阳离子聚电解质聚二甲基二烯丙基氯化铵
- 格式:doc
- 大小:19.00 KB
- 文档页数:4
标题:聚二烯丙基二甲基氯化铵的合成及其应用研究1. 引言聚二烯丙基二甲基氯化铵是一种重要的离子聚合物,具有广泛的应用前景。
其合成方法和应用研究对于相关领域的发展具有重要意义。
2. 聚二烯丙基二甲基氯化铵的合成方法2.1 离子聚合法合成离子聚合法是一种常见的合成聚二烯丙基二甲基氯化铵的方法,通过将二甲基氯化铵单体进行聚合反应,得到目标产物。
2.2 溶液共聚合法合成溶液共聚合法是另一种常用的合成方法,通过将二烯丙基二甲基氯化铵和其他单体在溶液中进行共聚合反应,可以得到聚二烯丙基二甲基氯化铵及其共聚物。
3. 聚二烯丙基二甲基氯化铵的应用研究3.1 高分子电解质聚二烯丙基二甲基氯化铵具有优良的离子传输性能,可用作高分子电解质材料,用于锂离子电池、燃料电池等领域。
3.2 抗菌材料由于聚二烯丙基二甲基氯化铵具有良好的抗菌性能,可以将其用于医疗器械、防护服等抗菌材料的制备。
3.3 油田用高分子材料聚二烯丙基二甲基氯化铵可以作为油田用高分子材料,用于粘土稳定剂、破乳剂等方面,具有良好的应用前景。
4. 个人观点和理解聚二烯丙基二甲基氯化铵作为一种重要的聚合物材料,在多个领域具有广泛的应用前景。
在合成方法和应用研究方面,还有许多待探索和完善的地方,希望能够有更多的科研人员投入到相关领域的研究中,推动相关技术的进步。
5. 总结聚二烯丙基二甲基氯化铵是一种重要的离子聚合物,其合成方法和应用研究对于多个领域的发展具有重要意义。
通过不断探索和研究,相信聚二烯丙基二甲基氯化铵在未来会有更广泛的应用和发展空间。
至此,以上就是对于聚二烯丙基二甲基氯化铵的合成及其应用研究的深度解析。
希望本文的内容能够为您提供一定的帮助,并带给您新的启发。
6. 目前的研究状况目前,聚二烯丙基二甲基氯化铵的合成方法和应用研究已取得了一定的进展,但仍存在一些问题和挑战。
在合成方法方面,目前存在着一些工艺上的不足,如反应条件不够温和、产物纯度不高、反应效率较低等问题,需要进一步优化和改进合成工艺。
聚二甲基二烯丙基氯化铵的合成及水处理絮凝效能发表时间:2020-08-24T16:53:17.067Z 来源:《基层建设》2020年第9期作者:秦雅君[导读] 摘要:在进行单体二甲基二烯丙基氯化铵的制备中,可以选择在水溶液中进行一步法工艺或者是使用有机溶剂和过量碱的二步法工艺。
中海油(天津)油田化工有限公司天津市 300452摘要:在进行单体二甲基二烯丙基氯化铵的制备中,可以选择在水溶液中进行一步法工艺或者是使用有机溶剂和过量碱的二步法工艺。
选择一步法工艺虽然较为简单,,仅仅适合于作为工业上的原料进行使用;选择二步法工艺操作起来较为复杂,适合于实验室的合成,但是用二步法工艺产生的单体杂质比较少。
关键词:聚二甲基二烯丙基氯化铵;合成;水处理;絮凝效能1聚二甲基二烯丙氯化铵的水处理絮凝效能1.1实验方法第一步:将一定量和一定浓度的二甲胺溶液、氢氧化钠溶液和总配比量一半的烯丙基氯加入500mL容积并配有回流冷凝装置的三颈瓶中,置于恒温水浴,在磁力搅拌下反应一定时间,得油水两相,以分液漏斗分出油相即为叔胺,加入一定量的固体氢氧化钠,经一定时间干燥脱水后分离.第二步:将上述干燥后的叔胺与等物质量的烯丙基氯加入一定体积的丙酮中,在常温下静置,得无色针状晶体即季胺盐单体.第三步:采用自由基溶液聚合法聚合:用上述方法制得的单体配成一定浓度的水溶液,以复合引发剂引发,在氮气保护下使之聚合.1)实验过程进行实验前,先将实验相关的设备都准备和调试好,然后制备二甲基二烯丙基氯化铵。
首先,在具有回流冷凝管的三颈烧瓶中加入二甲胺,保证5℃条件下进行电磁搅拌,并利用百里香酚酞作为指示剂[3]。
然后,在指示剂的颜色没有发生改变的条件下,在两个小时内进行交替滴加等量的水洗提纯后的烯丙基氯和氢氧化钠。
最后,等待约1.5h后,使其能够充分反应,再使用分液漏斗进行分液,加入等体积的烯丙基氯和两倍体积丙酮于上层的氢氧化钠干燥大致两个小时后的油相物中,将温度调到45℃,两个小时后会发现在丙酮中会析出白色的晶体,再过两个小时后会在丙酮中得到晶形的白色单体。
头发护理解决方案阳离子表面活性剂--聚季铵盐-6液剂头发失去自然光泽?总有静电?毛鳞片翘起,不易梳理?······产品延展性不好?保湿效果不好?肌肤无柔软光滑体验感?······关于阳离子表面活性剂,你知道多少?机理?影响因素?种类?用量……发展历史1.早期,调理洗发水由阴离子表面活性剂和油质原料配制而成,油质原料沉积到头发上起易梳理、有光泽等调理作用,但它的缺点是头发洗完之后容易粘灰。
2.之后,开发出阳离子调理剂,添加有此类调理剂的配方可得到稳定和可控的硅油沉积,不会造成硅油累积,大大改善了头发粘灰的现象。
3.目前,市场常用的阳离子发用调理剂,主要为阳离子瓜儿胶、聚季铵盐及阳离子纤维素聚合物。
作用机理1.电荷作用:带正电荷的阳离子表活受电荷吸引作用,吸附沉积到带负电荷的头发上,赋予湿发极佳的调理效果。
2.絮凝作用:带正电荷的阳离子表活和配方中的阴离子表活相互作用形成不溶于水的复合物,从而沉积到头发上。
帮助洗发水中的硅油和活性物等成分有效地沉积到头发上。
聚季铵盐类1.定义:由季铵化的脂肪烷基接枝在改性天然聚合物(糖类、纤维素、蛋白质)或含双键的阳离子单体合成的聚合物制成的。
2.特点:其部分结构与季铵盐相似,每个分子中有很多阳离子位置,具有较高的相对分子质量,通过离子静电的吸引力牢固地吸附在头发蛋白结构中带负电荷的表面,使得具有脂肪性的碳氢链被保留在头发角质层的表面。
3.作用:抗静电性;增稠性;抑菌性;增泡稳泡性;稳定性。
聚季铵盐-61.定义:由二甲基二烯丙基氯化铵发生均聚反应而成。
2.特点:二甲基二烯丙基氯化铵是一种水溶性极强,含有两个不饱和键的季铵盐,且阳离子密度高,通过自身两个烯丙基双键间的自由基聚合生成,表面活性能力增强。
3.作用:头发是由氨基酸多肽角蛋白组成,与聚季铵盐有较强的亲和性,聚季铵盐-6能吸附在头发上形成保护膜进而起到对头发的调理作用。
聚二甲基二烯丙基氯化铵的合成及水处理絮凝效能摘要:在进行单体二甲基二烯丙基氯化铵的制备中,可以选择在水溶液中进行一步法工艺或者是使用有机溶剂和过量碱的二步法工艺。
选择一步法工艺虽然较为简单,,仅仅适合于作为工业上的原料进行使用;选择二步法工艺操作起来较为复杂,适合于实验室的合成,但是用二步法工艺产生的单体杂质比较少。
关键词:聚二甲基二烯丙基氯化铵;合成;水处理;絮凝效能1聚二甲基二烯丙氯化铵的水处理絮凝效能1.1实验方法第一步:将一定量和一定浓度的二甲胺溶液、氢氧化钠溶液和总配比量一半的烯丙基氯加入500mL容积并配有回流冷凝装置的三颈瓶中,置于恒温水浴,在磁力搅拌下反应一定时间,得油水两相,以分液漏斗分出油相即为叔胺,加入一定量的固体氢氧化钠,经一定时间干燥脱水后分离.第二步:将上述干燥后的叔胺与等物质量的烯丙基氯加入一定体积的丙酮中,在常温下静置,得无色针状晶体即季胺盐单体.第三步:采用自由基溶液聚合法聚合:用上述方法制得的单体配成一定浓度的水溶液,以复合引发剂引发,在氮气保护下使之聚合.1)实验过程进行实验前,先将实验相关的设备都准备和调试好,然后制备二甲基二烯丙基氯化铵。
首先,在具有回流冷凝管的三颈烧瓶中加入二甲胺,保证5℃条件下进行电磁搅拌,并利用百里香酚酞作为指示剂[3]。
然后,在指示剂的颜色没有发生改变的条件下,在两个小时内进行交替滴加等量的水洗提纯后的烯丙基氯和氢氧化钠。
最后,等待约1.5h后,使其能够充分反应,再使用分液漏斗进行分液,加入等体积的烯丙基氯和两倍体积丙酮于上层的氢氧化钠干燥大致两个小时后的油相物中,将温度调到45℃,两个小时后会发现在丙酮中会析出白色的晶体,再过两个小时后会在丙酮中得到晶形的白色单体。
制备二甲基二烯丙基氯化铵后,开始制备聚二甲基二烯丙氯化铵。
首先,加入一定量的二甲基二烯丙基氯化铵于已经安装好的回流冷凝器的四颈烧瓶里,加入相应量的硫酸氨引发剂。
然后,先将去离子水溶入计算量的乙二胺四乙酸二钠,再加入到四颈烧瓶里。
聚二烯丙基二甲基氯化铵电荷密度一、引言在化学领域中,聚二烯丙基二甲基氯化铵(Polydiallyldimethylammonium chloride,简称PDADMAC)被广泛用于各种应用中,包括水处理、纺织品加工、涂料和胶黏剂等。
PDADMAC是一种聚合物,其分子结构中含有正电荷基团,因此具有较高的电荷密度。
本文将深入探讨PDADMAC的电荷密度及其对其性质和应用的影响。
二、PDADMAC的电荷密度与结构分析PDADMAC的主要结构单元是由二烯丙基、二甲基氯化铵以及氯化物离子组成的。
这些结构单元中二甲基氯化铵带有正电荷,而氯化物离子带有负电荷。
PDADMAC的整体电荷密度取决于正、负电荷的相对比例。
三、PDADMAC的电荷密度与水处理应用PDADMAC作为一种聚合物凝聚剂,在水处理中广泛应用于悬浊物的去除、浊度的降低、色度的减少等过程。
其高电荷密度使得PDADMAC能够与水中的悬浊物和杂质结合,形成较大的沉淀物颗粒,从而方便其后续的过滤和清除。
四、PDADMAC的电荷密度与纺织品加工应用在纺织品加工中,PDADMAC广泛应用于纤维表面的改性和涂层。
PDADMAC的高电荷密度使得其能够与纤维表面的负电荷区域相互作用,形成覆盖层。
这种覆盖层可以提供纤维的抗静电性能,并改善纤维的柔软度和耐久性。
五、PDADMAC的电荷密度与涂料和胶黏剂应用PDADMAC作为一种聚合物胶黏剂,可以通过其高电荷密度来增强其与基材表面之间的黏附力。
这使得PDADMAC能够在多种表面上提供优异的黏合性能,并广泛应用于涂料和胶黏剂领域。
六、个人观点与理解从上述应用中可以看出,PDADMAC的电荷密度对其性质和应用起到了重要的影响。
高电荷密度使得PDADMAC能够与各种不同物质之间建立强烈的相互作用,从而提供了广泛的应用潜力。
然而,电荷密度的变化也可能对PDADMAC的性能产生影响,例如改变其溶解性、黏合性和稳定性等。
七、总结与回顾本文探讨了PDADMAC的电荷密度及其对其性质和应用的影响。
聚二甲基二乙烯丙基氯化铵概述聚二甲基二乙烯丙基氯化铵(Poly(Dimethyl Diallyl Ammonium Chloride))是一种聚合物,由二甲基二乙烯丙基氯化铵单体通过聚合反应制得。
它具有良好的溶解性、高度离子性和生物相容性,因此在许多领域中有广泛的应用。
结构与性质聚二甲基二乙烯丙基氯化铵的结构如下图所示:该聚合物具有线性链状结构,其中含有正电荷的四个氮原子。
这些正电荷使得聚合物具有良好的溶解性和离子交换能力。
聚二甲基二乙烯丙基氯化铵具有以下主要性质:1.高度离子性:由于含有正电荷,它可以与阴离子形成离子对,并在水溶液中表现出高度离子交换能力。
2.生物相容性:该聚合物对许多生物体相容,因此可以应用于医学领域。
3.高分子量:聚二甲基二乙烯丙基氯化铵的分子量通常较高,这使得它具有良好的加工性能和稳定性。
4.良好的溶解性:该聚合物在水和一些有机溶剂中具有良好的溶解性,可以形成透明、均匀的溶液。
制备方法聚二甲基二乙烯丙基氯化铵可以通过自由基聚合反应制备。
具体步骤如下:1.预处理:将二甲基二乙烯丙基氯化铵单体进行预处理,去除其中的杂质和不纯物质。
2.反应体系准备:将预处理后的单体与适量的引发剂、反应助剂等混合,在适当条件下形成反应体系。
3.反应过程:在恒定温度下进行反应,并控制反应时间,使单体发生聚合反应。
在此过程中,引发剂会引发单体中双键开环并发生重复加成反应。
4.结果处理:将反应得到的产物进行过滤、洗涤、干燥等处理,获得聚二甲基二乙烯丙基氯化铵。
应用领域聚二甲基二乙烯丙基氯化铵在许多领域中有广泛的应用,包括但不限于以下几个方面:水处理由于聚二甲基二乙烯丙基氯化铵具有高度离子交换能力,它可以用作水处理剂。
在工业和民用水处理过程中,该聚合物可以去除水中的悬浮物、有机物和阴离子,提高水质。
医学领域聚二甲基二乙烯丙基氯化铵具有良好的生物相容性,因此在医学领域中有广泛的应用。
它可以用作药物传递系统、组织工程材料和抗菌剂等。
聚二甲基二烯丙基氯化铵的合成及其固色性能研究陈新华;杨静新;王玫【摘要】以二甲基二烯丙基氯化铵为原料,以过硫酸铵/亚硫酸钠为引发体系,在水相介质中进行聚合,制备了一种无甲醛固色剂,并将该固色剂应用于活性染料染黑色织物的固色处理.探讨了引发剂用量、反应时间、反应温度和反应体系pH值对产品固色性能的影响.优化出较佳的合成工艺为:引发剂用量为单体用量的0.9%,反应时间4h,反应温度70℃,反应体系pH值为6.8~7.0.将合成的聚合物应用于活性染料染色织物的固色处理,耐干摩擦色牢度可达4~5级,耐湿摩擦色牢度可达3级,耐洗色牢度可达4级,与未固色的织物色牢度相比均提高了0.5级.【期刊名称】《南通大学学报(自然科学版)》【年(卷),期】2010(009)004【总页数】5页(P43-47)【关键词】聚二甲基二烯丙基氯化铵;无甲醛;合成;固色;色牢度【作者】陈新华;杨静新;王玫【作者单位】南通大学,纺织服装学院,江苏,南通,226019;南通大学,纺织服装学院,江苏,南通,226019;南通大学,纺织服装学院,江苏,南通,226019【正文语种】中文【中图分类】TS193.7染色物的各项色牢度是衡量染色物品质的标准之一[1].织物色牢度与染料的结构性能和染色深度有关,如活性染料含有阴离子水溶性磺酸基,在水介质中它们与纤维的结合力会下降,造成未固着染料脱落,表现为湿牢度不佳.因而,许多纺织品在染色后要进行固色处理[2-4].聚二甲基二烯丙基氯化铵(PDMDAAC)是一种带有阳离子基团的线性聚合物,具有中性聚合物不具有的吸附、电荷中和等物理化学功能[5].它带有相对固定的正电荷,对带有阴离子的水溶性染料具有很强的结合力,可降低染料的水溶性.关于制备适合于用作无醛固色剂的PDMDAAC,国内上世纪90年代出现过此类固色剂的研制与性能测试的报道[6-7],但均未报道该工艺进一步优化的详细研究结果.本实验选用无醛单体进行均聚,通过改变引发剂用量、反应时间、反应温度、反应体系pH值等因素优化出较佳的合成工艺,然后将其应用于活性染料染色织物,进而优化出较佳的固色工艺.1 实验1.1 药品与仪器药品:二甲基二烯丙基氯化铵(DMDAAC)(简称单体)、过硫酸铵、亚硫酸钠、冰醋酸、皂片、纯碱、氢氧化钠、柠檬酸、乙二胺四乙酸钠(Na4EDTA)均为工业级.仪器:JJ-1型增力电动搅拌机(上海标本模型厂),HH-S型恒温水浴锅(浙江省余姚市检测仪器厂),pHS-25型精密pH计(上海精密科学仪器有限公司),GYROWASH415水/洗色牢度机(James H Heal Co.Ltd.Halifax England),摩擦牢度测试仪(温州大荣纺织标准仪器厂).1.2 材料织物规格:28 tex×28 tex 425根/10 cm×228根/10 cm,活性染料染黑色半制品,K/S=25.93.1.3 固色剂的制备在装有回流冷凝管、温度计及搅拌器的反应釜中加入一定质量的单体,并加入0.005%(对单体重)的螯合剂Na4EDTA,用冰醋酸调节反应体系pH值为7.搅拌均匀后,开始升温,温度升至70℃时,一次性加入1/8的引发剂,恒温在70℃,然后在2.5 h内连续滴加剩余的引发剂,保温反应1.5 h,反应结束后,冷却到50℃,出料.1.4 合成原理DMDAAC的均聚是自由基引发的聚合反应,其聚合反应式如下:1.5 产品的性状所合成的无甲醛固色剂为阳离子型,是无色透明粘稠的液体,能以任何比例混溶于冷、热水中,可与非离子型、阳离子型纺织助剂混合使用,含固量为42.65%.1.6 固色工艺浸渍法固色工艺参数:固色剂用量0%~4.5%(o.w.f.),固色浴 pH 值 3~9,固色温度 35~65 ℃,时间20 min,烘干温度120℃.1.7 色牢度的测试方法耐皂洗色牢度:按GB/T3921—2008《纺织品色牢度试验:耐皂洗色牢度》方法测定.耐摩擦色牢度:按GB/T3920—2008《纺织品色牢度试验:耐摩擦色牢度》方法测定.评定等级分别用GB/T250—2008变色灰色样卡和GB/T251—2008沾色灰色样卡.2 结果与讨论2.1 合成工艺的优化2.1.1 螯合剂的选择单体DMDAAC的生产过程中,由于反应容器或管道的材质原因可能带入微量的Cu2+、Ca2+、Mg2+、Fe2+、Fe3+等重金属离子,会对聚合反应起到缓聚或阻聚作用,影响聚合反应的正常进行,而且还会降低聚合物的质量和延长反应时间[8];同时由于二甲基二烯丙基氯化铵单体的阳离子性及较大的空间位阻,相对反应活性较低.因此,本试验选择乙二胺四乙酸钠Na4EDTA作为螯合剂,用量为单体用量的0.005%.2.1.2 引发剂用量的影响固定反应时间4 h,反应温度70℃,反应体系pH值为7,改变引发剂的用量,所合成的聚合物的固色效果见表1.表1 引发剂用量对固色效果的影响序号过硫酸铵用量/%耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 0.5 0.5 4~5 4~5 4 2~32 0.7 0.7 4~5 4~5 4~5 2~33 0.9 0.9 4~5 4~5 4~5 34 1.1 1.1 4~5 4~5 4 2~35 1.3 1.3 4~5 4~5 4 2~36 1.5 1.5 4~5 4~5 4 2~3亚硫酸钠用量/% 本实验采用过硫酸铵-亚硫酸钠组成的氧化还原引发体系,由自由基聚合理论[9]可知:当引发剂用量较低时,溶剂的“笼子”效应导致引发效率低,使聚合反应进行缓慢且效率低;当引发剂用量增加到适量时,有足够的引发剂满足诱导分解和笼蔽效应损耗,多余的引发剂足以引发反应,单体的转化率达到最大;当引发剂用量过多时,会导致体系中的聚合活性中心较多,有可能由于聚合反应过快而暴聚.表1中数据显示,开始时随着引发剂用量的增加,织物的耐湿摩擦色牢度由2~3级提高到3级.引发剂的用量(对单体重)为0.9%时,织物的耐湿摩擦色牢度达到3级.当引发剂用量再增加,会使体系温度迅速上升,反应过程难以控制,有时会发生暴聚[10].综合考虑反应速率和产品的固色效果,确定引发剂的用量为0.9%(对单体重).2.1.3 反应时间的影响确定引发剂的用量(对单体重)为0.9%,探讨反应时间对聚合物固色效果的影响,结果见表2.表2 反应时间对固色效果的影响序号时间/h 耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 3.0 4~5 4~5 4~5 2~32 3.5 4~5 4~5 4~5 2~33 4.0 4~5 4~5 4~5 34 4.5 4~5 4~5 4~5 2~35 5.0 4~5 4~5 4 2~3从表2数据可以看出,随着反应时间的延长,固色后织物的耐湿摩擦色牢度由2~3级提高到3级,当反应时间为4.0 h时,固色后织物的耐湿摩擦色牢度较好,再延长反应时间,耐湿摩擦色牢度下降.综合考虑织物的固色效果和生产成本,确定较佳的反应时间为4.0 h.2.1.4 反应温度的影响确定引发剂的用量(对单体重)为0.9%,反应时间为4.0 h,改变反应温度,所合成的聚合物的固色效果见表3.表3 反应温度对固色效果的影响序号反应温度/℃耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 50 4~5 4~5 4~5 2~32 60 4~5 4~5 4~5 2~33 70 4~5 4~5 4~5 34 80 4~5 4~5 4~5 2~35 90 4~5 4~5 4~5 2~3反应温度会影响引发剂的分解速率.随着温度的升高,引发剂的分解速率逐渐加快,能促进聚合反应的进行;同时由于该聚合反应是放热反应,当反应温度较高时,引发剂的加入,会使反应体系的温度迅速上升,容易发生暴聚,使反应不易控制,从而导致聚合反应失败.由表3可知,当反应温度为70℃时,固色后织物的耐湿摩擦色牢度较好.因而,选择适宜的反应温度为70℃.2.1.5 反应体系pH值的影响反应体系的pH值对聚合反应有一定的影响.表4是在其它条件不变的情况下改变反应体系pH值,所合成的固色剂的实验结果.反应体系的pH值对聚合物的性能有一定的影响.由表4可知,当反应体系的pH值为6.8~7.0时,可使固色后的各项牢度较好.这可能是由于当反应体系的pH值较低或较高时,均能使初级自由基的活性降低[11].因此,据表4实验结果,确定反应体系的pH值为6.8~7.0.表4 反应体系pH值对固色效果的影响序号反应体系pH值耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 4.8~5.0 4~5 4~5 4~5 2~32 5.8~6.0 4~5 4~5 4~5 33 6.8~7.0 5 4~5 4~5 34 7.8~8.0 4~5 4~5 4~5 2~35 8.8~9.0 4~5 4~5 4~5 2~32.2 固色工艺的优化2.2.1 固色剂用量的影响改变固色剂的用量,其他条件不变,织物的固色效果见表5.表5 固色剂用量对固色效果的影响序号固色剂用量/%耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 0 4 4 4 2~32 0.5 4~5 4 4~5 2~331.0 4~5 4~5 4~5 2~34 1.5 5 4~5 4~5 352.0 4~5 4~5 4~5 362.5 4~5 4~5 4~5 2~373.0 4~5 4~5 4~5 2~38 3.5 4 4~5 42~39 4.0 4 4~5 4 2~310 4.5 4 4 4 2~3该固色剂含有季铵盐阳离子基团,能与活性染料的磺酸基阴离子进行静电结合,形成不溶性的高分子色淀,封闭染料分子的水溶性基团,从而提高染色牢度[12].从表5可以看出,当固色剂的用量在1.5%(o.w.f.)时,织物的应用效果达到最佳,之后再增加固色剂用量,染色织物的色牢度有下降的趋势.这可能是由于固色剂的应用效果与其在织物上与染料的吸附量有关[13],吸附量达到饱和值,色牢度好.当固色剂的用量在1.5%~2.0%时,固色剂在织物上的吸附已达到饱和,耐湿摩擦牢度达到3级,继续增大固色剂用量,牢度反而下降,这可能是因为过量的固色剂聚集在纤维的外部,使色淀与纤维之间的结合力有所降低.因此,固色剂用量以1.5%为宜.2.2.2 固色浴pH值的影响分别用柠檬酸和NaOH溶液调节溶液的pH值,其它条件不变,对织物进行固色处理,结果见表6.表6 固色浴pH值对固色效果的影响序号 pH值耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 2.8~3.0 4~5 4~5 4~5 2~32 3.8~4.0 4~5 4~5 4~5 2~33 4.8~5.0 4~5 4~5 4~5 2~34 5.8~6.0 4~5 4~5 4~5 35 6.8~7.0 4~5 4~5 4~5 2~36 7.8~8.0 4~5 4~5 4~5 2~37 8.8~9.0 4~5 4~5 4~5 2~3从表6中可以看出,整理液pH值为5.8~6.0时,固色剂的应用效果较好.这可能是由于当固色浴pH值高于6时,固色剂阳荷性下降,与染料阴离子静电作用力下降,吸附量减少;固色浴pH值低于6时,溶液中柠檬酸量相对大,部分固色剂与柠檬酸在溶液中静电结合,使吸附到织物上的固色剂量下降;这两种情况都使得色牢度下降.据此,确定固色浴的pH值为5.8~6.0.2.2.3 固色温度的影响确定固色剂的用量为1.5%(o.w.f.),改变固色温度,其他条件不变,织物的固色效果见表7.表7 固色温度对固色效果的影响序号温度/℃ 耐洗色牢度/级耐摩擦色牢度/级变色沾色干摩湿摩1 35 4~5 4~5 4~5 2~32 40 4~5 4~5 4~5 2~33 45 4~5 4~5 4~5 34 50 4~5 4~5 4~5 35 55 4~5 4~5 4~5 36 60 4~5 4~5 4~5 37 65 4~5 4~5 4~5 2~3由表7可知,当固色温度为60℃时,固色效果相对较好.温度低于60℃时,固色反应速率小,吸附到织物上的固色剂量少;当温度高于60℃时,虽然固色反应速率增大,但固色剂与纤维的亲和力减小,使织物上吸附的固色剂量也减少,故色牢度下降.因此,最终确定固色温度以60℃为宜.2.3 固色效果对比用实验室自制的固色剂与未固色的织物进行比较,所测的各项色牢度见表8.表8 固色效果的比较类别耐洗色牢度/级耐摩擦色牢度/级固色后色度差/ΔCC 变色沾色干摩湿摩固色 4~5 4~5 4~5 3 0.259未固色 4 4 4 2~3 - 从表8可以看出,经自制固色剂固色后织物的色牢度比未固色织物的色牢度提高了0.5级,经固色剂固色后的黑色纯棉染色织物与原样相比色光和手感几乎无变化.3 结论1)固色剂的合成工艺为:在装有回流冷凝管、温度计及搅拌器的四口反应釜中加入一定质量的单体,并加入0.005%(对单体重)的螯合剂Na4ED TA,用冰醋酸调节反应体系pH值为6.8~7.0.搅拌均匀后,开始升温,温度升至70℃时,一次性加入1/8的引发剂,恒温在70℃,然后在2.5 h内连续滴加剩余的引发剂,在70℃下继续保温反应1.5 h,反应结束后,冷却到50℃,出料.2)无醛固色剂用于活性染料染黑色织物的较佳浸渍法固色工艺为:固色剂用量1.5%(o.w.f.),固色浴pH值5.8~6.0,固色温度60℃.固色处理后,织物色牢度提高了0.5级.参考文献:[1]陈荣圻.德国环保新规定对印染助剂的影响及对策[J].印染助剂, 1996, 13(1):2-9.[2]许海育.固色剂的性能和深色作用[J].印染,1996,22(2):23-26.[3]何燕.染色技术的发展与固色剂的研究应用[J].精细化工原料及中间体,2008(8):19-22.[4]许元巨.提高直接染料染色牢度的几种方法[J].印染助剂, 1997, 14(6):38-40.[5]王景霞,范晓东,秦华宇.二甲基二烯丙基氯化铵-丙烯酰胺共聚物的合成与结构表征[J].油田化学,2003,20(1):83-85.[6]徐轩,钱理忠.固色剂F的研制与应用[J].印染助剂,1994, 11(3):25-26.[7]张建功.聚阳离子型电解质固色剂制备工艺简化的探讨[J].精细石油化工,1992(1):36-38.[8]杨海涛,周向东,董娟,等.AM-DMDAAC共聚固色剂的合成及其应用[J].印染, 2010, 37(5):10-13.[9]潘祖仁.高分子化学[M].4版.北京:化学工业出版社,2002:8, 67-72.[10]陈新华,杨静新.高聚合物无醛固色剂的合成与应用[J].南通大学学报:自然科学版, 2009, 8(2):47-51.[11]罗文利,牛亚斌,欧阳坚,等.二甲基二烯丙基氯化铵与丙烯酰胺水溶液共聚合[J].油田化学, 1998, 15(3):193-196.[12]张雄,毛培,向敏虎.无醛固色剂MRT-1的研制与应用[J].印染助剂,2005, 22(2):5-6.[13]王永杰,宫在礼,刘学,等.活性染料耐氯固色剂CRS[J].印染, 2008,35(16):27-29.。
阳离子聚电解质聚二甲基二烯丙基氯化铵(PDM)阳离子聚电解质聚二甲基二烯丙基氯化铵的絮凝机理初探田秉晖,栾兆坤,潘纲中国科学院生态环境研究中心环境水质学国家重点实验室,北京100085收稿日期:2006—03-23 修回日期:2007.04—09 录用日期:2007—08—10摘要:以聚二甲基二烯丙基氯化铵PDADMAC(特性粘度分别为2.7,1.4,0.7)为絮凝剂,对比PAC和PFC。
通过残余浊度、Zeta电位、FI絮凝指数的测定,研究了PDADMAC对高岭土悬浊体系(浊度分别为6000,1000,200和10 NTU)的絮凝特性,并对其絮凝作用机理进行了探讨.结果表明,PDADMAC的吸附构型决定其絮凝机理在较低初始悬浊物浓度下(200 NTU)为单个颗粒物表面吸附覆盖及其“吸附电中和”絮凝模型;在高浊条件下(>1000 NTU)为单颗粒表面(Monomer)部分吸附覆盖及其“吸附架桥”絮凝模型.关键词:絮凝;阳离子聚电解质;聚二甲基二烯丙基氯化铵文章编号:0253-2468(2007)11-1874-07 中图分类号:X131.2 文献标识码:A1 引言(Introduction)在水处理技术领域中,化学絮凝法具有操作简便、净化除浊效果好、投资运行费用低、适用性广等优点而得到广泛应用,成为众多处理工艺流程中不可缺少的前置单元操作技术.其中,阳离子型有机高分子絮凝剂具有:① 阳离子度高,分子量高,絮凝效能强,用量少,适用性广;② 可以根据需要引人不同官能基团(带电基团、亲水基团和疏水基团等),可以任意设计阳离子度和分子量;③ 易于和其它无机混凝剂或助凝剂复合,制备多元高效复合絮凝剂等优点,已成为国内外高效絮凝剂及其理论研究的热点内容(Wandrey,1999;Matsumoto,2001;Zhao,2002;Pearse,2001).聚二甲基二烯丙基氯化铵(PDADMAC)是1种应用较广的阳离子型有机高分子絮凝剂(Bowman,1979; Zhao, 2002; Tian, 2005a;2005b).但是,以往研究中,人们更热衷于对阳离子型有机高分子絮凝剂的开发及应用,而对其应用基础研究重视不够(Yoon,2004;Besra,2003;Pascal,2005;Chen,2005).对阳离子型有机高分子絮凝剂的反应特性和独特的絮凝性能等,在一定程度上仍沿袭传统无机盐和PAM 的絮凝反应及其凝聚机理,缺乏独立的深入研究,致使阳离子型有机高分子絮凝剂及其复合型絮凝剂在其结构设计、合成方法、物理化学改性以及复合应用过程中缺乏严谨的理论支持,导致研制开发随意性大,直接影响了高效产品制备及其絮凝效能.近年来,针对阳离子型有机高分子絮凝剂高效性的絮凝机理研究已经引起了国际上广泛的关注(Besra,2004;Zhu,2001;Harris,2000;Nishida,2002).现有研究表明,吸附和吸附构型是影响阳离子型有机高分子絮凝剂絮凝机理的主要因素.但是,相对于传统无机盐和PAM 的絮凝反应,其基础应用理论仍有待于全面而系统地研究(Besra,2004;Zhu,2001;Harris,2000;Nishida,2002).本研究中,以PDADMAC(特性粘度分别为2.7,1.4,0.7)为絮凝剂,对比PAC和PFC,通过残余浊度,Zeta 电位,FI絮凝指数的测定,探讨了PDADMAC对高岭土悬浊体系(浊度分别为6000,1000,200和10 NTU)的絮凝特性,并对PDADMAC的絮凝作用机理进行了初探.2 材料与方法(Materials and methods)2.1 实验材料实验所用特性粘度0.7的PDADMAC是40%的水溶液(Florage,SNF,France),特性粘度2.7和1.4的PDADMAC是实验室合成.实验在(25±0.1)℃ ,1.0 mol•L NaC1溶液条件下进行.实验用水是由纯化净水装置(a Seralpur Pro 90C apparatuscombined with an ultrafiltration USF Elga laboratoryunit)制得的纯水.2.2 絮凝实验源高岭土悬浊液由高岭土(分析纯,北京化学试剂公司)和去离子水制得,浓度为100 g•L一.源高岭土悬浊液的粒度分布用激光粒度仪(Mastersizer2000,Malvern CO.,UK)表征,颗粒物粒径小于2m,平均粒径0.92 m.试验用人工配水由源高岭土悬浊液稀释得到,其中NaNO 和NaHCO,的浓度都是5×10~mol•L–1.在烧杯絮凝试验中,人工配水的高岭土浓度分别为10、200、1000、6000 mg•L–1.絮凝试验采用转速300 r•min 快搅1 min,转速40 r•min 慢搅l0min,絮体沉降30 min.残余浊度(RT)和Zeta电位分别用浊度计(HACH 2100N Turbidimeter,HACH,Loveland,Co.)和Zeta 电位仪(Zetasizer 2000,Malvern CO.,UK)测定.在搅拌和絮凝的过程中,通过蠕动泵在线连续取样,采用光散射分析仪(PDA2000,Rank Brithers Ltd.)测定絮凝指数(FI).3 结果(Results)3.1 10 NTU的悬浊液絮凝试验烧杯絮凝试验结果如图1所示.图1表明,PDADMAC絮凝剂对低浊水(10 NTU)的絮凝效果较差,远不如无机高分子絮凝剂PAC和PFS的絮凝除浊效果,而且分子量对其絮凝效能几乎没有明显影响.3.2 2oo NTU悬浊液的絮凝试验结果由图2(a,b)可见,对浊度200 NTU的悬浊液,PDADMAC的絮凝效能已明显提高,并开始好于PAC絮凝效果.而且随PDADMAC特性粘度提高,絮凝效能明显增加.但此时残余浊度仍较高(在90NTU以上).而且最佳絮凝范围极小,易反稳.由图2(c)Zeta电位测定结果可见,PDADMAC絮凝剂的絮凝Zeta电位迅速由负变正,并且特性粘度越高越明显.最佳絮凝点时的Zeta电位接近于零.由凝剂,大量研究和文献表明(Besra,2004;Zhu,2001;Harris,2000;Nishida,2002),最佳絮凝点的Zeta电位往往不在零电点处,这主要是因为无机高分子絮凝剂的絮凝作用主要取决于水解聚合形态的正电荷产生的“吸附电中和”作用,而水解聚合形态分子量较小,因此“絮凝架桥”作用能力较弱(Besra,2004).而阳离子型有机高分子絮凝剂则不同,其巨大的分子量和柔性线性分子链,使其在絮凝过程中可以充分发挥“絮凝架桥”作用,而“吸附电中和”作用则弱得多,其絮凝作用机理与分子结构和阳离子官能团密度,以及水质条件、胶体颗粒物性质等密切相关(Besra, 2004; Zhu, 2001; Harris, 2000; Nishida,2002).聚合物附着在颗粒物表面有“环(1oops)”、“尾(tails)”和“链(trains)”等3种状态.一般,当有机高分子絮凝剂的吸附趋于“链”式吸附状态时,吸附机理趋于“吸附电中和”作用.而有机高分子絮凝剂的吸附趋于“环和尾”吸附状态时,其吸附机理趋于“吸附架桥”作用.结合本文Zeta电位和絮凝指数FI的结果,可以认为,PDADMAC的絮凝机理由其吸附构型决定.在较低初始悬浊物浓度下(200 NTU),PDADMAC在单颗粒表面的吸附符合“链”吸附构型及其电中和絮凝模型(如图5所示).此条件下,由于颗粒物数量较少,碰撞几率低,投加PDADMAC后,其分子链上的阳离子基团不能瞬间及时捕集到更多颗粒,结果在单个颗粒物表面大量吸附覆盖,使其吸附构型接近于“链”吸附状态.当PDADMAC投量增加,易于在单个颗粒物表面发生超量吸附,结果导致颗粒物表面的超电荷现象发生,Zeta 电位迅速变正.这种“链”吸附构型在颗粒物表面无法充分伸展,不能充分发挥“絮凝架桥”作用,甚至在单个颗粒物表面产生多层“吸附电中和”的全覆盖效应,无法起到絮凝作用.吸附架桥理论指出(Wandrey,1999;Matsumoto,2001),只有在絮凝剂投加适量时,即胶体颗粒只有表面部分覆盖时,才能在胶粒间产生有效的吸附架桥作用并获得最佳絮凝效果,因此,在较低初始悬浊物浓度下(200NTU),PDADMAC无法发挥其高效“吸附絮凝架桥”作用,以“吸附电中和”作用为主.具体表现为试验结果Zeta电位变号达到最大值,但絮凝过程缓慢而形成的凝絮颗粒小,絮凝效果差.在高浊条件下(>1000 NTU),PDADMAC在单颗粒表面的吸附符合“环和尾”吸附构型及其“吸附架桥”絮凝模型(如图6所示).此条件下,由于颗粒物数量增加,碰撞几率迅速增加,PDADMAC分子链上的阳离子基团瞬间及时地扑集到更多颗粒,结果在单个颗粒物表面呈“环和尾”吸附状态,单个颗粒物被部分包裹或覆盖,部分分子链吸附在单个颗粒物表面,部分伸展到水中继续吸附扑集其它颗粒物.此条件下,PDADMAC强烈的“吸附絮凝架桥”作用为主要絮凝机理,产生“簇团(Cluster)絮凝”,大大提高了絮凝效率,充分发挥了PDADMAC的高效絮凝作用.综上所述,PDADMAC阳离子型絮凝剂对负电颗粒物的絮凝过程可以被看作是“吸附电中和”与“吸附架桥絮凝”的综合作用结果.两者间作用的强弱不仅取决于聚电解质的电荷密度、分子量以及离子官能团带电性、疏密程度等,而且还取决于负电颗粒物的性质和悬浊液的初始浓度,其原因在于PDADMAC阳离子型絮凝剂的絮凝机理是由其吸附构型决定的.5 结论(Conclusions)1)阳离子型有机高分子絮凝剂具有较大的分子量和柔性线性分子链,这使其絮凝过程主要以“絮凝架桥”作用为主,同时存在一定的“吸附电中和”作用.2)阳离子型有机高分子絮凝剂的絮凝机理与其分子结构和阳离子官能团密度,以及水质条件、胶体颗粒物性质等有密切关系.3)阳离子型有机高分子絮凝剂的吸附构型决定其絮凝机理.絮凝机理为:在较低初始悬浊物浓度下(200 NTU)为单个颗粒物表面吸附覆盖及其“吸附电中和”絮凝模型;在高浊条件下(>1000NTU)为单颗粒表面部分吸附覆盖及其“吸附架桥”絮凝模型.责任作者简介:田秉晖(197O一),男,博士,主要从。