路损耗、设备利用率高以及便于管理和维护等多种优点,因而在当前供电企业当中广泛应用。
而无功补偿通过对无功功率进行补偿能够提升电网运行过程中的有功功率比例,亦能够有效降低供电企业的生产成本与经济效率。
往往供电企业在10kv线路方面安装无功补偿装置会对配网损耗以及供电电压产生一定作用与影响,因而降低线路损耗与提高供电速率对于供电企业与城镇居民而言是至关重要的。
所以,在10kv线路方面安装无功补偿装置呈现出了必要性。
二、补偿方式和安装地点的选择(一)补偿方式的选择。
现阶段,我国绝大多数供电企业对于10kv 线路的补偿一般采用柱上安装固定式电容器的方式来进行,并且为了避免过补而一般按照线路的最小补偿量或者采用“三分之二”法则来确定电容器容量的。
1 绪论1.1概述无功功率补偿,简称无功补偿,在电子供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素[3]。
在配电网中电源供给负载的电功率有有功功率和无功功率两种,有功功率是用电设备将电能转换成其他形式能量以保证正常运行所需的电功率,而无功功率也不是无用的功率,在电网中作用也很大。
接在电网中的大多数用电设备是利用电磁感应实现能量转换和传递的。
如发电机、变压器、电动机等,就是通过磁场来完成机械能与电能之间的转换的。
以异步电动机为例,电机从电网吸收的大部分电功率转换成了机械功率从转轴上输出给了机械设备,这部分功率就是有功功率;而电动机还要从电网吸收另外一部分电功率,用来建立交变磁场,这部分功率不是被消耗,而是在电网与电动机之间不断的进行交换(吸收与释放),这就是无功功率。
在电网中没有纯阻性的设备,因而功率因数都在01之间,而大部分用电设备如电动机、变压器等在运行时因电磁感应原理为建立感应磁场都需要Q>0的无功功率,此外电网中线路线损、变压器自损(铁损、铜损等)也增加不少无功,无功补偿就是利用电容提供Q<0的无功来提高功率因数,减少电网输送的无功功率,也就是在电能计量表上减少了电能的消耗,达到节能、降损的目的。
因此,解决无功补偿问题,对提高电能质量,降低电网损耗,节约能源有着极为重要的意义。
1.2课题研究背景随着科学技术发展和人民生活水平的提高,各种类型用电设备得到了广泛的应用,对电压质量的要求也越来越高。
但是,由于配电网结构,运行变化等原因,我国配电网损耗,电压合格率等技术指标与发达国家相比有较大差距。
由于电压不合格等原因造成用户电器烧毁的现象仍然存在,而网损过高使得生产的宝贵电能白白浪费,并且影响电力企业的经济效益。
浅谈k v线路的无功补偿 The pony was revised in January 2021浅谈10KV线路的无功补偿电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件,没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动,但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。
因此,如何减少无功电力的长距离输送,已成为电力行业一个关键性的问题。
无功补偿的原则之一:集中补偿与分散补偿相结合,以分散补偿为主。
这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。
由于用户端随机、随器、随荷补偿的不完全或未进行补偿,线路上仍有大量的无功负荷在传输。
采用在10千伏线路上并联高压电容器实现就近补偿,以降低线路传输电流,降低线路损耗,这就是线路无功补偿。
1.线路补偿容量的确定线路补偿电容器装置一般安装在室外电线杆上,没有自动投切装置,所以只能进行固定补偿。
为此选定的电容器容量必须为线路流动的最小无功负荷,否则会发生无功倒送。
所以要进行线路无功补偿就必须实测低谷时期无功负荷,然后确定无功补偿容量。
2. 线路电容器安装地点及补偿容量无功负荷沿线路均匀分布根据理论计算,从降低线损的角度看,以下补偿容量和安装位置为最佳值:Q为该线最小负荷时无功功率值,L为线路总长度。
C0=1/3Q 由变电所实施无功补偿。
C1=2/3QC0=1/5Q 由变电所实施无功补偿。
C1=C2=2/5QC0=1/7Q 由变电所实施无功补偿。
C1=C2=C3=2/7Q电容器的安装组数、容量及线损电量下降情况注:本表中线损电量下降率未考虑有功负荷的影响由表可知:配电线路上电容器的安装组数越多,降损效果越大,但这给运行维护带来不便,相应地增加了工程投资,而且随安装组数增加,对应于增加单位补偿容量所得到的无功线损下降率减少,因此,一般对于均匀分布负荷的配电线路,以安装一组补偿电容器为宜,最多两组就足够了。
浅谈10KV线路的无功补偿
电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件,没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动,但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。
因此,如何减少无功电力的长距离输送,已成为电力行业一个关键性的问题。
无功补偿的原则之一:集中补偿与分散补偿相结合,以分散补偿为主。
这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。
由于用户端随机、随器、随荷补偿的不完全或未进行补偿,线路上仍有大量的无功负荷在传输。
采用在10千伏线路上并联高压电容器实现就近补偿,以降低线路传输电流,降低线路损耗,这就是线路无功补偿。
1.线路补偿容量的确定
线路补偿电容器装置一般安装在室外电线杆上,没有自动投切装置,所以只能进行固定补偿。
为此选定的电容器容量必须为线路流动的最小无功负荷,否则会发生无功倒送。
所以要进行线路无功补偿就必须实测低谷时期无功负荷,然后确定无功补偿容量。
2. 线路电容器安装地点及补偿容量
2.1无功负荷沿线路均匀分布
根据理论计算,从降低线损的角度看,以下补偿容量和安装位置为最佳值:
2.1.1只安装一组电容器
Q为该线最小负荷时无功功率值,L为线路总长度。
C0=1/3Q 由变电所实施无功补偿。
C1=2/3Q
2.1.2安装两组电容器
C0=1/5Q 由变电所实施无功补偿。
C1=C2=2/5Q
2.1.3安装三组电容器
C0=1/7Q 由变电所实施无功补偿。
C1=C2=C3=2/7Q
电容器的安装组数、容量及线损电量下降情况
注:本表中线损电量下降率未考虑有功负荷的影响
由表可知:配电线路上电容器的安装组数越多,降损效果越大,但这给运行维护带来不便,相应地增加了工程投资,而且随安装组数增加,对应于增加单位补偿容量所得到的无功线损下降率减少,因此,一般对于均匀分布负荷的配电线路,以安装一组补偿电容器为宜,最多两组就足够了。
配电线路上无功补偿装置可按以下原则进行配置:
⑴在负荷较大的分支线上,各配置一组电容器,安装地点在距支线T接点2/3处,
补偿容量为支线无功负荷平均值的2/3。
⑵在干线距首端2/3处配置一组电容器,容量为经支线补偿后全线剩余无功负荷
的2/3。
2.2无功负荷沿线路非均匀分布
在一个供电区内,各条线路的负荷往往是不均匀的,不能机械套用以上公式和经验数据,而应具体计算具体确定补偿方案。
线路补偿重点是对长线路(干线超过12kM的)负荷大(超过经济电流密度)的配电线路进行补偿,对于那些负荷小的线路(铁损70%以上的)暂不宜安装,以防深夜电压过高进一步增加铁损,以致增加线损。
3. 线路电容器补偿装置及安装要求
线路电容器补偿装置主要包括:跌落式熔断器、阀型避雷器、三相式电容器、支架等。
具体安装要求有:
(1)每处安装电容器容量不超过120kVAR,采用跌落式熔断器作为短路保护和拉、合闸用,采用阀型避雷器作为过电压保护。
(2)电容器组与配变应分开安装,以防止铁磁谐振过电压过电流和当变压器轻载时,由于铁磁谐振发生的相序改变,造成变压器二次侧所带的电动机反转。
另外两组电容器之间距离大约1km。
(3)为了保证电容器正常运行,应注意在轻负荷情况下电容器安装地点的运行电压不超过电容器额定电压的1.1倍。
同时采取适当措施,减少日光直晒杆上的电容器,特别注意:不要把电容器装于密闭的铁箱中再置于电杆之上,这种方式的电容器事故率很高。
4. 采用线路电容器补偿的优点
在配电线路上装设电容器。
具有投资省、见效快、投运时间长和降损效果显著的优点,而且安装简便,特别适应于农村配电线路长、负荷点多的供电状况。
中压网以10KV线路补偿和配电变压器低压侧集中补偿为重点,是农网全网无功优化补偿策略的主要体现。
合理选择10KV线路无功补偿位置和补偿容量,不仅能改善农网功率因数和电压质量,而且可以使无功负荷就地平衡,提高农网的经济运行水平。