聚乳酸增韧研究
- 格式:ppt
- 大小:1.27 MB
- 文档页数:20
---------------------------------------------------------------范文最新推荐------------------------------------------------------ 聚乳酸增强增韧研究+文献综述摘要本论文以聚乳酸(PLA),聚乙二醇(PEG),纳米氧化镁(MgO),纳米二氧化钛(TiO2)为原料,通过熔融共混,模压成型法制备了PLA/PEG/接枝改性纳米填料复合材料,分别采用傅里叶红外光谱,万能试验机,接触角测试光学显微镜等对接枝改性纳米填料,PLA/PEG/接枝改性纳米填料复合材料的结构,力学性能,亲水性能进行表征,并对纳米复合材料在浓度为1mol/L的NaOH溶液中的降解性能进行初步研究。
对纳米复合材料进行性能研究,结果表明:g-MgO的加入能增加PLA/PEG500万的拉伸强度,且当g-MgO的载入比为3wt%时,PLA/PEG500万/g-MgO复合材料拉伸强度最大;g-TiO2的加入能明显增加PLA/PEG500万的强度,且当g-TiO2的载入比为5wt%时,PLA/PEG500万/g-TiO2复合材料拉伸强度最大。
相较于载入TiO2而言,载入MgO的PLA/PEG500万复合材料整体性能较差。
接触角测试结果表明,g-MgO和g-TiO2都明显提高PLA/PEG体1 / 21系的亲水性能。
在NaOH介质中降解结果表明,纳米复合材料在碱性介质中的降解性能良好。
关键词:聚乳酸;聚乙二醇;氧化镁;二氧化钛;降解性能6435AbstractIn this paper, using polylactic acid (PLA), polyethylene glycol (PEG), nanometer magnesium oxide (MgO), nanometer titanium dioxide (TiO2) as raw material, through melt mixing, molding prepared nanometer composites PLA/PEG/ grafting, respectively by means of Fourier transform infrared spectroscopy, universal testing machine, contact angle measurement of optical microscopy on grafting modified nanometer fillers, the mechanical properties of nanometer filler composite PLA/PEG/ grafted with hydrophilic properties, structure, characterization, and the nanometer composite material for preliminary research for the degradation of NaOH solution of 1mol/L concentration in the. Performance study of nanometer composite material, results showed that:---------------------------------------------------------------范文最新推荐------------------------------------------------------grafting modification and the addition of MgO can increase the intensity of PLA/PEG500W, and when the addition amount of modified MgO ratio was 3wt%, the maximum tensile strength of PLA/PEG500W/g-MgO composites; grafting modification and the addition of TiO2 can significantly increase the strength of PLA /PEG500W, and when the graft modification of TiO2 the added mass ratio was 5wt%, the maximum tensile strength of PLA/PEG500W/g-TiO2 composites. Compared to the load TiO2, the overall performance of PLA/PEG500W composite material is poor in MgO. The test results show that the contact angle, graft modification of MgO and TiO2 obviously improve the hydrophilicity of PLA/PEG system. In the medium of NaOH degradation results showed that, nanometer composite material degradation in alkaline medium good.2.3.2三元复合材料的制备及性能研究113 / 212.4试样制备工序112.4.1无机填料X的偶联剂制备112.4.2接枝改性过的纳米无机填料与PLA熔融共混制备112.4.3聚乳酸复合材料样条的制备112.5聚乳酸复合材料的性能测试122.5.1偶联剂KH550改性无机填料红外光谱(FTIR)测试122.5.2聚乳酸复合材料样条的拉伸性能测试122.5.3接触角测定132.5.4断面形貌观察132.5.5降解性能测试13---------------------------------------------------------------范文最新推荐------------------------------------------------------ 3结果与讨论143.1偶联剂KH550改性无机填料红外光谱(FTIR)143.1.1偶联剂KH550改性纳米MgO红外光谱143.1.2偶联剂KH550改性纳米TiO2红外光谱153.2PLA/PEG拉伸性能表征153.2.1PLA/PEG6000拉伸性能153.2.2PLA/PEG2万拉伸性能163.2.3PLA/PEG30万拉伸性能173.2.4PLA/PEG500万拉伸性能183.3PLA/PEG500万/g-MgO性能表征205 / 213.3.1PLA/PEG500万/g-MgO拉伸性能203.3.2PLA/PEG500万/g-MgO亲水性能213.3.3PLA/PEG500万/g-MgO降解性能223.4PLA/PEG500万/g-TiO2性能表征23近年来,可降解聚乳酸内骨固定材料越来越受到关注[6,7]。
高韧性聚乳酸材料的研究的开题报告一、研究背景和意义随着全球环保意识的不断提升和可持续发展的要求,生物降解材料在各个领域中的应用也逐渐受到重视。
聚乳酸是一种生物可降解的高分子材料,在包装、医疗、农业等领域有着广泛的应用前景。
然而,其一直存在的瓶颈问题是韧性与强度不足。
高韧性聚乳酸材料的研究对解决这个问题具有重要意义。
二、主要研究内容和方法本次研究旨在制备一种高韧性的聚乳酸材料,以解决其韧性和强度不足的问题。
主要研究内容和方法如下:1. 材料制备首先,采用溶液混合法制备聚乳酸材料。
制备过程中,组合不同比例的聚乳酸和其他生物材料(如壳聚糖、明胶等)以提高其韧性。
同时,通过添加不同比例的增韧剂或交联剂,优化材料的微观结构和物理性质。
2. 材料性能测试对材料进行拉伸和弯曲等力学性能测试,并评估其韧性和强度。
通过扫描电镜观察材料的微观结构和分析拉伸断面形貌,探讨不同材料组合及添加不同量增韧剂和交联剂对材料性能的影响。
三、预期研究成果1. 成功制备一种高韧性聚乳酸材料,并评估其力学性能。
2. 探究不同比例的聚乳酸和其他生物材料在材料增韧方面的作用,为后续生物材料的材料组合提供借鉴。
3. 研究增韧剂和交联剂添加对材料力学性能的影响,提高材料的强度和韧性。
四、研究意义和应用前景该研究的成功将为生物可降解材料的应用拓展提供新的途径和思路。
特别是在包装和医疗等领域中,高韧性聚乳酸材料将能够更好地适应实际需求,并有望成为替代传统材料的优选品。
同时,该研究也将为后续有关生物材料结构和性能研究提供借鉴。
作者简介:闫涵(1998-),男,河南工业大学在读大学生。
收稿日期:2019-07-09聚乳酸,又称聚丙交酯,是近年来研究较为广泛的生物可再生资源,被广泛应用于医学器械和生活塑料中。
一般情况下是以乳酸或丙交酯作为原料从而得到高分子量的聚合物,针对其脆性大、韧性差的缺陷,常选用改性的方法对PLA 进行增韧处理来提高材料的力学性能,同时增强其降解性能[1]。
通常改性的方法包括物理改性和化学改性等方法,本文通过对其进行不同的物理改性方法进行了综述。
1 添加增韧剂改性增韧剂,一般也叫做塑化剂,通常作为高分子材料助剂被广泛应用于工业生产上 ,其用途是添加在加工的过程中,可以使产品的塑性增强。
在聚乳酸基体中加入增塑剂,通过比较增塑前后的PLA ,可知增塑剂的加入不仅明显降低了聚乳酸的玻璃化转变温度、拉伸强度,同时还极大的增强了PLA 的韧性和耐冲击性,使PLA 按理想的结构发展,从而达到增韧改性的目的。
[2]一般将甘油(GL )、丁酸甘油酯、柠檬酸甘油酯、聚乙二醇400(PEG400)、环氧大豆油(ESO )、乙酰柠檬酸丁酯(ATBC )等有机分子作为PLA 的增塑剂。
龚新怀[3]采用茶粉作为生物质填料,利用甘油(GL )、聚乙二醇(PEG400)、环氧大豆油(ESO )、乙酰柠檬酸丁酯(ATBC )作为增塑剂来制备TD/PLA 复合材料,研究这四种增塑剂对复合材料韧性以及强度的影响。
实验表明,ATBC 和ESO 都可以有效的提高复合材料的韧性,其中ESO 的效果尤为显著。
龚新怀[4]采用竹粉作为生物质填料,利用乙酰柠檬酸丁酯(ATBC )作为增韧剂,与PLA 进行熔融共混制备复合材料来研究ATBC 对复合材料结构性能的影响,实验表明复合材料的韧性与断裂伸长率有很大的提高,表明ATBC 与PLA 之间存在着相互作用力,ATBC 的加入使得复合材料的玻璃化转变温度(T g )、冷结晶温度、熔融温度要低于PLA ,极大的改善了PLA 的力学性能。
聚乳酸的增韧改性研究张凤亮高材130140007燕京理工学院 065201*课题分析课题概述:聚乳酸(PLA)作为一种非石油基可生物降解高分子材料,一直是材料科学领域中研究的重大主题。
PLA是一种可生物降解的热塑性线性脂肪族类聚酯,是由可再生原料制备得到的,它具有很多石油基塑料没有的优异性能。
它具有较高的力学性能、热塑性、加工性能、生物相容性和降解性。
土壤埋没实验证明,PLA 制品在土壤中能够稳定降解,几年后完全消失;根据ISO14855标准,在堆肥喜氧氛围中,PLA在45天内能够达到80%以上降解。
因此,PLA作为可再生、可降解塑料,在日用品和食品包装、垃圾袋、地膜、一次性餐具及生物医药等领域具有广泛应用。
但因其存在冲击强度和热变形温度低,气体阻隔性差等缺陷,其应用范围受到限制,而如何成功对PLA进行增韧改性也成为了科研工作者的任务之一。
课题分类:有机化学聚合物加工工程塑料助剂与配方设计技术信息检索范围:(1)时间范围:最早对聚乳酸的报道是20世纪30年代著名的化学家Carothers,而后1944年在Hovey、Hodgins及Begji研究的基础上,Filachiene 对聚乳酸的聚合方法做了系统的研究。
在而后至今发展的几十年中,科研工作者不断完善聚乳酸的增韧改性方法。
(2)地域范围:以中国为主,英系国家为辅(主要在英语文献检索中实现)(3)语言范围:中文英文检索类型:数据型文献型检索内容:电子文献根据所给课题检索得到的信息如下所示:收稿日期:2016年6月25日作者简介:张凤亮,燕京理工学院在校生*摘要:为了克服聚乳酸的局限性,我们需要提高他的韧性来降低不必要的花费,并使其在各种各样的应用中发挥作用。
大量研究表明,主要是在可再生资源和聚合物共混物领域。
更好的相分散混合材料之间可以通过反应的两个部分组成或由嵌段共聚物增溶剂的掺入混合,最后显示高度增强的性能。
本文综述了近年来共混改性聚乳酸的不同增韧工艺的研究进展,并详细认识了可降解或可再生聚合物对聚乳酸的增韧改性。
热塑性有机硅聚氨酯弹性体增韧改性聚乳酸的研究聚乳酸(PLA)是以可再生植物为原料经化学合成的热塑性脂肪族聚酯,其原料来自植物,最终又可降解为二氧化碳和水,具有优良的环保性、生物相容性和力学性能,已成为目前应用最广泛的生物可降解材料之一,在包装材料、纺织面料、生物医学等领域有着广泛应用。
然而,由于PLA存在韧性差等缺点,导致其在实际应用中受到一定的限制,因此PLA的増韧改性研究一直是该领域的重点研究课题之一。
本论文采用热塑性有机硅聚氨酯弹性体(TPSiU)作为增韧剂,系统研究了TPSiU对PLA的增韧改性行为,并进一步采用聚碳化二亚胺(PCDI)为增容剂,研究了增容剂的加入对该体系相容性及増韧改性效果的影响,并得出如下主要结论:对TPSiU的结构及性能分析结果表明,TPSiU为非晶态聚合物,分子链中含有机硅链段,在四氢呋喃(THF)、N,N-二甲基甲酰胺(DMF)等强极性溶剂中具有良好的溶解性。
其熔融加工温度在180℃以上,且热稳定性良好。
通过熔融共混制备了PLA/TPSiU共混物,主要研究了TPSiU含量对共混体系结构及性能的影响规律。
实验结果表明,TPSiU的加入使得PLA的冷结晶峰向高温方向移动,结晶度略有降低,同时共混体系的初始热分解温度有小幅下降。
PLA与TPSiU两种组分在热力学上相容性较差,导致PLA/TPSiU共混物呈现“海岛”结构。
TPSiU的加入对TPSiU/PLA共混体系的力学性能具有显著影响,当TPSiU含量为10wt%时,共混体系的增韧效果较好,其断裂伸长率、缺口冲击强度均得到明显改善,但拉伸强度有所降低。
流变行为研究显示,PLA/TPSiU共混物为切力变稀流体,随着TPSiU含量的增加,PLA/TPSiU共混物的表观粘度呈先升后降的趋势,同时,其非牛顿流动指数逐渐升高。
选用综合力学性能较好的PLA/10wt%TPSiU共混物为研究对象,采用聚碳化二亚胺(PCDI)为增容剂,进一步针对PLA与TPSiU热力学相容性较差的问题进行了研究。
聚乳酸增韧开题报告聚乳酸增韧开题报告摘要:聚乳酸(Poly lactic acid,PLA)是一种生物可降解的高分子材料,具有广泛的应用潜力。
然而,其脆性和低韧性限制了其在许多领域的应用。
因此,如何增强聚乳酸的韧性成为了研究的热点。
本报告旨在探讨聚乳酸增韧的研究现状和未来发展方向。
1. 引言聚乳酸是一种由可再生资源制备的生物可降解高分子材料,具有良好的生物相容性和可降解性。
由于其优良的性能,聚乳酸在医疗、包装、纺织、电子等领域得到了广泛应用。
然而,聚乳酸的脆性和低韧性限制了其在某些领域的应用。
2. 聚乳酸的韧化方法2.1 增加分子量聚乳酸的分子量对其力学性能有重要影响。
增加聚乳酸的分子量可以提高其韧性,但也会导致加工性能下降和降解速率减慢。
因此,需要在分子量增加和加工性能之间找到平衡点。
2.2 共混改性通过将聚乳酸与其他高分子材料进行共混改性,可以有效提高聚乳酸的韧性。
常用的共混改性材料包括聚酯、聚酰胺、聚醚等。
共混改性可以通过改变材料的相互作用和结构来改善聚乳酸的力学性能。
2.3 添加增韧剂添加增韧剂是一种常用的聚乳酸增韧方法。
增韧剂可以通过增加聚乳酸的韧性相位或形成韧性相互作用来提高其力学性能。
常用的增韧剂有弹性体、纳米颗粒、纤维素等。
3. 聚乳酸增韧的研究进展目前,聚乳酸增韧的研究主要集中在以下几个方面:3.1 界面改性通过界面改性可以改善聚乳酸的界面相容性,提高其力学性能。
常用的界面改性方法包括改变界面结构、添加界面活性剂等。
3.2 结晶行为调控聚乳酸的结晶行为对其力学性能有重要影响。
通过调控结晶行为,可以提高聚乳酸的力学性能。
常用的方法包括添加结晶助剂、调控结晶速率等。
3.3 界面增韧界面增韧是一种有效的聚乳酸增韧方法。
通过在聚乳酸界面形成韧性相互作用,可以提高其力学性能。
常用的界面增韧方法包括界面交联、界面改性等。
4. 聚乳酸增韧的未来发展方向4.1 多尺度增韧未来的研究可以将多尺度增韧应用于聚乳酸的增韧中。
聚乳酸增韧改性研究进展作者:雷雨潼汤国权徐凯伦来源:《科学导报·学术》2020年第51期【摘;要】随着人们对环境保护、节约能源的认识,生物可降解聚合物—聚乳酸逐渐成为研究的对象。
聚乳酸具有很大的脆性,这一点严重限制了其广泛应用。
本文重点论述了目前聚乳酸主要的增韧方法,包括添加增塑剂、共聚改性、共混改性。
【关键词】聚乳酸;增韧改性;生物可降解聚合物传统石油基塑料由于共价键结合难以降解而导致“白色污染”。
随着人们对环保和可持续发展理念的认识,生物可降解材料逐渐受到重视。
聚乳酸(PLA)由于原料来源于植物,并且具有完全生物降解性而被广泛研究。
PLA是乳酸或丙交酯缩合而成的脂肪族聚酯。
PLA在包装材料和生物医用工程中应用广泛。
但聚乳酸是脆性材料,断裂伸长率极低,这个缺陷限制了PLA更广泛的发展。
目前,PLA的增韧研究方法较多,下面介绍几种效果较好的方。
1.添加增塑剂增塑剂是具有高沸点和低挥发性的物质,按分子量大小分为单体型和聚合型。
单体型增塑剂有:甘油、二羟甲基丙二酸酯、柠檬酸盐、葡萄糖单酯、山梨糖醇等。
聚合型增塑剂有:聚乙二醇(PEG)、聚(3-羟基丁酸酯)(P3HB)、聚丙二醇(PPG)、聚二乙烯己二酸酯(PDA)等[1]。
PLA的增塑剂要与PLA具有很好的相容性,而相容性与增塑剂的分子量有关。
增塑剂可以与PLA的非晶区相容,以此增加PLA分子链段的活动能力,降低玻璃化温度和结晶度,最终达到增韧的目的。
而增塑剂的用量也影响了PLA的力学性能。
PLA的韧性随着增塑剂含量的增加而增大,而超量的增塑剂会导致其与PLA相分离[2]。
2. 共聚增韧共聚增韧主要通过乳酸与其他单体开环共聚改变PLA分子链序列或组成,进而改善其柔韧性。
共聚又分为无规共聚、嵌段共聚、接枝共聚和交联共聚。
最常见的共聚体系是聚ε-己内酯(PCL)/PLA体系。
其ε-CL和L-LA的比例是共聚体的机械性能和热性能最大的影响因素。