历年中考数学考点分析及二次函数
- 格式:ppt
- 大小:3.58 MB
- 文档页数:41
二次函数作为中考重点考查内容的原因分析及教学反思在中考数学考试中,二次函数作为一个重点考查内容,具有重要的原因和意义。
本文将分析二次函数作为中考重点考查内容的原因,并对教学进行反思,以期提高学生的学习效果和应试能力。
一、二次函数的重要性及应用背景1. 与实际问题紧密相关二次函数在实际世界中有着广泛的应用,例如物体的抛射运动、抛物线的轨迹等等。
掌握二次函数的概念和性质,对于学生理解和应用数学知识到实际问题解决中起到了关键作用。
2. 发展数学思维二次函数作为高中数学的重要内容,涉及到函数的图像、变化趋势、极值点等概念和计算方法。
通过学习二次函数,学生可以培养和发展数学思维,提高逻辑推理和问题解决能力。
3. 培养创新能力二次函数作为重点考查内容,考察学生在解决实际问题时的创新能力。
通过解析几何、图像分析等方法,学生需要将数学理论与实际问题相结合,从而培养学生的创新思维和动手能力。
二、教学反思及改进措施1. 提高教学方法的多样性二次函数教学要注重培养学生的兴趣和主动参与,可以通过多媒体展示、实例分析等方式,加深学生对概念和性质的理解。
同时,可以增加小组合作学习的环节,让学生相互讨论、解决问题,提高教学的互动性和趣味性。
2. 引导学生理解与应用的结合针对二次函数的应用背景,教师应引导学生从实际中找到数学概念的具体应用,并培养学生解决实际问题的能力。
可以通过案例分析和实际模拟等方式,让学生将数学知识灵活运用到实际中,加深对知识的理解和记忆。
3. 针对性强化习题训练为了提高学生的应试能力,教师应及时纠正学生的错误并针对性地强化训练。
可以结合历年真题或模拟试题,针对性地组织习题训练,让学生熟悉考试题型和解题技巧,提高解题速度和准确度。
4. 增加拓展性教学在学生掌握基础知识之后,可以适当增加一些拓展性的教学和学习内容。
例如,介绍更高阶的多项式函数、不等式、函数的复合等内容,拓宽学生的数学视野,提高学生的学习兴趣和思维能力。
中考数学二次函数基础知识
二次函数
正比例函数是:y=kx(k≠0) 两个数的商是常数(x/y=k,k≠0)一次函数是:y=kx+b(k≠0)
反比例函数: 两个数的积是常数(xy=k,k≠0)二次函数:y=ax 2+bx+c
1、二次函数y=ax 2+bx+c 一些基本概念①
二次函数是一条关于 x=- 对称的抛物线。
此抛物线有三大特征:有开口方向,有对称轴,有顶点。
考点一、 二次函数的概念
a
b
2
考点五、二次函数的解析式的几种应用例1
例2例3
解法1用一般式方法,由于顶点D点的横坐标为-1,所以是以 x=- = -1为对称轴的
解法2知道顶点和交点就可利用顶点式方法:再把BC点代入
a
b
2
解法
知道和x轴的两个交点,可直接用交点式方法:
3
解析:由于抛物线是以D为顶点(-1,?)为对称轴的,又和x轴交于两点AB,因为B点坐标是(-3,0),就可推出A的坐标是(1,0)
例4知道最值和对称轴,可直接用顶点法。
考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
中考难点二次函数例题解析二次函数可谓是初中数学考试中的常客,月考,期中考试,期末考试,模拟考试都会有它的身影,中考每年都会有一道关于二次函数的压轴题。
中考二次函数主要以综合题的形式考察,通过对近几年中考二次函数考察情况的分析,二次函数综合题得分率不高,难度系数在0.45-0.55之间,属于中考压轴题之一。
所以掌握二次函数的考点至关重要。
下面我们通过习题,引出知识点总结归纳,二次函数将不再茫然!基础知识一、基本概念:1.二次函数的概念:一般地,形如2a≠)的函数,叫做二次函数。
y ax bx c=++(a b c,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y有最【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型第二部分 考察重点1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数综合题【命题趋势】在中考中.二次函数综合题每年必考点.特别是跟几何结合.经常在压轴题中出现。
【中考考查重点】一、线段问题二、面积问题三、等腰、直角三角形问题四、特殊四边形问题五、相似三角形问题六、与角度有关问题考点一:线段问题1.(2021秋•龙沙区期末)如图.抛物线y=ax2+bx+c与x轴交于A(﹣1.0).B(3.0)两点.与y轴交于点C(0.3).抛物线的顶点为D.连接BC.P为线段BC上的一个动点(P不与B、C重合).过点P作PF∥y轴.交抛物线于点F.交x轴于点G.(1)求抛物线的解析式;(2)当PG=2PF时.求点P的坐标;【答案】(1)y=﹣x2+2x+3 (2)P(.)【解答】解:(1)将A(﹣1.0).B(3.0).C(0.3)代入y=ax2+bx+c.∴.∴.∴y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b'.∴.∴.∴y=﹣x+3.设P(t.﹣t+3).则F(t.﹣t2+2t+3).G(t.0).∴PG=﹣t+3.PF=﹣t2+2t+3+t﹣3=﹣t2+3t.∵PG=2PF.∴﹣t+3=﹣2t2+6t.∴t=或t=3(舍).∴P(.);考点二:面积问题2.(2021秋•梅里斯区期末节选)如图.在平面直角坐标系中.已知直线y=x﹣2与x轴交于点A.与y轴交于点B.过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1.0).(1)求抛物线的解析式和顶点坐标;(2)探究:在抛物线上直线AB下方是否存在一点P.使△ABP面积最大?若存在.请求出点P的坐标.若不存在.请说明理由;【答案】(1)y=x2﹣x﹣2 .(.﹣)(2)P(2.﹣3)【解答】解:(1)直线y=x﹣2与x轴交于点A.与y轴交于点B.∴A(4.0)、B(0.﹣2).将A、B、C点坐标分别代入二次函数解析式y=ax2+bx+c.∴.∴.∴二次函数解析式为:y=x2﹣x﹣2.化成顶点式为:y=(x﹣)2﹣.∴抛物线的顶点坐标为(.﹣);(2)存在.理由如下:设P点坐标为(x.x2﹣x﹣2)(0<x<4).过点P作PD⊥AC于点D.交AB于点E.则E的坐标表示为(x.x﹣2).∴S△ABP==×4×(x﹣2﹣x2+x+2)=﹣x2+4x=﹣(x﹣2)2+4.∵a=﹣1<0.∴当x=2时S△ABP有最大值.求得P(2.﹣3);考点三:等腰、直角三角形问题3.(2021秋•龙凤区校级期末)如图.已知抛物线y=ax2+bx﹣8的图象与x轴交于A(2.0)和B(﹣8.0).与y轴交于点C.(1)求该抛物线的解析式;(2)点F是直线BC下方抛物线上的一点.当△BCF的面积最大时.在抛物线的对称轴上找一点P.使得△BFP的周长最小.请求出点F的坐标和点P的坐标;(3)在(2)的条件下.是否存在这样的点Q(0.m).使得△BFQ为等腰三角形?如果有.请直接写出点Q的坐标;如果没有.请说明理由.【答案】(1)(2)F(﹣4.﹣12).P(﹣3.﹣10)(3)Q1(0.﹣4)或或或Q4(0.0).【解答】解:(1)将A(2.0)、B(﹣8.0)代入解析式.得.解得:.∴.(2)当x=0时.y=﹣8.∴C(0.﹣8).设直线BC的解析式为y=kx+b.则.解得:.∴直线BC的解析式为y=﹣x﹣8.设.如图1.作FG垂直于x轴交BC于G.则G(n.﹣n﹣8).∴.∵=4FG.∴当FG取得最大值时.S△BCF取得最大值.∴当时.FG取得最大值8.S△BCF取得最大值32.∴F(﹣4.﹣12).作F关于对称轴对称的点F'.∴F'(﹣2.﹣12).当F'、B、P共线时.PB+PF有最小值.此时C△BFP有最小值.设y BF'=ax+b.则.解得:.∴y BF'=﹣2x﹣16.又∵x p=﹣3.∴P(﹣3.﹣10).综上所述.F(﹣4.﹣12).P(﹣3.﹣10).(3)存在.理由如下.①如图2.以BF为底边时.点Q1在BF的中垂线上.∴BF的中垂线与y轴交点即为所求.连接BQ1.FQ1.作FN垂直于y轴.∵Q1B=Q1F.设OQ1=t.则Q1N=12﹣t.∵FN=4.BO=8..∴42+(12﹣t)2=82+t2.解得:t=4.∴Q1(0.﹣4);②以BF为腰时..(i)当BF=BQ2时.设OQ2=s.则.∴160=82+s2.解得:.当时..当时.;(ii)当BF=FQ4时:∵B(﹣8.0).F(﹣4.﹣12).O(0.0).∴F在线段BO的中垂线上.∴FB=FO.∴Q4(0.0);由Q4关于N点对称得Q5(0.﹣24).∵FN⊥y轴.∴FO=BF=FQ5.但此时B、F、Q5三点共线.不合题意;综上所述.点Q的坐标为Q1(0.﹣4)或或或Q4(0.0).4.(2021秋•黄埔区期末)如图.抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A、B两点.与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示).A.B两点的坐标;(2)是否存在使△BCM为直角三角形的抛物线?若存在.请求出;若不存在.请说明理由.【答案】(1)A.B两点的坐标为(﹣1.0)、(5.0)(2)和【解答】解:(1)∵y=m(x﹣2)2﹣9m.∴抛物线顶点M的坐标为(2.﹣9m).∵抛物线与x轴交于A、B两点.∴当y=0时.mx2﹣4mx﹣5m=0.∵m>0.∴x2﹣4x﹣5=0.解得x1=﹣1.x2=5.∴A.B两点的坐标为(﹣1.0)、(5.0).(2)存在使△BCM为直角三角形的抛物线.过点C作CN⊥DM于点N.则△CMN为直角三角形.CN=OD=2.DN=OC=5m.∴MN=DM﹣DN=4m.∴CM2=CN2+MN2=4+16m2.在Rt△OBC中.BC2=OB2+OC2=25+25m2.在Rt△BDM中.BM2=BD2+DM2=9+81m2.①如果△BCM是直角三角形.且∠BMC=90°时.CM2+BM2=BC2.即4+16m2+9+81m2=25+25m2.解得.∵m>0.∴.∴存在抛物线使得△BCM是直角三角形;②如果△BCM是直角三角形.且∠BCM=90°时.BC2+CM2=BM2.即25+25m2+4+16m2=9+81m2.解得.∵m>0.∴.∴存在抛物线使得△BCM是Rt△;③∵25+25m2>4+16m2.9+81m2>4+16m2.∴以∠CBM为直角的直角三角形不存在.综上.存在抛物线和使△BCM是直角三角形.特考点四:特殊四边形问题5.(2021秋•龙江县期末节选)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1.0).与y轴交于点C.连接AC.有一动点D在线段AC上运动.过点D作x轴的垂线.交抛物线于点E.交x轴于点F.AB=4.设点D的横坐标为m.(1)求抛物线的解析式;(2)当m=﹣2时.在平面内是否存在点Q.使以B.C.E.Q为顶点的四边形为平行四边形?若存在.请直接写出点Q的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2﹣2x+3 (2)Q点为(3.0)或(﹣1.0)或(﹣3.6)【解答】解:(1)∵点B(1.0).AB=4.∴A(﹣3.0).将B(1.0).A(﹣3.0)代入y=ax2+bx+3.∴.∴.∴y=﹣x2﹣2x+3;(2)存在.理由如下:∵m=﹣2.∴E(﹣2.3).设Q(n.t).①当BC为平行四边形的对角线时..解得.∴Q(3.0);②当BE为平行四边形的对角线时..解得.∴Q(﹣1.0);③当BQ为平行四边形的对角线时..解得.∴Q(﹣3.6);综上所述:当Q点为(3.0)或(﹣1.0)或(﹣3.6)时.以B.C.E.Q为顶点的四边形为平行四边形.6.(2021秋•江西月考)如图.抛物线y=﹣x2+3x+m与x轴的一个交点为A(4.0).另一交点为B.且与y轴交于点C.连接AC.(1)求m的值及该抛物线的对称轴;(2)若点P在直线AC上.点Q是平面内一点.是否存在点Q.使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在.请直接写出Q点的坐标;若不存在.请说明理由.【答案】(1)m=4 y=﹣(x﹣)2+(2)(4.5)或(.﹣).【解答】解:(1)把A(4.0)代入二次函数y=﹣x2+3x+m得:∴﹣16+12+m=0.解得:m=4.∴二次函数的解析式为:y=﹣x2+3x+4=﹣(x﹣)2+.∴二次函数对称轴为直线x=;(2)存在.理由:①当AB是正方形的边时.此时.对应的正方形为ABP′Q′.∵A(4.0).AB=5.∴点Q′的坐标为(4.5);②当AB是正方形的对角线时.此时.对应的矩形为APBQ.∵AB、PQ是正方形对角线.∴线段AB和线段PQ互相垂直平分.∴点Q在抛物线对称轴上.且到x轴的距离为.∴点Q的坐标为(.﹣).故点Q的坐标为(4.5)或(.﹣).考点五:相似三角形问题7.(2021秋•建华区期末节选)抛物线y=x2+bx+c经过A、B(1.0)、C(0.﹣3)三点.点D 为抛物线的顶点.连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在线段AC上找一点M.使△AOM∽△ABC.请你直接写出点M的坐标;【答案】(1)y=x2+2x﹣3 (2)(.)【解答】解(1)∵抛物线y=x2+bx+c经过B(1.0)、C(0.﹣3).∴.解得.∴抛物线的解析式为:y=x2+2x﹣3.(2)∵△AOM∽△ABC.∴∠AOM=∠ABC.∴OM∥BC.设直线BC的解析式为y=mx+n.直线OM的解析式为y=mx.∴.解得.∴直线BC的解析式为y=3x﹣3.直线OM的解析式为y=3x.联立.解得.∴点M的坐标为(.);考点六:与角度有关的问题8.(2021秋•郧西县期末)如图.抛物线y=ax2+bx﹣3与x轴交于点A(1.0)、B(3.0).与y 轴交于点C.连接AC.BC.(1)求抛物线的函数解析式;(2)Q为抛物线上一点.若∠ACQ=45°.求点Q的坐标.【答案】(1)y=﹣x2+4x﹣3 (2)Q(.)【解答】(1)把A(1.0)、B(3.0)代入y=ax2+bx﹣3.得.解得.∴抛物线的解析式是y=﹣x2+4x﹣3.(2)如图2.点Q在抛物线上.且∠ACQ=45°.过点A作AD⊥CQ于点D.过点D作DF⊥x轴于点F.过点C作CE⊥DF于点E.∵∠ADC=90°.∴∠DAC=∠DCA=45°.∴CD=AD.∵∠E=∠AFD=90°.∴∠ADF=90°﹣∠CDE=∠DCE.∴△CDE≌△DAF(AAS).∴DE=AF.CE=DF.∵∠E=∠OFE=∠COF=90°.∴四边形OCEF是矩形.∴OF=CE.EF=OC=3.设DE=AF=n.∵OA=1.∴CE=DF=OF=n+1.∵DF=3﹣n.∴n+1=3﹣n.解得n=1.∴DE=AF=1.∴CE=DF=OF=2.∴D(2.﹣2).设直线CQ的函数解析式为y=px﹣3.则2p﹣3=﹣2.解得p=.∴直线CD的函数解析式为y=x﹣3.由.得.(不符合题意.舍去).∴点Q的坐标为(.)3.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位.再向上平移4个单位后.得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A.B.与y轴交于点C.已知A(﹣3.0).点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1.点P在线段AC上方的抛物线H上运动(不与A.C重合).过点P作PD⊥AB.垂足为D.PD交AC于点E.作PF⊥AC.垂足为F.求△PEF的面积的最大值;(3)如图2.点Q是抛物线H的对称轴l上的一个动点.在抛物线H上.是否存在点P.使得以点A.P.C.Q为顶点的四边形是平行四边形?若存在.求出所有符合条件的点P的坐标;若不存在.说明理由.【答案】(1)y=﹣(x+1)2+4 (2)m=﹣时.S△PEF最大值=×()2=(3)P的坐标为(2.﹣5)或(﹣4.﹣5)或(﹣2.3)【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1.4).∴抛物线H:y=a(x+1)2+4.将A(﹣3.0)代入.得:a(﹣3+1)2+4=0.解得:a=﹣1.∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1.由(1)知:y=﹣x2﹣2x+3.令x=0.得y=3.∴C(0.3).设直线AC的解析式为y=mx+n.∵A(﹣3.0).C(0.3).∴.解得:.∴直线AC的解析式为y=x+3.设P(m.﹣m2﹣2m+3).则E(m.m+3).∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+.∵﹣1<0.∴当m=﹣时.PE有最大值.∵OA=OC=3.∠AOC=90°.∴△AOC是等腰直角三角形.∴∠ACO=45°.∵PD⊥AB.∴∠ADP=90°.∴∠ADP=∠AOC.∴PD∥OC.∴∠PEF=∠ACO=45°.∵PF⊥AC.∴△PEF是等腰直角三角形.∴PF=EF=PE.∴S△PEF=PF•EF=PE2.∴当m=﹣时.S△PEF最大值=×()2=;(3)①当AC为平行四边形的边时.则有PQ∥AC.且PQ=AC.如图2.过点P作对称轴的垂线.垂足为G.设AC交对称轴于点H.则∠AHG=∠ACO=∠PQG.在△PQG和△ACO中..∴△PQG≌△ACO(AAS).∴PG=AO=3.∴点P到对称轴的距离为3.又∵y=﹣(x+1)2+4.∴抛物线对称轴为直线x=﹣1.设点P(x.y).则|x+1|=3.解得:x=2或x=﹣4.当x=2时.y=﹣5.当x=﹣4时.y=﹣5.∴点P坐标为(2.﹣5)或(﹣4.﹣5);②当AC为平行四边形的对角线时.如图3.设AC的中点为M.∵A(﹣3.0).C(0.3).∴M(﹣.).∵点Q在对称轴上.∴点Q的横坐标为﹣1.设点P的横坐标为x.根据中点公式得:x+(﹣1)=2×(﹣)=﹣3.∴x=﹣2.此时y=3.∴P(﹣2.3);综上所述.点P的坐标为(2.﹣5)或(﹣4.﹣5)或(﹣2.3).1.(2021秋•长兴县月考)如图.在平面直角坐标系xOy中.抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).点D为线段BC上一点.过点D作y轴的平行线交抛物线于点E.连结BE.(1)求抛物线的解析式;(2)当△BDE为直角三角形时.求线段DE的长度;(3)在抛物线上是否存在这样的点P.使得∠ACP=45°.若存在.求出点P的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+4x﹣3 (2)DE的长度为2 (3)P(.﹣)【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).∴.解得:.∴抛物线的解析式为y=﹣x2+4x﹣3.(2)令x=0.则y=﹣3.∴C(0.﹣3).设直线BC的解析式为y=kx+n.∴.解得:.∴直线BC的解析式为y=x﹣3.∵点D为线段BC上一点.∴设D(m.m﹣3).则点E(m.﹣m2+4m﹣3).∴DE=(﹣m2+4m﹣3)﹣(m﹣3)=﹣m2+3m.∵B(3.0).C(0.﹣3).∴OB=OC=3.∴∠OBC=∠OCB=45°.∵DE∥y轴.∴∠EDB=∠OCB=45°.∴点D不可能是直角的顶点.①当点B为直角的顶点时.设DE交x轴于点F.∵∠BDE=45°.∠EBD=90°.∴∠DEB=45°.∴△BED为等腰直角三角形.∴EF=FD=DE.∵DF=3﹣m.∴3﹣m=(﹣m2+3m).解得:m=2或3(m=3不合题意.舍去).∴m=2.∴DE=﹣22+3×2=﹣4+6=2.②当点E为直角顶点时.此时边EB在x轴上.点E与点A重合.∴m=1.∴DE=﹣12+3×1=﹣1+3=2.综上.当△BDE为直角三角形时.线段DE的长度为2.(3)在抛物线上存在点P.使得∠ACP=45°.理由:∵A(1.0).∴OA=1.∴ABOB﹣OA=2.∴AC==.延长CP交x轴于点F.如图.由(2)知:∠OBC=∠OCB=45°.∴∠AFC+∠FCB=45°.∵∠ACP=45°.∴∠ACB+∠FCB=∠ACP=45°.∴∠AFC=∠ACB.∵∠F AC=∠CAB.∴△AFC∽△ACB.∴.∴.∴AF=5.∴OF=OA+AF=6.∴F(6.0).设直线CF的解析式为y=dx+e.∴.解得:.∴直线FC的解析式为y=x﹣3.∴.解得:..∴点P的坐标为(.﹣).2.(2021秋•新荣区月考)如图1.在平面直角坐标系中.二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1.0).B(4.0).与y轴交于C(0.4).(1)求该二次函数的解析式.(2)二次函数位于x轴上方的图象上是否存在点P.使得S△BOP=6S△AOC?如果存在.请求出点P的坐标;若不存在.请说明理由.(3)如图2.D为线段BC上的一个动点.过点D作DE∥y轴.交二次函数的图象于点E.求线段DE长度的最大值.【答案】(1)y=﹣x2+3x+4 (2)P(1.6)或P(2.6)(3)当m=2时.ED有最大值4【解答】解:(1)将点A(﹣1.0).B(4.0).C(0.4)代入y=ax2+bx+c.得.解得.∴y=﹣x2+3x+4;(2)存在.理由如下:∵A(﹣1.0).B(4.0).C(0.4).∴OB=4.AO=1.CO=4.∴S△ACO=×1×4=2.∵S△BOP=6S△AOC.∴S△BOP=12.设P(t.﹣t2+3t+4).∴S△BOP=12=×4×(﹣t2+3t+4).解得t=1或t=2.∴P(1.6)或P(2.6);(3)设直线BC的解析式为y=kx+b.∴.解得.∴y=﹣x+4.设D(m.﹣m+4).则E(m.﹣m2+3m+4).∴ED=﹣m2+3m+4+m﹣4=﹣m2+4m=﹣(m﹣2)2+4.∵D为线段BC上的一个动点.∴0≤m≤4.∴当m=2时.ED有最大值41.(2021•内江)如图.抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.与y轴交于点C.直线l与抛物线交于A、D两点.与y轴交于点E.点D的坐标为(4.3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方.连接P A、PD.求当△P AD面积最大时点P 的坐标及该面积的最大值;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.【答案】(1)y=﹣x2+x+3,y=x+1 (2)△P AD的面积的最大值为.P(1.)(3)Q的坐标为(0.)或(0.﹣9)【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.∴设抛物线的解析式为y=a(x+2)(x﹣6).∵D(4.3)在抛物线上.∴3=a(4+2)×(4﹣6).解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣6)=﹣x2+x+3.∵直线l经过A(﹣2.0)、D(4.3).设直线l的解析式为y=kx+m(k≠0).则.解得..∴直线l的解析式为y=x+1;(2)如图1中.过点P作PK∥y轴交AD于点K.设P(m.﹣m2+m+3).则K(m.m+1).∵S△P AD=•(x D﹣x A)•PK=3PK.∴PK的值最大值时.△P AD的面积最大.∵PK=﹣m2+m+3﹣m﹣1=﹣m2+m+2=﹣(m﹣1)2+.∵﹣<0.∴m=1时.PK的值最大.最大值为.此时△P AD的面积的最大值为.P(1.).(3)如图2中.将线段AD绕点A逆时针旋转90°得到AT.则T(﹣5.6).设DT交y轴于点Q.则∠ADQ=45°.∵D(4.3).∴直线DT的解析式为y=﹣x+.∴Q(0.).作点T关于AD的对称点T′(1.﹣6).则直线DT′的解析式为y=3x﹣9.设DQ′交y轴于点Q′.则∠ADQ′=45°.∴Q′(0.﹣9).综上所述.满足条件的点Q的坐标为(0.)或(0.﹣9).2.(2021•西藏)在平面直角坐标系中.抛物线y=﹣x2+bx+c与x轴交于A.B两点.与y轴交于点C.且点A的坐标为(﹣1.0).点C的坐标为(0.5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时.求点P的坐标;(3)图(乙)中.若点M是抛物线上一点.点N是抛物线对称轴上一点.是否存在点M使得以B.C.M.N为顶点的四边形是平行四边形?若存在.请求出点M的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+4x+5 (2)P(.)(3)M的坐标为:(3.8)或(﹣3.﹣16)或(7.﹣16)【解答】解:(1)将A的坐标(﹣1.0).点C的坐(0.5)代入y=﹣x2+bx+c得:.解得.∴抛物线的解析式为y=﹣x2+4x+5;(2)过P作PD⊥x轴于D.交BC于Q.过P作PH⊥BC于H.如图:在y=﹣x2+4x+5中.令y=0得﹣x2+4x+5=0.解得x=5或x=﹣1.∴B(5.0).∴OB=OC.△BOC是等腰直角三角形.∴∠CBO=45°.∵PD⊥x轴.∴∠BQD=45°=∠PQH.∴△PHQ是等腰直角三角形.∴PH=.∴当PQ最大时.PH最大.设直线BC解析式为y=kx+5.将B(5.0)代入得0=5k+5.∴k=﹣1.∴直线BC解析式为y=﹣x+5.设P(m.﹣m2+4m+5).(0<m<5).则Q(m.﹣m+5).∴PQ=(﹣m2+4m+5)﹣(﹣m+5)=﹣m2+5m=﹣(m﹣)2+.∵a=﹣1<0.∴当m=时.PQ最大为.∴m=时.PH最大.即点P到直线BC的距离最大.此时P(.);(3)存在.理由如下:抛物线y=﹣x2+4x+5对称轴为直线x=2.设M(s.﹣s2+4s+5).N(2.t).而B(5.0).C(0.5).①以MN、BC为对角线.则MN、BC的中点重合.如图:∴.解得.∴M(3.8).②以MB、NC为对角线.则MB、NC的中点重合.如图:∴.解得.∴M(﹣3.﹣16).③以MC、NB为对角线.则MC、NB中点重合.如图:.解得.综上所述.M的坐标为:(3.8)或(﹣3.﹣16)或(7.﹣16).3.(2021•湘潭)如图.一次函数y=x﹣图象与坐标轴交于点A、B.二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C.点P是对称轴上一动点.在抛物线上是否存在点Q.使得以B、C、P、Q为顶点的四边形是菱形?若存在.求出Q点坐标;若不存在.请说明理由.【答案】(1)y=x2﹣x﹣(2)Q的坐标为:(1.﹣)或(﹣1.0)或(3.0)【解答】解:(1)在y=x﹣中.令x=0得y=﹣.令y=0得x=3.∴A(3.0).B(0.﹣).∵二次函数y=x2+bx+c图象过A、B两点.∴.解得.∴二次函数解析式为y=x2﹣x﹣;(2)存在.理由如下:由二次函数y=x2﹣x﹣可得其对称轴为直线x==1.设P(1.m).Q(n.n2﹣n﹣).而B(0.﹣).∵C与B关于直线x=1对称.①当BC、PQ为对角线时.如图:此时BC的中点即是PQ的中点.即.解得.∴当P(1.﹣).Q(1.﹣)时.四边形BQCP是平行四边形.由P(1.﹣).B(0.﹣).C(2.﹣)可得PB2==PC2.∴PB=PC.∴四边形BQCP是菱形.∴此时Q(1.﹣);②BP、CQ为对角线时.如图:同理BP、CQ中点重合.可得.解得.∴当P(1.0).Q(﹣1.0)时.四边形BCPQ是平行四边形.由P(1.0).B(0.﹣).C(2.﹣)可得BC2=4=PC2.∴四边形BCPQ是菱形.∴此时Q(﹣1.0);③以BQ、CP为对角线.如图:BQ、CP中点重合.可得.解得.∴P(1.0).Q(3.0)时.四边形BCQP是平行四边形.由P(1.0).B(0.﹣).C(2.﹣)可得BC2=4=PC2.∴四边形BCQP是菱形.∴此时Q(3.0);综上所述.Q的坐标为:(1.﹣)或(﹣1.0)或(3.0).4.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1.0).点B(3.0).顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1.点P在抛物线上.连接CP并延长交x轴于点D.连接AC.若△DAC是以AC为底的等腰三角形.求点P的坐标;(3)如图2.在(2)的条件下.点E是线段AC上(与点A.C不重合)的动点.连接PE.作∠PEF=∠CAB.边EF交x轴于点F.设点F的横坐标为m.求m的取值范围.【答案】(1)y= ﹣(x﹣1)2+4 ,C(1.4)(2)P()(3)﹣1<m≤【解答】解:(1)将点A(﹣1.0).点B(3.0)代入y=ax2+bx+3得:.解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴顶点C(1.4).(2)设AC交y轴于点F.连接DF.过点C作CE⊥x轴于点E.如图.∵A(﹣1.0).C(1.4).∴OA=1.OE=1.CE=4.∴OA=OE.AC==2.∵FO⊥AB.CE⊥AB.∴FO∥CE.∴OF=CE=2.F为AC的中点.∵△DAC是以AC为底的等腰三角形.∴DF⊥AC.∵FO⊥AD.∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4.0).设直线CD的解析式为y=kx+m.∴.解得:.∴直线CD的解析式为y=﹣.∴.解得:..∴P().(3)过点P作PH⊥AB于点H.如下图.则OH=.PH=.∵OD=4.∴HD=OD﹣OH=.∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x.AE=y.则CE=2﹣y.∵DA=DC.∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°.∠AEF+∠PEF+∠CEP=180°.又∵∠PEF=∠CAB.∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时.x即AF有最大值.∵OA=1.∴OF的最大值为﹣1=.∵点F在线段AD上.∴点F的横坐标m的取值范围为﹣1<m≤.1.(2021•宝鸡模拟)如图.已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1.0)和B.与y轴交于点C(0.3).(1)求此抛物线的解析式及点B的坐标;(2)设抛物线的顶点为D.连接CD、DB、CB、AC.①求证:△AOC∽△DCB;②在坐标轴上是否存在与原点O不重合的点P.使以P、A、C为顶点的三角形与△DCB 相似?若存在.请直接写出点P的坐标;若不存在.请说明理由.【答案】(1)B(3.0)(2)①略.②点P的坐标为(9.0)或(0.﹣).【解答】解:(1)把A(﹣1.0)、C(0.3)代入y=﹣x2+bx+c.得.解得.∴此抛物线的解析式为y=﹣x2+2x+3.当y=0时.则﹣x2+2x+3=0.解得x1=﹣1.x2=3.∴B(3.0).(2)①如图1.∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴抛物线的顶点D的坐标为(1.4).∵B(3.0).C(0.3).∴CD2=12+(4﹣3)2=2.CB2=32+32=18.BD2=(3﹣1)2+42=20.∴CD2+CB2=BD2=20.∴△DCB是直角三角形.且∠DCB=90°.∴∠AOC=∠DCB=90°.∵CD=.CB==3.OA=1.OC=3.∴==.==.∴=.∴△AOC∽△DCB.②存在.如图2.点P在x轴上.△COP∽△DCB.且∠COP=∠DCB=90°.∠OPC=∠CBD.∴=.∴OP===9.∴P(9.0);如图3.点P在y轴上.△P AC∽△DCB.且∠P AC=∠DCB=90°.∠ACP=∠CBD.∴.∵AC===.BD==.∴CP===.∴OP=﹣3=.∴P(0.﹣).综上所述.点P的坐标为(9.0)或(0.﹣).2.(2021•中山市模拟)如图.抛物线y=﹣x﹣3与x轴交于A.B两点(点A在点B的左侧).与y轴交于点C.直线l与抛物线交于A.D两点.与y轴交于点E.点D的坐标为(4.﹣3).(1)请直接写出A.B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点.点P的横坐标为m(m≥0).过点P作PM⊥x轴.垂足为M.PM 与直线l交于点N.当点N是线段PM的三等分点时.求点P的坐标;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.【答案】(1)y=﹣x﹣1 (2)P的坐标为(3.﹣)或(0.﹣3)(3)点Q的坐标为(0.9)或(0.﹣)【解答】解:(1)令y=0.得y=x2﹣x﹣3=0.解得.x=﹣2.或x=6.∴A(﹣2.0).B(6.0).设直线l的解析式为y=kx+b(k≠0).则.解得..∴直线l的解析式为y=﹣x﹣1;(2)如图1.根据题意可知.点P与点N的坐标分别为P(m.m2﹣m﹣3).N(m.﹣m ﹣1).∴PM=﹣m2+m+3.MN=m+1.NP=﹣m2+m+2.分两种情况:①当PM=3MN时.得﹣m2+m+3=3(m+1).解得.m=0.或m=﹣2(舍).∴P(0.﹣3);②当PM=3NP时.得﹣m2+m+3=3(﹣m2+m+2).解得.m=3.或m=﹣2(舍).∴P(3.﹣);∴综上所述:P的坐标为(3.﹣)或(0.﹣3);(3)∵直线l:y=﹣x﹣1与y轴交于点E.∴点E的坐标为(0.﹣1).分两种情况:①如图2.当点Q在y轴的正半轴上时.记为点Q1.过Q1作Q1H⊥AD于点H.则∠Q1HE=∠AOE=90°.∵∠Q1EH=∠AEO.∴△Q1EH∽△AEO.∴.即.∴Q1H=2HE.∵∠Q1DH=45°.∠Q1HD=90°.∴Q1H=DH.∴DH=2EH.∴HE=ED.连接CD.∵C(0.﹣3).D(4.﹣3).∴CD⊥y轴.∴ED===2.∴HE=ED=2.Q1H=2EG=4.∴Q1E==10.∴Q1O=Q1E﹣OE=9.∴Q1(0.9);②如图3.当点Q在y轴的负半轴上时.记为点Q2.过Q2作Q2G⊥AD于G.则∠Q2GE=∠AOE=90°.∵∠Q2EG=∠AEO.∴△Q2GE∽△AOE.∴.即.∴Q2G=2EG.∵∠Q2DG=45°.∠Q2GD=90°.∴∠DQ2G=∠Q2DG=45°.∴DG=Q2G=2EG.∴ED=EG+DG=3EG.由①可知.ED=2.∴3EG=2.∴EG=.∴Q2G=.∴EQ2==.∴OQ2=OE+EQ2=.∴Q2(0.﹣).综上.点Q的坐标为(0.9)或(0.﹣).3.(2020•长春模拟)如图.抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0)(点A在点B的左边).与y轴交于点C.过点C作CD∥x轴.交抛物线于点D.过点D作DE∥y轴.交直线BC于点E.点P在抛物线上.过点P作PQ∥y轴交直线CE于点Q.连接PB.设点P 的横坐标为m.PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时.求d关于m的函数关系式;(4)当△PQB是等腰三角形时.直接写出m的值.【答案】(1)y=﹣x2+4x﹣3 (2)y=x﹣3(3)当0<m<3时.PQ=﹣m2+3m.当3≤m<4时.PQ=m2﹣3m;(4)m=1或2或±【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0).∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C.∴点C(0.﹣3)设直线BC解析式为:y=kx﹣3.∴0=3k﹣3∴k=1.∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m.PQ∥y轴.∴点P(m.﹣m2+4m﹣3).点Q(m.m﹣3).当0<m<3时.PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m.当3≤m<4时.PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3.0).点C(0.﹣3).∴OB=OC=3.∴∠OCB=∠OBC=45°.∵PQ∥OC.∴∠PQB=45°.若BP=PQ.∴∠PQB=∠PBQ=45°.∴∠BPQ=90°.即点P与点A重合.∴m=1.若BP=QB.∴∠BQP=∠BPQ=45°.∴∠QBP=90°.∴BP解析式为:y=﹣x+3.∴解得:.∴m=2;若PQ=QB.∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2.或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2.∴m=±.综上所述:m=1或2或±4.(2021•黄冈二模)如图.抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1.0)和点B(2.0).与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1.连接BC.点D是直线BC上方抛物线上的点.连接OD、CD.OD交BC于点F.当S△COF:S△CDF=2:1时.求点D的坐标;(3)如图2.点E的坐标为(0.﹣1).在抛物线上是否存在点P.使∠OBP=2∠OBE?若存在.请直接写出符合条件的点P的坐标;若不存在.请说明理由.【答案】(1)y=﹣x2+x+2 (2)D(1.2)(3)点P的坐标为()或(﹣)【解答】解:(1)∵A(﹣1.0).B(2.0).∴把A(﹣1.0).B(2.0)代入y=ax2+bx+2得..解得..∴该抛物线的函数解析式为y=﹣x2+x+2;(2)如图1.过点D作DH∥y轴交BC于点H.交x轴于点G.∵抛物线y=﹣x2+x+2与y轴交于点C.设直线BC解析式为y=kx+b.则.解得.∴直线BC解析式为y=﹣x+2.∵S△COF:S△CDF=2:1.∴OF:DF=2:1.∵DH∥OC.∴△OFC∽△DFH.∴=2.∴OC=2DH.设D(a.﹣a2+a+2).则H(a.﹣a+2).∴DH=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a.∴2=2(﹣a2+2a).解得a=1.∴D(1.2).(3)①当点P在x轴上方时.在y轴上取点G(0.1).连接BG.则∠OBG=∠OBE.过点B作直线PB交抛物线于点P.交y轴于点M.使∠GBM=∠GBO.则∠OBP=2∠OBE.过点G作GH⊥BM.∵E(0.﹣1).∴OE=OG=GH=1.设MH=x.则MG=.在Rt△OBM中.OB2+OM2=MB2.∴(+1)2+4=(x+2)2.解得:x=.故MG===.∴OM=OG+MG=1+=.∴点M(0.).将点B(2.0)、M(0.)的坐标代入一次函数表达式y=mx+n..解得:.∴直线BM的表达式为:y=﹣x+.∴.解得:x=或x=2(舍去).∴点P(.);②当点P在x轴下方时.作点M(0.)关于x轴的对称点N(0.﹣).求得直线BN的解析式为y=x﹣.∴.解得.x=﹣或x=2(舍去).∴点P(﹣.﹣);综合以上可得.点P的坐标为()或(﹣).5.(2021•阳东区模拟)如图.已知抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1.0).与y轴相交于点N(0.3).抛物线的顶点为D.经过点A的直线y=kx+1与抛物线y=﹣x2+bx+c 相交于点C.(1)求抛物线的解析式;(2)若P是抛物线上位于直线AC上方的一个动点.设点P的横坐标为t.过点P作y轴的平行线交AC于M.当t为何值时.线段PM的长最大.并求其最大值;(3)若抛物线的对称轴与直线AC相交于点B.E为直线AC上的任意一点.过点E作EF ∥BD交抛物线于点F.以B.D.E.F为顶点的四边形能否为平行四边形?若能.请直接写出点E的坐标;若不能.请说明理由.【答案】(1)y=﹣x2+2x+3 (2)t=时.线段PM的长最大.PM最大值=(3)E的坐标为(0.1)或(.)或(.).【解答】解:(1)∵抛物线y=﹣x2+bx+c与直线相交于A(﹣1.0).N(0.3)两点.∴.解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图1.将A(﹣1.0)代入直线AC的解析式为y=kx+1.得﹣k+1=0.解得k=1.∴直线AC:y=x+1.∵点P的横坐标为t.且PM∥y轴.∴P(t.﹣t2+2t+3).M(t.t+1).∵点P在直线AC上方的抛物线上.∴﹣1<t<3.∴PM=﹣t2+2t+3﹣(t+1)=﹣t2+t+2=﹣(t﹣)2+.∵﹣1<0.且﹣1<<3.∴当t=时.线段PM的长最大.PM最大值=;(3)能.设点E的横坐标为t.则点F的横坐标为t.当﹣1<t<3.如图2.由(2)得.EF=﹣t2+t+2;∵y=﹣x2+2x+3=﹣(x﹣1)2+4.∴该抛物线的对称轴为直线x=1.顶点D的坐标为(1.4).直线AC:y=x+1.当x=1时.y=2.∴B(1.2).∴BD=4﹣2=2.∵EF∥BD.∴当EF=BD=2时.四边形BDNG是平行四边形.∴﹣t2+t+2=2.解得t1=0.t2=1(不符合题意.舍去).对于直线y=x+1.当x=0时.y=1.∴E(0.1);当x<﹣1或x>3时.如图3.EF∥BD或E′F′∥BD.则EF=(t+1)﹣(﹣t2+2t+3)=t2﹣t﹣2.∴t2﹣t﹣2=2.解得t1=.t2=.直线y=x+1.当x=时.y=;当x=时.y=.∴E(.).E′(.).综上所述.点E的坐标为(0.1)或(.)或(.).。
专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。
抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
初三二次函数经典题型及解析一、二次函数基础概念题型初三二次函数的概念可是很重要的哦。
比如说,给你一个函数表达式,像y = ax²+bx + c(a≠0),然后问你这个函数是不是二次函数。
这时候你就得瞅准了,a不能等于0哦,要是a等于0了,那就变成一次函数了。
就像y = 3x + 2,这就是一次函数,和二次函数可不一样啦。
还有那种给你实际问题,让你列出二次函数表达式的题。
比如说,一个小球从高处落下,它下落的高度h和时间t 的关系,根据物理知识和二次函数的概念,你就能列出h = 1/2gt²(这里g是重力加速度,是个常数)这样的表达式。
这种题就需要你理解二次函数在实际中的意义,把实际问题转化成数学表达式。
二、二次函数图像题型二次函数的图像那可太有趣了。
它的图像是一条抛物线呢。
当a>0的时候,抛物线开口向上,就像一个笑脸一样;当a<0的时候,抛物线开口向下,就有点像哭脸啦。
对称轴是x = -b/2a这个公式可一定要记住哦。
比如说,给你一个二次函数y = 2x² - 4x + 1,先求对称轴,把a = 2,b = -4代入对称轴公式,得到x = -(-4)/(2×2)=1。
然后你还可以求顶点坐标,把x = 1代入函数表达式,就能算出y的值啦。
还有那种通过图像判断a、b、c的取值范围的题。
如果抛物线开口向上,那a>0;如果对称轴在y轴左侧,那么b和a同号,如果对称轴在y轴右侧,b和a异号;当x = 0时,y = c,所以看图像与y轴交点就知道c的取值啦。
三、二次函数最值题型二次函数的最值问题也是经常考的呢。
对于二次函数y = ax²+bx + c(a≠0),当a>0时,函数有最小值,这个最小值就在顶点处取得,也就是y = (4ac - b²)/4a;当a<0时,函数有最大值,同样是在顶点处取得这个值。
比如说,有个二次函数y = -x²+2x + 3,因为 a = -1<0,所以这个函数有最大值。
中考考点二次函数知识点汇总全二次函数是高中数学中的重要内容之一,也是中考考试的重点内容。
它是由一次项、常数项和二次项组成的一元二次方程的图像,其函数关系为y=ax²+bx+c,其中a、b、c为常数,且a≠0。
下面将汇总全面介绍中考中二次函数的知识点。
1.二次函数的图像特点:-当a>0时,二次函数的开口向上,图像是一个U型,顶点在下方;-当a<0时,二次函数的开口向下,图像是一个倒U型,顶点在上方;-函数的图像关于顶点对称。
2.顶点坐标与轴对称:-二次函数的顶点坐标是(-b/2a,f(-b/2a)),其中f(x)为二次函数的定义域;-二次函数的轴对称是x=-b/2a。
3.判断二次函数的开口方向及平移:-当a>0时,二次函数的开口向上;-当a<0时,二次函数的开口向下;-平移后的二次函数的顶点坐标为(x-h,f(x-h)),其中h为平移的横坐标单位,f(x)为原二次函数。
4.与坐标轴的交点与函数值:- 与x轴的交点(零点)是二次方程ax²+bx+c=0的解;-与y轴的交点是二次函数的常数项c;-函数值f(x)是二次函数在x处的y值。
5.最值及取值范围:-当a>0时,二次函数的最小值是顶点的纵坐标,没有最大值,取值范围是[最小值,+∞);-当a<0时,二次函数的最大值是顶点的纵坐标,没有最小值,取值范围是(-∞,最大值]。
6.对称轴的方程及关于顶点的对称点:-对称轴的方程是x=-b/2a;-对于点P(x,y),在对称轴上的对称点是P'(-b/a-x,y)。
7.解析式与一般式转换:- 一般式:y=ax²+bx+c,解析式则为y=a(x-h)²+k,其中(h,k)为顶点坐标;- 解析式:y=a(x-p)(x-q),则一般式为y=ax²-(ap+aq)x+apq,其中p、q是解析式的两个根。
8.方程与二次函数的关系:- 二次函数y=ax²+bx+c的解析式的自变量x和函数值y满足方程y=ax²+bx+c;- 方程y=ax²+bx+c=0的解是对应二次函数的图像在x轴上的交点。
中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。
解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。
【中考高分指南】数学(选择+填空) 【备战2024年中考·数学考点总复习】(全国通用)实际问题与二次函数1.二次函数的定义形如 y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的函数,叫做x 的二次函数. 2.二次函数y=ax 2+bx+c (a ≠0)的图象和性质函数二次函数y=ax 2+bx +c (a ,b ,c 为常数,a ≠0)图象a >0a <0性质①当a >0时,抛物线开口向上,并向上无限延伸. ②对称轴是a b x 2−=,顶点坐标是①当a <0时,抛物线开口向下,并向下无限延伸.②对称轴是abx 2−=,顶点坐标是(1)二者的形状相同,位置不同,y=a (x -h )2+k 是由y=ax 2通过平移得来的,平移后的顶点坐标为(h,k). (2)y=ax 2的图象y=a (x -h )2的图象y=a (x -h )2+k 的图象. 4.二次函数的解析式的确定要确定二次函数的解析式,就是要确定解析式中的待定系数(常数):(1)当已知抛物线上任意三点时,通常将函数的解析式设为一般式:y=ax 2+bx+c (a ≠0);(2)当已知抛物线的顶点坐标和抛物线上另一点时,通常将函数的解析式设为顶点式:y=a (x -h )2+k (a ≠0). 5.二次函数与一元二次方程的关系二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点.当图象与x 轴有交点时,令y=0,解方程ax 2+bx+c=0就可求出与x 轴交点的横坐标.6设抛物线y=ax 2+bx+c (a>0)与x 轴交于(x 1,0),(x 2,0)两点,其中x 1<x 2,则不等式ax 2+bx+c>0的解集为x>x 2或x<x 1,不等式ax 2+bx+c<0的解集为x 1<x<x 2.右左上下【考点1】图形问题(实际问题与二次函数)【例1】(2023·天津)如图,要围一个矩形菜园ABCD,其中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD面积为192m;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3【答案】C【解析】解:设AD边长为xm,则AB边长为长为40−x2m,当AB=6时,40−x2=6,解得:x=28,∵AD的长不能超过26m,∴x≤26,故①不正确;∵菜园ABCD面积为192m2,∴x·40−x2=192,整理得:x2−40x+384=0,解得:x=24或x=16,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,故②正确;设矩形菜园的面积为ym2,根据题意得:y=x·40−x2=−12(x2−40x)=−12(x−20)2+200,∵−12<0,20<26,∴当x=20时,y有最大值,最大值为200.故③正确.∴综上所述,结论②③正确,即正确的结论有2个,故选:C.设AD边长为xm,则AB边长为长为40−x2m,根据AB=6列出方程,解方程求出x的值,根据x取值范围判断①;根据矩形的面积=192.解方程求出x的值可以判断②;设矩形菜园的面积为ym2,根据矩形的面积公式列出函数解析式,再根据函数的性质求函数的最值可以判断③.此题主要考查了一元二次方程和二次函数的应用,读懂题意,找到等量关系准确地列出函数解析式和方程是解题的关键.【例2】(2024·湖北模拟)用12米长的围栏围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,小红提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )A. 方案1B. 方案2C. 方案3D. 都一样【答案】C【解析】解:设围成的图形的面积为ym2,方案一:设与墙相邻的边长为x米,则另一边为(12−2x)米,由题意得:y=x(12−2x)=−2(x−3)2+18,当x=3时,y有最大值为18;方案二:∴等腰三角形的腰为6米,当顶角为直角时,面积最大,为:12×6×6=18;方案三:设圆的半径为r米,则:πr=12,解得:r=12π,∴y=12π(12π)2=72π≈23,∵23>18,故选:C.先分别算出各种方案中图形的面积,再比较大小求解.本题考查了二次函数的应用,计算图形的面积是解题的关键.1.(2024·浙江模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG 交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则S1S2与x的函数关系为( )A. 正比例函数关系B. 一次函数关系C. 反比例函数关系D. 二次函数关系【答案】B【解析】解:∵四边形ABCD,BCFG为正方形,∴AC=AE=ED=CD=x,BC=CF=FG=10−x,S1=S△EDK=12DE⋅DK,S2=S△EAC=12AC⋅AK,∵∠EDC=∠DFG=90°,∴ED//FG,∴△EDK∽△GFK,∴KF KD =FGED=10−xx,∴KD=x10−x⋅KF,∵DK+KF+CF=CD,∴KF+x10−x⋅KF+10−x=x,∴KF=(2x−10)(10−x)10,∴DK=x(2x−10)10,∴S1=12x⋅x(2x−10)10=12x2⋅2x−1010,S2=12x2,∴S1 S2=2x−110=15x−1,∴S1S2与x的函数关系为一次函数,故选:B.根据四边形ABCD,BCFG为正方形,得出AC=AE=ED=CD=x,BC=CF=FG=10−x,再根据△EDK∽△GFK求出KF和DF,再根据直角三角形的面积公式求出S1和S2,再作比值即可.本题考查二次函数的应用,关键是写出S1,S2的与x的关系式.2.(2024·江西模拟)用一张宽为x的矩形纸片剪成四个全等的直角三角形,如图1,然后把这四个全等的直角三角形纸片拼成一个赵爽弦图;如图2,若弦图的大正方形的边长为6,中间的小正方形面积为S,请探究S与x之间是什么函数关系( )A. 一次函数B. 二次函数C. 反比例函数D. 其它函数【答案】B【解析】解:设图2外面正方形为正方形ABCD,里面正方形为正方形EFGH,如图:∵四边形ABCD是边长为6的正方形,∴∠A=∠D=90°,AD=6,∵四边形EFGH为正方形,∴∠FEH=90°,EF=EH,∠AEF=∠DHE=90°−∠DEH,在△AEF与△DHE中,{∠A=∠D∠AEF=∠DHE EF=EH,∴△AEF≌△DHE(AAS),∴AE=DH=x,AF=DE=(6−x),∴S=EF2=AE2+AF2=x2+(6−x)2=2x2−12x+36,∴S与x之间是二次函数关系,故选:B.先根据正方形性质可得∠A=∠D,EF=EH,再由同角的余角相等得到∠AEF=∠DHE,就可以根据AAS证明△AEF≌△DHE,得出AE=DH=x,AF=DE=(6−x),再根据勾股定理,求出EF2,即可得到S与x之间的函数关系式,即可解答.本题考查正方形的性质、二次函数在实际生活中的应用,是中考高频考点,解题关键是证明△AEF≌△DHE.【考点2】图形运动问题(实际问题与二次函数)【例1】(2024·江苏模拟)如图,正方形ABCD 的边长为5,动点P 的运动路线为A →B →C ,动点Q 的运动路线为B →D.点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发,当一个点到达终点且停止运动时,另一个点也随之停止.设点P 运动的路程为x ,△BPQ 的面积为y ,则y 随x 变化的函数图象大致是( )A. B.C. D.【答案】B【解析】解:(1)点P 在AB 上运动时,0<x ≤5,如右图,∵正方形ABCD 的边长为5,点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发, 作QE ⊥AB 交AB 于点E ,则有AP =BQ =x ,∠EBQ =∠EQB =45∘, ∴BP =5−x ,QE =√22x , ∴△BPQ 的面积为:y =12BP ⋅QE 12×(5−x)×√22x =−√24x 2+5√24x(0<x ⩽5),∴此时图象为抛物线开口方向向下;(2)点P 在BC 上运动时,5<x ≤5√2,如右图,∵正方形ABCD 的边长为5,点P 与Q 以相同的均匀速度分别从A ,B 两点同时出发, 作QE ⊥BC 交BC 于点E ,则有AB +BP =BQ =x ,∠QBE =∠BQE =45∘, ∴BP =x −5,QE =√22x ,∴△BPQ 的面积为:y =12BP ⋅QE =12×(x −5)×√22x =√24x 2−5√24x(5<x ≤5√2), ∴此时图象是抛物线一部分,开口方向向上,且y 随x 的增大而增大; 综上,只有选项B 的图象符合, 故选B.分两种情况:P 点在AB 上运动和P 点在BC 上运动时;分别求出解析式即可. 本题主要考查动点问题的函数图象,正确的求出函数解析式是解题的关键.【例2】(2024·广东模拟)如图,菱形ABCD中,∠B=60∘,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒.则下列图象能大致反映y与x之间函数关系的是( )A. B.C. D.【答案】A【答案】本题考查了动点问题的函数图象,菱形的性质,等边三角形的判定和性质,锐角三角函数,二次函数的性质等知识,利用分类讨论思想解决问题是本题的关键.由菱形的性质可证△ABC和△ADC都是等边三角形,可得AC=AB=2,∠BAC=60∘=∠ACD,分两种情况讨论,由锐角三角函数和三角形的面积公式可求y与χ之间函数关系,由二次函数的性质可求解.【解答】解:当0≤x≤2时,如图1,过点Q作QH⊥AB于点H,由题意得BP=AQ=x,∵菱形ABCD中,∠B=60∘,AB=2∴AB=BC=CD=AD=2,∠B=∠D=60∘,∴△ABC和△ADC都是等边三角形,∴AC=AB=2,∠BAC=∠ACD=60∘∵sin∠BAC=HQAQ,∴HQ=AQ⋅sin60∘=√ 32x,∴△APQ的面积y=12(2−x)×√ 3x2=−√ 34(x−1)2+√ 34,当2<x≤4时,如图2,过点Q作QN⊥AC于点N,由题意得AP=CQ=x−2,∵sin∠ACD=NQCQ =√ 32,∴NQ=√ 32(x−2)∴△APQ的面积y=12(x−2)×√ 32(x−2)=√ 34(x−2)2,该图象开口向上,对称轴为直线x=2∴2<x≤4时,y随为的增大而增大,∴当x=4时,y有最大值为√ 3⋅故选A.1.(2024·安徽模拟)如图,在RtΔABC中,∠C=90∘,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的ΔCPO的面积y(cm2)与运动时间x(s)之间的函数图像大致是 ( )A. B.C. D.【答案】C【解析】本题考查的是二次函数的应用、二次函数的图象及根据实际问题列二次函数关系式的知识,依据三角形的面积公式列出函数关系式是解题的关键.先根据三角形的面积公式列出y与x的函数关系式,由y与x的函数关系式可知,函数图象是一条抛物线的一部分,且抛物线的开口向上,从而求得问题的答案.【解答】解:∵运动时间xs,则CP=xcm,CO=2xcm;∴S△CPO=12CP×CO=12x·2x=x2.∴△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0<x≤3).∴根据二次函数的图象特点,C正确.故选C.2.(2024·广东模拟)如图,在△ABC中,∠B=90∘,AB=6cm,BC=8cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )A. 18cm2B. 12cm2C. 9cm2D. 3cm2【答案】C【解析】本题考查了有关于直角三角形的动点型问题,二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是把面积的最值问题,转化为函数求最值问题,求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.先根据已知点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列出S关于t的函数关系式,并求最值即可.【解答】解:在Rt△ABC中,∵AB=6cm,BC=8cm,由题意得:AP=t,BP=6−t,BQ=2t,设△PBQ的面积为S,则S=12×BP×BQ=12×2t×(6−t),∴S=−t2+6t=−(t2−6t+9−9)=−(t−3)2+9,∵P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.【考点3】拱桥问题(实际问题与二次函数)【例1】(2024·陕西模拟)某市新建一座景观桥.如图,桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),则与CD的距离为5米的景观灯杆MN的高度为( )A. 13米B. 14米C. 15米D. 16米【答案】C【解析】略【例2】(2024·山西模拟)如图1是太原晋阳湖公园一座抛物线型拱桥,按如图所示建立坐标系,得到函数y=−125x2,在正常水位时水面宽AB=30米,当水位上升5米时,则水面宽CD=( )A. 20米B. 15米C. 10米D. 8米【答案】A【解析】解:∵AB=30米,∴当x=15时,y=−125×152=−9,当水位上升5米时,y=−4,把y=−4代入y=−125x2得,−4=−125x2,解得x=±10,此时水面宽CD=20米,故选:A.根据正常水位时水面宽AB=30米,求出当x=15时y=−9,再根据水位上升5米时y=−4,代入解析式求出x即可.本题考查二次函数的应用,关键是根据图形找出相关数据进行求值.1.(2024·河北模拟)如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面3m,水面宽6m.如图(2)建立平面直角坐标系,则抛物线的解析式是( )A. y=−13x2 B. y=13x2 C. y=−3x2 D. y=3x2【答案】A【解析】解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(−3,−3)点,故−3=9a,a=−13,故y=−13x2,故选:A.设出抛物线方程y=ax2(a≠0)代入坐标求得a.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式.2.(2024·陕西模拟)廊桥是我国古老的文化遗产,如图是某座下方为抛物线形的廊桥示意图.已知抛物线的函数表达式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是( )A. 8√ 5米B. 10米C. 6√ 5米D. 8√ 3米【答案】A【解析】本题考查了二次函数的应用.由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E的横坐标即为EF的长.【解答】解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=−140x2+10得:x=±4√ 5,即E点坐标为(−4√ 5,8),F点坐标为(4√ 5,8),∴EF=8√ 5(米).3.(2024·山西模拟)小明在周末外出的路上经过了如图所示的隧道,他想知道隧道顶端到地面的距离,于是他查阅了相关资料,知道了隧道的截面是由抛物线和矩形构成的.如图,以矩形的顶点A为坐标原点,地面AB所在直线为x轴,竖直方向为y轴,建立平面直角坐标系,抛物线的表达式为y=−14x2+bx+c,如果AB= 8m,AD=2m,则隧道顶端点N到地面AB的距离为( )A. 8mB. 7mC. 6mD. 5m【答案】C【解析】解:由题意可得:点D坐标为(0,2),点C的坐标为(0,8),将点D和C代入抛物线表达式可得{2=c2=−14×82+8b+c,解得{b=2c=2,∴y=−14x2+2x+2,令x=4,可得y=−1×42+2×4+2=6.4故选:C.根据条件易有点D坐标为(0,2),点C的坐标为(8,2),点N的横坐标为4,将点D和C代入抛物线表达式可解的b 和c的值,然后令x=4计算点N的纵坐标即为距离.本题主要考查二次函数的实际应用,能够根据条件得到对应点的坐标,解出抛物线表达式是解题的关键,然后在将实际问题转化为二次函数点的坐标问题.【考点4】销售问题(实际问题与二次函数)【例1】(2024·广东模拟)将进货单价为30元的某种商品按零售价100元1件卖出时,每天能卖出20件.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大的利润,则应降价( ) A. 5元 B. 15元 C. 25元 D. 35元【答案】C【解析】解:设应降价x元,则(20+x)(100−x−30)=−x2+50x+1400=−(x−25)2+2025,∵−1<0,∴当x=25元时,二次函数有最大值.∴为了获得最大利润,则应降价25元.故选:C.设应降价x元,所求利润的关系式为(20+x)(100−x−30)=−x2+50x+1400,根据二次函数的最值问题求得最大利润时x的值即可.此题考查二次函数在销售利润方面的应用,利润,公式:利润=销售价−成本价;还考查求二次函数的极值方法,求极值一般有三种方法:第一种根据图象顶点坐标直接得出;第二种是配成顶点式;第三种是利用顶点坐标公式进行计算.解题关键是熟练掌握以上方法.【例2】(2024·河北模拟)农特产品展销推荐会在杨凌举行.某农户销售一种商品,每千克成本价为40元.已知每千克售价不低于成本价,不超过80元.经调查,当每千克售价为50元时,每天的销量为100千克,且每千克售价每上涨1元,每天的销量就减少2千克.为使每天的销售利润最大,每千克的售价应定为( )A. 20B. 60C. 70D. 80【答案】C【解析】解:设每千克的售价应定为x千克,每天的销售利润为y元,根据题意得,y=(x−40)[100−2(x−50)]=−2x2+280x−8000=−2(x−70)2+1800,答:当为使每天的销售利润最大,每千克的售价应定为70元,故选:C.设每千克的售价应定为x千克,每天的销售利润为y元,根据题意得,y=−2(x−70)2+1800,根据二次函数的性质即可得到结论.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.1.(2024·河北模拟)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.( )A. 50B. 90C. 80D. 70【答案】D【解析】解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,故选:D.根据题意,可以写出利润和售价之间的函数关系式,然后根据二次函数的性质,即可得到当售价为多少时,可以获得最大利润.本题考查二次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式,利用二次函数的性质求最值.2.(2024·天津模拟)某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A. 50元B. 80元C. 90元D. 100元【答案】C【解析】略18.(2024·广东模拟)一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,每顶头盔的售价为80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现,每顶头盔的售价每降低1元,每月可多售出20顶.已知每顶头盔的进价为50元,则该商店每月获得最大利润时,每顶头盔的售价为( ) A. 60元 B. 65元 C. 70元 D. 75元【答案】C【解析】设每顶头盔降价x元,利润为w元.由题意可得,w=(80−x−50)(200+20x)=−20(x−10)2+ 8000,∴当x=10时,w取得最大值,此时80−x=70,即该商店每月获得最大利润时,每顶头备的售价为70元,故选C.【考点5】喷水问题(实际问题与二次函数)【例1】(2024·北京模拟)某市公园欲修建一个圆型喷泉池,在水池中垂直于地面安装一个柱子OP,安置在柱子顶端P处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,在过OP的任一平面上,建立平面直角坐标系(如图所示),水平距离x(m)与水流喷出的高度y(m)之间的关系式为y=−29x2+43x+2,则水流喷出的最大高度是( )A. 5.5mB. 5mC. 4.5mD. 4m 【答案】D【解析】本题考查二次函数的应用,关键是把抛物线解析式化为顶点式.把抛物线解析式化为顶点式,由函数的性质求最值.【解答】解:y=−29x2+43x+2=−29(x−3)2+4,∵−29<0,∴当x=3时,y有最大值,最大值为4,故选:D.【例2】(2024·山东模拟)如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB的长度)是1米.当喷射出的水流距喷水头的水平距离为8米时,达到最大高度1.8米,水流喷射的最大水平距离OC是( )A. 20米B. 18米C. 10米D. 8米【答案】A【解析】由题意可知抛物线的顶点坐标为(8,1.8),设水流所在抛物线的表达式为y=a(x−8)2+1.8(a≠0),将点(0,1)代入,得1=a(0−8)2+1.8,解得a=−180,∴y=−180(x−8)2+1.8.当y=0时,0=−180(x−8)2+1.8,解得x=−4(舍去)或x=20.∴水流喷射的最大水平距离OC是20米,故选A.1.(2024·广东模拟)如图,点O为一个喷水池的中心,以点O为原点建立平面直角坐标系,喷水管的高度为2.25m,喷出的水柱可以看作是抛物线.当距离中心1m时,水柱的最高点为3m,则水柱落地的位置与喷水池中心的距离为( )A. 3mB. 4mC. 5mD. 6m【答案】A【解析】本题主要考查了二次函数的实际应用,正确理解题意求出抛物线解析式是解题的关键.根据题意设抛物线解析式为y=a(x−1)2+3,把(0,2.25)代入求出函数解析式,再令y=0,即可得出答案.【解答】解:由题意得,该抛物线的顶点坐标为(1,3),与y轴的交点坐标为(0,2.25),设抛物线解析式为y=a(x−1)2+3,把(0,2.25)代入到y=a(x−1)2+3中得:a+3=2.25,∴a=−0.75,∴抛物线解析式为y=−0.75(x−1)2+3,当y=0时,则−0.75(x−1)2+3=0,解得x=−1(舍去)或x=3,∴水柱落地的位置与喷水池中心的距离为3m,故选A.2.(2024·河北模拟)我校办公楼前的花园是一道美丽的风景,现计划在花园里再加上一喷水装置,水从地面喷出,如图,以水平地面为x轴,出水点为原点建立平面直角坐标系,水在空中划出的曲线是抛物线y=−x2+5x(单位:米)的一部分,则水喷出的最大高度是( )A. 4.5米B. 5米C. 6.25米D. 7米【答案】C【解析】解:∵水在空中划出的曲线是抛物线y=−x2+5x,∴喷水的最大高度就是水在空中划出的抛物线y=−x2+6x的顶点坐标的纵坐标,∴y=−x2+5x=−(x−2.5)2+6.25,∴顶点坐标为:(2.5,6.25),∴喷水的最大高度为6.25米,故选:C.根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=−x2+5x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.本题考查了二次函数的应用,从实际问题中整理出函数模型,利用函数的知识解决实际问题是解题的关键.3.(2024·吉林模拟)如图,要修建一个圆形喷水池,在池中心O点竖直安装一根水管,在水管的顶端A处安一个喷水头,使喷出的抛物线形水柱在与池中心O点的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心O点3m.则水管OA的高是A. 2mB. 2.25mC. 2.5mD. 2.8m【答案】B【解析】本题主要考查二次函数的应用,根据题意列出二次函数是解本题关键,属于基础题.可设水柱高度y 和水柱落地处离池中心距离x的关系为y=ax2+bx+c,根据待定系数法求出该二次函数解析式,然后令x=0,求出此时的y值即可.【解答】解:根据题意知喷出的抛物线形水柱的图像是二次函数,故可设水柱高度y和水柱落地处离池中心距离x的关系为y=ax2+bx+c,根据题意知函数y经过点(1,3),(3,0),且−b2a=1,代入y=ax2+bx+c得{a+b+c=39a+3b+c=0−b2a=1,解得{a=−34b=32c=94,∴y=−34x2+32x+94,当x=0时,函数值便是水管OA的高,∴水管OA的高为94m=2.25m,【考点6】其他问题(实际问题与二次函数)【例1】(2023·北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③【答案】A【解析】略【例2】(2023·上海)单板滑雪大跳台是北京冬奥会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x+m)2+k(a<0).某运动员进行了两次训练.第一次训练时,该运动员的水平距离x y的几组数据如图.根据上述数据,该运动员竖直高度的最大值为( ) 第一次训练数据A. 23.20cmB. 22.75cmC. 21.40cmD. 23cm【答案】A【解析】解:根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴k=23.20,即该运动员竖直高度的最大值为23.20m,故选:A.根据表格中数据求出顶点坐标即可.本题考查二次函数的应用,关键是根据表格中数据求出顶点坐标.1.(2024·湖北模拟)如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+ bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A. 10mB. 20mC. 15mD. 22.5m【答案】C【解析】此题考查了二次函数的应用,将点(0,54.0)、(40,46.2)、(20,57.9)分别代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则{c=54.01600a+40b+c=46.2400a+20b+c=57.9,解得:{a=−0.0195b=0.585c=54.0,∴抛物线的解析式为y=−0.0195x2+0.585x+54,开口向下,对称轴为直线x=−b2a =−0.5852×(−0.0195)=15,∴当该运动员起跳后飞行到最高点时,水平距离为15m.2.(2024·山西模拟)在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y(单位:米)与飞行的水平距离x(单位:米)之间具有函数关系y=−116x2+58x+32,则小康这次实心球训练的成绩为( )A. 14米B. 12米C. 11米D. 10米【答案】B【解析】本题考查了二次函数的应用.根据实心球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:当y=0时,则−116x2+58x+32=0,解得x=−2(舍去)或x=12,则小康这次实心球训练的成绩为12米.3.(2024·黑龙江模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−k)2+ℎ.已知球与O点的水平距离为6m 时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )A. 球不会过网B. 球会过球网但不会出界C. 球会过球网并会出界D. 无法确定【答案】C【解析】利用球与O点的水平距离为6m时,达到最高2.6m,可得k=6,ℎ=2.6,球从O点正上方2m的A处发出,将点(0,2)代入解析式求出函数解析式;利用当x=9时,y=−160(x−6)2+2.6=2.45,所以球能过球网;当y=0时,−160(x−6)2+2.6=0,解得:x1=6+2√ 39>18,x2=6−2√ 39(舍去),故会出界.此题主要考查了二次函数的应用,根据题意求出函数解析式是解题关键.【解答】解:∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x−6)2+2.6,∵抛物线y=a(x−6)2+2.6过点(0,2),∴2=a(0−6)2+2.6,解得:a=−1,60(x−6)2+2.6,故y与x的关系式为:y=−160(x−6)2+2.6=2.45>2.43,当x=9时,y=−160所以球能过球网;(x−6)2+2.6=0,当y=0时,−160解得:x1=6+2√ 39>18,x2=6−2√ 39(舍去)故会出界.故选C.。
2025年中考数学考点分类专题归纳二次函数知识点一、二次函数的定义一般地,如果2y ax bx c =++(a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数. 备注:如果2y ax bx c =++(a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零. a 的绝对值越大,抛物线的开口越小.知识点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①2y ax =;②2y ax k =+;③()2y a x h =-;④()2y a x h k =-+,其中2b h a =-,244ac b k a-=;⑤2y ax bx c =++.(以上式子a ≠0)几种特殊的二次函数的图象特征如下:2.抛物线的三要素:开口方向、对称轴、顶点.(1) a 的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;(2)平行于y 轴(或重合)的直线记作x=h .特别地,y 轴记作直线x=0. 3.抛物线()20y ax bx c a =++≠中,a ,b ,c 的作用:(1) a 决定开口方向及开口大小;(2) b 和a 共同决定抛物线对称轴的位置.由于抛物线2y ax bx c =++的对称轴是直线2b x a=-, 故:①b=0时,对称轴为y 轴;② 0b a > (即a 、b 同号)时,对称轴在y 轴左侧;③ 0ba< (即a 、b 异号)时,对称轴在y 轴右侧.(3) c 的大小决定抛物线2y ax bx c =++与y 轴交点的位置.当x=0时,y=c ,∴抛物线2y ax bx c =++与y 轴有且只有一个交点(0,c): ①c=0,抛物线经过原点; ②c>0,与y 轴交于正半轴;③c<0,与y 轴交于负半轴.4.用待定系数法求二次函数的解析式:(1)一般式:2y ax bx c =++(a ≠0).已知图象上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()2y a x h k =-+(a ≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成2y ax =的图象平移后所对应的函数.)(3)交点式:已知图象与x 轴的交点坐标x 1、x 2,通常选用交点式:()()12y a x x x x =--(a ≠0).(由此得根与系数的关系:12b x x a +=-,12cx x a⋅=).知识点三、二次函数与一元二次方程的关系函数2y ax bx c =++(a ≠0),当y=0时,得到一元二次方程20ax bx c ++=(a ≠0),那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时240b ac ∆=-> ,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时240b ac ∆=-= ,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时240b ac ∆=-<,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:知识点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 备注:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.1.(2024山东青岛)已知一次函数y x+c 的图象如图,则二次函数y =ax 2+bx+c 在平面直角坐标系中的图象可能是( )A.B.C.D.2.若满足x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣43.(2024山东德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.4.(2024湖南岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)5.抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1)B.(﹣1,1)C.(1,3)D.(﹣1,3)6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.47.(2024甘肃兰州A)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc >0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤8.(2024黑龙江绥化)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(﹣2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A.5个B.4个C.3个D.2个9.(2024山东日照)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个10.(2024辽宁抚顺)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个11.(2024四川资阳)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个12.(2024山东省烟台)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④13.(2024湖北恩施)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.514.(2024湖北荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个15.(2024湖南衡阳)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个16.(2024甘肃白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤17.(2024山东滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1 B.2 C.3 D.418.把抛物线y x2向右平移2个单位,则平移后所得抛物线的解析式为()A.y x2+2 B.y(x+2)2C.y x2﹣2 D.y(x﹣2)219.将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是()A.(0,3)或(﹣2,3)B.(﹣3,0)或(1,0)C.(3,3)或(﹣1,3)D.(﹣3,3)或(1,3)20.(2024贵州黔西南州)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是______.x…-1 0 1 2 …y…0 3 4 3 …21.(2024湖北黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或222.(2024山东潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或623.(2024贵州贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.m<3 B.m<2 C.﹣2<m<3 D.﹣6<m<﹣224.(2024广西玉林)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤1225.(2024四川巴中)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m26.(2024江苏连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m27.(2024黑龙江哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为________.28.(2024江苏淮安)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是________.29.(2024湖北孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是___________.30.(2024辽宁沈阳)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=_____m时,矩形土地ABCD的面积最大.31.(2024浙江湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.32.(2024宁夏)抛物线y x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.33.某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?34.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:每个商品的售…30 40 50 …价x(元)100 80 60 …每天的销售量y(个)(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?35.某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?36.工人师傅用一块长为12分米,宽为8分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求当长方体底面面积为32平方分米时,裁掉的正方形边长是多少?(2)若要求制作的长方体的底面长不大于底面宽的5倍(长大于宽),并将容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,求裁掉的正方形边长为多少时,总费用最低,最低费用为多少元?37.近期,第八届“重庆车博会“在会展中心盛大开幕,某汽车公司推出降价促销活动,销售员小王提前做了市场调查,发现车辆的销量y(辆)与售价(万元/辆)存在如下表所示的一次函数关系:售价x(万元/辆)…20 19.8 19.6 19.4 19.2 19 …销量y(辆)… 5 6 7 8 9 10 …(1)求y与x之间的函数关系式;(2)若每辆车的成本为11万元,在每辆车售价不低于15万元的前提下,每辆车的售价定为多少万元时,汽车公司获得的总利润W(万元)有最大值?最大值是多少?38.服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范围;(2)设服装厂所获利润为w(元),若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?39.(2024贵州贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.40.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是____元,当销售单价x=_____元时,日销售利润w最大,最大值是______元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?41.(2024福建A卷)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<a<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.42.(2024浙江衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.43.(2024山东滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?44.(2024浙江温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲______ ______ 15乙x x______(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.。
中考数学复习考点知识归类讲解 专题20 二次函数的图象与系数的关系问题知识对接考点一、二次函数图象与系数的关系问题 1.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 考点二、用待定系数法求二次函数解析式的步骤 (1)设:巧设二次函数的解析式;(2)代:根据已知条件,得到关于待定系数的方程(组);(3)解:解方程(组),求出待定系数的值,从而得到函数的解析式.专项训练 一、单选题1.已知抛物线2y ax bx =+,当0a <,0b >时,它的图象经过() A .第一,二,三象限 B .第一,二,四象限 C .第一,三,四象限D .第一,二,三,四象限2.函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)经过点(﹣1,0)、(m ,0),且1<m<2,当x <﹣1时,y 随x 增大而减小,下列结论:①abc >0;②a +b <0;③若点A (﹣3,y 1),B (3,y 2)在抛物线上,则y 1<y 2;④方程ax 2+bx +c -2=0必有两个不相等实数根;⑤c ≤﹣1时,则b 2﹣4ac ≤4a .其中结论正确的有( )个 A .1个B .2个C .3个D .4个3.如图,二次函数()2y ax bx ca 0=++≠的图象与x 轴正半轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >; ②930a b c ++<; ③1c >-;④关于x 的方程20ax bx c ++=有一个根为1a-. 其中正确的结论个数有()A .1个B .2个C .3个D .4个4.抛物线2y ax bx c =++的对称轴为直线1x =-,图象过(1,0)点,部分图象如图所示,下列判断中:其中正确的个数是()①0abc >;②240b ac ->;③930a b c -+=;④若点()()122.5,,0.5,y y --均在抛物线上,则12y y >;⑤520a b c -+<. A .2个B .3个C .4个D .5个5.如图,二次函数y =ax 2+bx +c (a >0)的图象的顶点为点D ,其图象与轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C ,在下面四个结论中,其中正确的结论是()A .2a ﹣b =0B .a +b +c >0C .c <﹣3aD .当ax 2+bx +c +2=0有实数解时,则a ≥0.56.已知点()13,P y -,()25,Q y ,()3,M m y 均在抛物线2y ax bx c =++上,其中20am b +=.若321y y y >,则m 的取值范围是()A .3m <-B .1mC .31m -<<D .15m <<7.已知二次函数2y ax bx c =++,若0a <,0a b c -+>,则一定有() A .240b ac -≥B .240b ac ->C .240b ac -≤D .240b ac -<8.如图,已知二次函数()20y axbx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc >;②930a b c ++=;③20a b -=;④2am bm a b +<+(m 是任意实数);⑤c-a <-1,其中正确的是( )A .①②⑤B .②③C .①②③⑤D .②③④9.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C .下列结论:①abc >0;②4a ﹣2b +c >0;③2a ﹣b >0;④3a +c <0,其中正确结论的个数为()A .1个B .2个C .3个D .4个10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(1,﹣4a ),点A (4,y 1)是该抛物线上一点,若点D (x 2,y 2)是抛物线上任意一点,有下列结论:①4a ﹣2b +c >0;②若y 2>y 1,则x 2>4;③若0≤x 2≤4,则0≤y 2≤5a ;④若方程a (x +1)(x ﹣3)=﹣1有两个实数根x 1和x 2,且x 1<x 2,则﹣1<x 1<x 2<3.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(2,0)-,()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方,下列结论:①0abc >;②420a b c -+=;③0a b c -+<;④20a c +>.其中正确的有_______.(填序号)12.如图,二次函数2() 0y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c <3b ;③8a +7b +2c >0;④若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:⑤若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则12-15. x x <<<其中正确的结论有__________. (只填序号)13.抛物线2y ax bx c =++的图象如图所示,则a +b +c ______0.(填“<”“=”“>”)14.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为12x =且经过点(2,0).下列说法:①若(﹣3,y 1),(π,y 2)是抛物线上的两点,则y 1<y 2;②c =2b ;③关于x 的一元二次方程ax 2+bx +1=0(a ≠0)一定有两个不同的解;④()4bm am b ≥+(其中m 为实数).其中说法正确的是_______.15.已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的图象如图所示,下面四个结论,①abc <0;②a +c <b ;③2a +b =1;④a +b ≥m (am +b ),其中全部正确的是______三、解答题16.已知二次函数y =ax 2+bx +c (a <0)过点C (0,2)、点A (2,0). (1)求证:b =﹣2a ﹣1;(2)若平行于x 轴的直线y =2﹣a 与抛物线有交点,求a 的取值范围.(3)若a 为整数,n 为正整数,当n <x <n +2时,对应函数值有且只有9个整数,求a 、n 的值.17.在平面直角坐标系中,二次函数221y x mx =-+图像与y 轴的交点为A ,将点A 向右平移4个单位长度得到点B . (1)直接写出点A 与点B 的坐标;(2)若函数221y x mx =-+的图像与线段AB 恰有一个公共点,求m 的取值范围. 18.在平面直角坐标系中,抛物线解析式为222422y x mx m =-+-+,直线l :y =-x +1与x 轴交于点A ,与y 轴交于点B .(1)如图1,当抛物线经过点A 且与x 轴的两个交点都在y 轴右侧时,求抛物线的解析式.(2)在(1)的条件下,若点P 为直线l 上方的抛物线上一点,过点P 作PQ ⊥l 于Q ,求PQ 的最大值.(3)如图2,点C (-2,0),若抛物线与线段AC 只有一个公共点,求m 的取值范围.19.在平面直角坐标系xOy 中,已知抛物线22y ax ax c =-+与直线3y =-有且只有一个公共点.(1)直接写出抛物线的顶点D 的坐标,并求出c 与a 的关系式;(2)若点(),P x y 为抛物线上一点,当1t x t ≤≤+时,y 均满足233y at -≤≤-,求t 的取值范围;(3)过抛物线上动点(),M x y (其中3x ≥)作x 轴的垂线l ,设l 与直线23y ax a =-+-交于点N ,若M 、N 两点间的距离恒大于等于1,求a 的取值范围.20.在平面直角坐标系xOy 中,已知抛物线y=x 2﹣4x+2m ﹣1与x 轴交于点A ,B .(点A 在点B 的左侧) (1)求m 的取值范围;(2)当m 取最大整数时,求点A 、点B 的坐标.21.二次函数y =ax 2+bx +c 的图象如图所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,试判断P ,Q 的大小关系.22.设二次函数y =ax 2+bx+c (a >0,c >1),当x =c 时,y =0;当0<x <c 时,y >0. (1)请比较ac 和1的大小,并说明理由; (2)当x >0时,求证:021a b cx x x++>++. 23.己知抛物线()()22113y m x m x =-+++(m 为常数).(1)若该抛物线经过点(1,m +7),求m 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m ; (3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P (5-,1y ),Q (7,2y )(其中12y y <)两点,当53x -≤≤时,点P 是该部分函数图象的最低点,求m 的取值范围.。
⼆次函数知识点、考点、典型试题集锦(带详细解析答案)⼆次函数知识点、考点、典型试题集锦(带详细解析答案)⼀、中考要求:1.经历探索、分析和建⽴两个变量之间的⼆次函数关系的过程,进⼀步体验如何⽤数学的⽅法描述变量之间的数量关系.2.能⽤表格、表达式、图象表⽰变量之间的⼆次函数关系,发展有条理的思考和语⾔表达能⼒;能根据具体问题,选取适当的⽅法表⽰变量之间的⼆次函数关系.3.会作⼆次函数的图象,并能根据图象对⼆次函数的性质进⾏分析,逐步积累研究函数性质的经验.4.能根据⼆次函数的表达式确定⼆次函数的开⼝⽅向,对称轴和顶点坐标.5.理解⼀元⼆次⽅程与⼆次函数的关系,并能利⽤⼆次函数的图象求⼀元⼆次⽅程的近似根.6.能利⽤⼆次函数解决实际问题,能对变量的变化趋势进⾏预测.⼆、中考卷研究(⼀)中考对知识点的考查::(⼆)中考热点:⼆次函数知识是每年中考的重点知识,是每卷必考的主要内容,本章主要考查⼆次函数的概念、图象、性质及应⽤,这些知识是考查学⽣综合能⼒,解决实际问题的能⼒.因此函数的实际应⽤是中考的热点,和⼏何、⽅程所组成的综合题是中考的热点问题.三、中考命题趋势及复习对策⼆次函数是数学中最重要的内容之⼀,题量约占全部试题的10%~15%,分值约占总分的10%~15%,题型既有低档的填空题和选择题,⼜有中档的解答题,更有⼤量的综合题,近⼏年中考试卷中还出现了设计新颖、贴近⽣活、反映时代特征的阅读理解题、开放探索题、函数应⽤题,这部分试题包括了初中代数的所有数学思想和⽅法,全⾯地考查学⽣的计算能⼒,逻辑思维能⼒,空间想象能⼒和创造能⼒。
针对中考命题趋势,在复习时应⾸先理解⼆次函数的概念,掌握其性质和图象,还应注重其应⽤以及⼆次函数与⼏何图形的联系,此外对各种函数的综合应⽤还应多加练习. ★★★(I)考点突破★★★考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为⼆次函数. 2.⼆次函数的图象及性质:⑴⼆次函数y=ax 2 (a ≠0)的图象是⼀条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开⼝向上,顶点是最低点;当a <0时,抛物线开⼝向下,顶点是最⾼点;a 越⼩,抛物线开⼝越⼤.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。
中考专题之二次函数考点一:二次函数解析式【知识点】三种解析式形式 1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式. 【经典例题】例1 已知一条抛物线经过点 (0,0),(2,4),(4,0),求这个函数关系式。
【变式练习】1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。
2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。
3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。
5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
考点二:二次函数图像【知识点】一、各种形式的二次函数的图像性质如下表:1.抛物线c bx ax y ++=2中的系数c b a ,,(1)a 决定开口方向,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当0>a 时,抛物线开口向上,顶点为其最低点;当0<a 时,抛物线开口向下,顶点为其最高点. (2)b 和a 共同决定抛物线对称轴的位置:当0=b 时,对称轴为y 轴;当a 、b 同号时,对称轴在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点位置:当0=c 时,抛物线经过原点; 当0>c 时,相交于y 轴的正半轴;当0<c 时,则相交于y 轴的负半轴. (4).抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定: (1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上); (3)240b ac -<⇔抛物线与x 轴没有交点. 要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ; 当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方. 2.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,顶点是),(ab ac a b 4422--,对称轴是直线ab x 2-=。