当今物理学界25大难题
- 格式:doc
- 大小:72.00 KB
- 文档页数:8
物理学十大难题的研究进展物理学是自然科学中最古老、最基础的学科,研究物质、能量、空间和时间的本质、性质、规律和相互关系,是人类认识宇宙、探索未知、创造文明不可或缺的重要学科。
在物理学的发展历程中,由于人类的认知能力和科技水平的不断提高,研究的难度也日益加大,很多关键问题仍然被我们所困扰。
本篇文章将带您了解物理学中的十大难题及其研究进展。
一、黑暗能量与黑暗物质黑暗能量与黑暗物质是当前宇宙学中最为重要的难题之一。
黑暗能量与黑暗物质在宇宙形成、星系形成、宇宙膨胀等方面具有至关重要的作用,然而我们对它们的了解却非常有限。
黑暗能量的存在被认为是推动宇宙加速膨胀的原因,占据了宇宙总能量的约70%;而黑暗物质则在引力作用下影响了宇宙结构的形成。
尽管科学家们利用各种手段进行了搜寻,但它们的本质仍然不为人知,这是当前物理学中最为棘手的问题之一。
二、量子引力量子引力理论是继相对论和量子力学之后,人类对自然的第三种描述。
它试图将引力作用与量子力学相结合,从而探索微观世界的基础原理及其相互作用,以及研究黑洞、宇宙起源等宏观现象背后的微观机制。
然而,至今为止,量子引力理论仍然没有得到确定的解答,这是物理学中最为深奥、最具挑战性的问题之一。
三、超导材料超导材料是一种特殊的物质,可以在极低温度下表现出特异的电性质,如零电阻、磁场排斥、电流不损耗等。
虽然个别超导材料的临界温度已经达到了临界温度,但目前仍然存在很多挑战性问题,如为何某些材料可以实现高温超导、如何有效地制备高品质的超导材料、如何解决超导失效等。
超导材料的深入研究不仅可以为量子计算、全息图像等科技提供支撑,也对未来的储能技术等方面具有极大的意义。
四、宇宙暴涨宇宙暴涨理论是当代宇宙学中最为流行的理论之一,它认为宇宙在它形成之初经历了一次短暂而极端的膨胀,这导致宇宙变得异常平坦和均匀,并且形成了宇宙射线背景辐射。
然而,对于暴涨的机制、过程、持续时间等,仍然存在很多疑问和争议。
世界十大物理学难题
以下是目前被认为是世界十大物理学难题的问题:
1. 暗物质的本质:暗物质是一种我们无法直接观测到的物质,但是它的存在可以解释宇宙中星系的分布和运动方式。
目前我们还不清楚暗物质的本质是什么。
2. 暗能量的本质:暗能量是一种我们无法直接观测到的能量,但是它的存在可以解释宇宙的加速膨胀。
目前我们还不清楚暗能量的本质是什么。
3. 量子重力问题:量子重力是一个非常复杂的问题,因为量子力学和广义相对论之间存在矛盾。
目前我们还没有一个统一的理论来描述这个问题。
4. 引力量子化问题:引力是一种基本的力量,但是我们还没有一个量子化的引力理论。
目前我们还不清楚如何将引力量子化。
5. 黑洞信息丢失问题:黑洞是一种非常神秘的天体,它们可以吞噬一切,包括光。
目前我们还不清楚在黑洞中发生的物理过程中,信息是否会丢失。
6. 宇宙初始奇点问题:宇宙初始奇点是宇宙大爆炸的起点,但是我们还不清楚它的性质和状态。
7. 量子纠缠问题:量子纠缠是一种非常奇特的现象,两个量子粒子之间的状态会瞬间相互影响,即使它们之间距离
很远。
目前我们还不清楚这种现象的本质是什么。
8. 高能物理中的基本粒子问题:高能物理中的基本粒子是构成宇宙的基本组成部分,但是我们还不清楚它们之间的相互作用和本质。
9. 宇宙背景辐射问题:宇宙背景辐射是宇宙大爆炸留下的遗迹,但是我们还不清楚它的起源和本质。
10. 量子计算问题:量子计算是一种基于量子物理原理的计算方式,但是目前我们还没有一个可靠的量子计算机。
21世纪物理学的25个难题大卫·格罗斯1[①]编者按:1900年,在巴黎国际数学家代表大会上,德国数学家大卫·希尔伯特(David Hilbert,1864-1943)根据19世纪数学研究成果和发展趋势,提出了新世纪数学家应该致力解决的23个数学问题。
希尔伯特的演讲,对20世纪的数学发展,产生了极大的影响。
100余年之后的2004年,另一个大卫,因发现量子色动力学中的“渐近自由”现象而荣获2004年诺贝尔物理学奖的美国物理学家大卫·格罗斯教授,同样就未来物理学的发展,提出了25个问题。
也许人们会说,在物理学领域提出问题要比数学领域容易得多,因为物理学就像大江大河,而数学则像尼罗河三角洲中纵横交错的河网。
但若是反过来想一想,既然物理学界对前沿问题具有更广泛的共识,我们就不难明白,格罗斯教授所提出的问题对未来物理学发展的重要意义。
有趣的是,这25个问题中,有1/3落在物理学的边缘地带,其中3个与计算机科学相关,3个与生物学相关,4个与哲学和社会学相关。
格罗斯教授的演讲,最初是为美国加州大学卡维利理论物理研究所成立25周年庆典而准备的,该庆典云集了物理学各领域的世界一流学者。
此后数月,格罗斯教授先后在欧洲核子中心(CERN)、中国科学院理论物理研究所、浙江大学等地作过内容相近的讲演。
这里的译文,系根据格罗斯教授所提供的讲稿译出,中科院理论物理所网站有免费下载的讲演录相(),读者也可以参考。
作者简介:大卫·格罗斯(David Gross),美国国家科学院院士,加州大学圣巴巴拉分校(University of California at Santa Barbara)卡维利理论物理研究所(Kavli Institute for Theoretical Physics )所长。
格罗斯教授是量子色动力学的奠基人之一,当代弦理论专家,因发现强相互作用中的渐近自由现象2004年与弗兰克·维尔切克(Frank Wilczek)和戴维·波利策(David Politzer)分享了当年度的诺贝尔物理学奖。
⼈类迄今为⽌仍然未解的10⼤物理学难题为什么反物质的数量⽐物质更少?1 为什么反物质的数量⽐物质更少?对于每种类型的粒⼦,都有⼀个具有相同性质,但电荷相反的的双重反粒⼦存在。
如果物质与反物质相遇,则两者⽴即飞灰湮灭。
如果反物质和物质具有相同的性质,为什么宇宙当中的物质与反物质数量不是相等?暗物质是什么?2 暗物质是什么?宇宙学家认为,宇宙只有约5%是可见的,它们由数⼗亿个星系,恒星和⾏星组成,包括我们的银河系。
那么“暗物质”究竟是什么?暗物质不发光,它们在占宇宙中所占⽐例⼤约25%。
什么是暗能量?3 什么是暗能量?宇宙中绝⼤部分的内容(70%)是以未知能量的形式存在,我们称之为“暗能量”。
暗能量究竟是什么?我们对这种神秘的,反重⼒形式存在,不符合标准物理规律的物质⼏乎⼀⽆所知。
平⾏宇宙真的存在吗?4 平⾏宇宙真的存在吗?⼀些天体物理学家认为,可见的宇宙只不过是⽆数的宇宙类型之⼀。
根据量⼦物理学理论,有限数量的粒⼦排列会在多元宇宙中⼀再重复。
这意味着,在平⾏宇宙中,我们世界会存在精确的副本(包括你⾃⼰!),可能会有两个或者⽆限多的副本!但是,我们为⽌还没有发现平⾏宇宙的存在。
宇宙的终极结局是什么?5 宇宙的终极结局是什么?如果宇宙⼤爆炸理论⽆法得到进⼀步证实,宇宙的最终命运可能很难找到答案。
有很多设想:⽐如宇宙⼤崩溃,宇宙⼤冰冻,宇宙⼤裂开,这些理论设想都试图预测宇宙的最后场景,但我们没有确定的答案。
⽬前来讲,⼈类⽂明(和任何具有智慧外星⼈⽣命⽽⾔),宇宙的最终时刻来临之前,我们可能早就不再了。
但时间不会结束,是吗?为什么时间显⽰为线性?6 为什么时间显⽰为线性?时间,如⽜顿所定义,在物理学上是⼀个常数。
⽜顿⼒学按时间顺序组织时刻或事件的顺序。
但科学证据表明,时间是循环的和⾮线性的;理论上,时间可以减缓,停⽌或逆转。
为什么时间给⼈的印象是流动,线性和不可逆转的?意识如何影响现实?7 意识如何影响现实?如果你想考验⼀个量⼦物理学家或科学哲学家的⽔平,就要提出“测量问题”。
悬而未决的6大物理学难题,解决任何一个都能引发物理学大爆炸!一、物质由什么组成?物质由原子组成,原子由质子、中子和电子组成。
而质子和中子又由更小的夸克组成,是否还有更小的基本粒子,至少现在不得而知。
二、为什么重力这么奇怪?我们对重力都很熟悉,而且爱因斯坦的广义相对论提供了重力的数学模型,即空间翘曲。
但是重力和其它三种已知基本作用力(电磁相互作用、弱相互作用和强相互作用)相比,实在是太弱了。
一种解释是:除了已知的三维空间外,存在尚未探知的维度,重力泄入这些额外的维度。
三、为什么时光不能倒流?自爱因斯坦以来,物理学家就把时间和空间合称为四维的“时空”,但是空间和时间是不同的。
我们可以在空间中自由移动,但是时间却似乎只有一个方向。
物理学家认为这可能和热力学第二定律有关,熵随时间的推移而增加,也许这就给了时间方向。
但是为什么早期宇宙的熵较低,科学家不得而知。
四、反物质去哪了?科学家在实验室能创造出反物质,而且正反物质总是等量的。
这也意味着,大爆炸创造出了等量的正反物质。
但是,我们的周围都是正物质,那反物质去哪了?一种猜想是:大爆炸产生的正物质比反物质多一些。
大爆炸后,每100亿份反物质对应100亿外加1份正物质。
这100亿份正反物质湮灭了,只剩下1份正物质,这才有了我们。
但是为什么正物质比反物质多呢?不得而知。
五、能否发现统一的物理定律?现在我们有两套理论解释物理现象,爱因斯坦的广义相对论和量子力学。
前者适合宏观领域,后者适合微观领域。
那有没有统一的物理定律呢?科学家进行了尝试,比较知名的有弦理论和环量子理论,不过这两者尚未经过实验证实。
六、生命是如何从非生命物质进化来的?科学家相信,在生物进化之前,存在化学进化,即简单的无机物反应生成复杂的有机物。
但是,是什么激发了这个过程?一种理论比较投机,认为生命是熵的必然结果,如果这个理论正确,那生命的出现就像水往低处流这么稀松平常。
而电脑模拟支持这种理论。
模拟显示:普通的化学反应会产生高度结构化的化合物。
现代科技界最困惑的12个世界难题,看看都有什么1、宇宙的绝大部分仍然未知我们只知道4%也许你正迷惑于大型强子对撞器(LHC)究竟有什么用,或许结论是这样的:科学家希望碰撞能产生一些新的粒子,发现所谓的“暗物质”,一种被认为是占整个宇宙四分之一的组成物质,然后科学界就说存在“暗能量”的神秘力量,这种神奇的力量可能将时间和空间撕裂。
总之,目前整个宇宙只有4%的物质被发现,其余的96%仍然未知。
2、太空飞船之谜两艘飞船在嘲笑物理学定理20世纪70年代,美国宇航局发射了两个飞行器,导致了无穷无尽的烦恼。
太空飞船之谜两艘飞船在嘲笑物理学定理大约在美国的先锋10号和11号飞行的头10年里,两个飞行器都偏离了轨道——大约偏移了8000英里,同时,科学家发现那里的引力只有地球引力的一百亿分之一,多年来没有人能解释这是为什么。
3、常量可变动摇你对宇宙的看法十几年前,科学家发现很多的所谓常量也可能变动。
有很多描述自然力量的数字也发生了变化,从遥远星系过来的光束告诉我们,这些恒量过去并不是这个数。
4、冷聚变没方程式的核能1989年,不需爆炸就可以释放核能的论断震惊了全世界。
其后各种致力于这方面研究的努力却一直处于失败状态,但是,“冷聚变”并没有就此与不可能划上等号。
1989年后的10余年,美国海军实验室进行了200多项试验,以研究核反应所释放的能量是否比所吸收的能量多,并假设在遥远星体的内部冷聚变可以进行。
不能怪美国能源部异想天开,如果真的存在可控制的冷聚变。
那么世界能源问题将不复存在。
5、生命你只比一包化学品大一点你相信你仅仅是一堆化学元素吗?你仅仅是构成身体的化学物质的总和吗?是什么东西使一棵生机勃勃的大树变成了一块块毫无生气的木头?没有人能够回答这些问题。
研究者已经放弃了对生命的定义,但是,他们仍在尽最大的努力去理解。
在全世界的很多实验室里,人们正在从生命物质中提取原料,并希望唤醒已经死亡的生命。
但是,如何理解自然生命的死亡,一切还是个谜。
10大物理学难题困扰世界详细版物理学作为一门探索自然规律的科学,一直在不断地向前发展。
然而,在这个过程中,仍有许多难题困扰着科学家们。
以下是 10 大至今仍未完全解决的物理学难题。
一、暗物质之谜我们通过对星系旋转速度的观测发现,星系中的可见物质所产生的引力,远远不足以维持星系的稳定结构。
因此,科学家们推测存在一种看不见的“暗物质”,它不与电磁力相互作用,所以无法被直接观测到,但却通过引力影响着宇宙的结构和演化。
暗物质究竟是什么?是一种新的粒子,还是某种未知的物质形态?目前,我们对它的了解还非常有限,这是现代物理学中一个巨大的谜团。
二、暗能量之谜随着对宇宙膨胀的观测,科学家们发现宇宙的膨胀正在加速。
为了解释这种加速膨胀,引入了“暗能量”的概念。
暗能量被认为是一种充满整个宇宙的能量,具有负压,导致了宇宙的加速膨胀。
但暗能量的本质是什么?是一种恒定的能量场,还是某种动态的能量形式?它的存在和性质对我们理解宇宙的命运至关重要。
三、量子引力问题量子力学和广义相对论是现代物理学的两大支柱。
然而,在微观的量子世界和宏观的引力世界之间,这两个理论却难以统一。
如何将量子力学的原理应用到引力现象中,构建一个完整的量子引力理论,是物理学界面临的一个重大挑战。
弦理论和圈量子引力理论是目前尝试解决这一问题的两个主要方向,但至今仍未达成共识。
四、黑洞信息悖论当物质落入黑洞时,其携带的信息似乎会消失在黑洞的事件视界内。
根据量子力学的原理,信息不应该被消灭,但广义相对论却暗示黑洞会摧毁信息。
这就形成了所谓的黑洞信息悖论。
解决这个悖论不仅对于理解黑洞的本质至关重要,也关系到我们对量子力学和广义相对论的更深层次的理解。
五、统一场论的追求自爱因斯坦以来,物理学家们一直梦想着找到一个统一的理论,能够将自然界的四种基本相互作用——引力、电磁力、强相互作用和弱相互作用——统一起来。
虽然标准模型成功地统一了电磁力、强相互作用和弱相互作用,但引力的纳入仍然是一个巨大的难题。
10大物理学难题困扰世界详细版《10 大物理学难题困扰世界详细版》物理学,这门探索宇宙万物奥秘的科学,一直以来都充满了无尽的谜题和挑战。
在其发展的历程中,有许多难题至今仍让科学家们绞尽脑汁、苦苦思索。
以下是 10 大困扰世界的物理学难题:1、黑洞信息悖论当物质坠入黑洞,似乎一切信息都消失无踪。
根据量子力学,信息不应被消灭,但黑洞的强大引力又似乎让信息无法逃出。
这一悖论挑战了我们对物理学基本原理的理解。
我们知道黑洞具有强大的引力,能将周围的物质吸入其中,形成一个极度密集的区域。
然而,当物质进入黑洞后,其携带的信息究竟去了哪里?是被永久地“囚禁”在黑洞内部,还是以某种未知的方式被“泄露”出来?如果信息消失,那么将违背量子力学的基本原理;但如果信息能够逃出,又与我们对黑洞的现有认识相冲突。
2、暗物质之谜天文学家通过观测星系的旋转速度和星系团的引力作用,发现存在大量看不见的物质,即暗物质。
但暗物质的本质究竟是什么,至今仍是个谜。
我们能够看到的恒星、行星等普通物质只占宇宙总物质的一小部分,而大部分物质是暗物质。
然而,暗物质不与电磁力相互作用,这使得它很难被直接探测到。
科学家们提出了多种假设,比如弱相互作用大质量粒子(WIMP),但目前还没有确凿的证据证明哪种假设是正确的。
3、暗能量的本质宇宙正在加速膨胀,而推动这种加速膨胀的力量被称为暗能量。
但暗能量究竟是什么,其性质和来源都还不清楚。
暗能量占据了宇宙总能量的大部分,但其本质却让科学家们困惑不已。
是一种新的能量形式,还是对现有物理理论的修正?对暗能量的研究不仅关系到我们对宇宙未来命运的理解,也可能会引发物理学的重大变革。
4、量子引力理论的构建量子力学和广义相对论在各自的领域都取得了巨大成功,但在微观尺度和强引力场中,它们却无法统一。
如何构建一个能够融合这两个理论的量子引力理论,是物理学的重大挑战之一。
试图将量子力学的微观世界和广义相对论的宏观引力现象统一起来,是一个极其困难的任务。
物理学十大未解之谜是一个相对主观的问题,因为科学研究的进展是不断变化的,新的理论和方法可能会揭示更多未知的领域。
以下是一些在物理学领域仍存在争议和未解之谜的例子:1. 暗物质和暗能量:尽管宇宙中大部分物质和能量都是我们看不见的,但我们知道它们确实存在。
暗物质和暗能量的性质和起源仍然是一个未解之谜。
2. 量子引力:在理论上,量子引力是描述引力在量子层面上如何运作的理论。
然而,到目前为止,我们还没有找到一个令人信服的理论来解释量子引力。
3. 黑洞的信息悖论:黑洞的信息悖论是一个关于量子力学和广义相对论之间相互作用的问题。
根据量子力学,信息是守恒的,但广义相对论表明黑洞可以吞噬信息。
这两个理论之间的冲突仍然是一个未解之谜。
4. 夸克禁闭:夸克是质子和中子的基本组成单元,但在理论上,它们应该可以在自由状态下存在。
然而,在现实中,我们从未观察到自由的夸克。
这是为什么夸克在自然界中始终以组合形式出现的原因,但具体机制仍然是一个未解之谜。
5. 粒子物理的标准模型:标准模型是描述基本粒子和相互作用的最佳理论。
然而,它有许多局限性,例如不能解释引力,不能解释暗物质的存在等。
寻找超越标准模型的新理论仍然是物理学的一个重要目标。
6. 量子计算机:量子计算机是一种利用量子力学原理进行信息处理的机器。
尽管我们已经取得了一些进展,但要实现可扩展的量子计算机仍然是一个巨大的挑战。
7. 弦理论:弦理论是一种尝试将引力与量子力学统一的理论。
然而,弦理论非常复杂,且至今尚未找到实验证据来验证其预测。
8. 量子纠缠:量子纠缠是量子力学中的一个现象,描述了两个或多个粒子之间的强烈关联。
这种关联的起源和性质仍然是一个未解之谜。
9. 相对论的重力:广义相对论是描述引力如何影响时空的理论。
然而,这个理论在量子层面上并不自洽。
寻找一个将引力与量子力学统一的理论仍然是物理学的一个重要目标。
10. 宇宙的起源和演化:宇宙的起源和演化是物理学和天文学中的核心问题。
当今世界十大物理难题第一,在物理世界中,表达其特征的所有能够测量出来的无纲量参数,从原则上讲,是不是都能够推算出来?或者存不存在一些无发事件?且这些偶发事件只取决于量子力学或者历史,是否因此也是没有办法推断出来的参数?这样说大家可能不太清楚是什么意思,用爱因斯坦的话来讲,就是上帝在创造我们这个宇宙时,是否有选择性?比如他在准备引发宇宙大爆炸之前,是不是需要思考一下,我该把这个宇宙中的光速定为多少呢?我应该让电子带多少电荷呢?我应该把郎克常数的数值设置成多少?他到底是为了赶时间而随机设置了一些数字,还是这些数字必须得是如此?这些数值之间又蕴藏着什么样的逻辑呢?第二、量子力学是怎样帮助解释宇宙的起源的?在现代物理学中,有两大理论,即广义相对论和标准模型。
广义相对论是一种与引力有关的理论,而标准模型是利用量子力学来描述亚原子和这些亚原子所服从的作用力。
长时间以来,物理学家们都希望将这两大理论合二为一,进而得出一种“万物至理”,也就是量子引力论,这样能够使我们更加深入的了解宇宙,甚至还可能能弄清楚,宇宙到底是怎样随着大爆炸而诞生的?第三、质子的寿命是多久呢?我们又该如何理解它?从前人们认为质子和中子是不一样的,觉得它们永远不会再分裂,成为更小的颗粒,并且曾经将这一认识当作真理,但是在70年代,理论物理学家发现,他们提出的各种也许会成为“大一统理论”,这一理论认为质子一定不是稳定的,只要经过足够长的时间,在非常偶然的情况下,它们还是会出现分裂现象的。
不过要观察到这一分裂现象,就必须得想办法捕捉到处于死去过程中的质子,多年来,相关的实验研究人员一直在实验室中紧密观察着大型的水槽,希望能够发现原子内部正在死去的质子,但是截止到今天,这些质子的死亡率始终是零,这其实也能够说明,要么质子是一种极其稳定的颗粒,要么它们就是拥有极长的寿命,也许会在十亿亿亿亿年以上。
第四、自然界是否是超对称的?如果是的话,它的超对称性又是怎样破灭掉的?有很多的物理学家都认为,把所有的作用力都统一成一种单一理论,这一理论所要求证明的两种差异极大的粒子之间存在密切的联系,而这种密切的关系,就是我们所说的超对称现象。
困扰世界的十大物理学难题
1. 宇宙暗能量:宇宙暗能量是一种仍未完全理解的力量,被认为是引起宇宙膨胀加速的原因之一。
2. 宇宙暗物质:暗物质是一种未知的物质形态,占据了宇宙中大部分的质量,但并不与光相互作用,使其难以探测和理解。
3. 弦理论与量子引力:弦理论是试图将量子力学和引力统一起来的物理理论,但仍存在很多尚未解决的问题。
4. 黑洞信息悖论:根据量子力学的原理,信息不应该消失,但目前我们对于黑洞内部发生的事情仍缺乏完全的理解,黑洞是否能保持信息的完整性仍存在争议。
5. 超导性的起源:尽管我们已经发现了许多超导体,但我们仍未完全理解超导性的起源和机制。
6. 宇宙的起源:宇宙的起源是一个被广泛讨论的难题,尚未找到完全令人满意的解释。
7. 时间箭头:时间箭头是指宇宙中时间的单向性,为什么我们只能沿着一个方向感知时间的流逝仍然是一个谜。
8. 超对称性破缺:超对称性是一种理论预言,认为每种粒子都存在一个超对称的伙伴粒子,但仍未发现证据支持这一理论。
9. 引力波的来源与细节:引力波是爱因斯坦广义相对论的预言,
但目前我们对引力波的具体来源和产生机制仍知之甚少。
10. 量子力学与相对论的统一:量子力学和相对论是两个非常成功的物理理论,但将它们统一起来仍然是一个巨大的挑战。
物理界十大未解之谜物理界十大未解之谜包括:1.量子纠缠:量子力学中的一种现象,当两个或多个粒子处于纠缠状态时,它们的状态是相互依赖的,即使它们被分开,它们的性质也会立即相互影响。
2.黑洞信息悖论:黑洞是一种极其密集的天体,它的引力极强,甚至连光也无法逃脱。
但是黑洞内部的信息是如何消失的,至今仍是一个未解之谜。
3.暗物质和暗能量:暗物质是一种无法直接观测到的物质,但是通过它对宇宙的引力作用可以推断出它的存在。
暗能量则是一种未知的能量形式,它占据了宇宙的绝大部分,并且对宇宙的膨胀起着推动作用。
4.引力波:引力波是爱因斯坦广义相对论预测的现象,当两个物体加速运动时,会以引力波的形式释放出能量。
但是引力波在实验中一直难以被检测到,因此它的存在仍然是一个谜。
5.夸克禁闭:夸克是一种基本粒子,它们通常被限制在其他粒子内部。
但是为什么夸克不能单独存在,仍然是一个未解之谜。
6.宇宙中的反物质:我们知道,在某些情况下,物质和反物质会相互抵消,只留下纯粹的能量。
但是为什么我们的宇宙中几乎全是物质,而反物质却很少见,这是一个未解之谜。
7.时间旅行:时间旅行是一个在物理学和哲学中经常被探讨的话题。
但是如何实现时间旅行,以及是否存在平行宇宙等未解之谜。
8.粒子物理的标准模型:粒子物理的标准模型描述了基本粒子和它们之间的相互作用。
但是这个模型中仍然存在一些未解之谜,比如质量的起源和暗物质的性质等。
9.相对论与量子力学的统一:相对论和量子力学是目前物理学最重要的两个理论。
但是它们在描述自然界的规律时存在不兼容的地方,因此如何将它们统一起来,仍然是一个未解之谜。
10.宇宙中的额外维度:一些理论物理学家认为,我们的宇宙可能不只有三个空间维度,而是有更多的维度存在。
但是这些额外维度的性质和作用仍然是一个未知的领域。
物理学的十大难题是一个广为人知的话题,它们一直挑战着科学界的智慧。
这些难题主要涉及现代物理学的核心领域,如基本粒子物理学、相对论物理学、量子力学以及宇宙学等。
以下是对物理学十大难题的简要分析。
1. 基本粒子质量与重力的巨大差距:这是一个涉及粒子物理学的问题,它的答案还不够清晰。
其中一个基本粒子是质子,它的寿命等问题至今仍是个谜。
而弦理论是一种尝试解决这一问题的理论,认为电子和夸克等粒子是弦的不同振动模式。
2. 宇宙常数:这是爱因斯坦广义相对论中的一个参数,用于解释宇宙的初始膨胀速度。
然而,宇宙常数的存在也引发了一些问题,例如黑洞信息悖论和宇宙均匀性的测量。
3. 超对称性破灭:超对称性是描述在费米子和玻色子之间建立一种对称性的概念。
然而,在实验中,还没有直接观测到这种对称性的存在。
4. 黑洞信息悖论:这是一个涉及黑洞物理学的问题,其问题在于黑洞吞噬物质后所留下的信息是否丢失。
虽然爱因斯坦的广义相对论能解决这个悖论,但它仍然是一个尚未解决的问题。
5. M理论自由度:M理论是一种理论,试图将所有已知的物理学理论统一起来。
然而,M理论的自由度很大,这意味着它需要更多的实验数据和更好的理论解释。
6. 弦理论:弦理论是一种理论,认为基本粒子不是点状的,而是由微小的弦状结构组成。
弦理论是解决宇宙膨胀率问题的一种尝试,但还需要更多的实验数据和理论研究来验证。
7. 量子色动力学中夸克和胶子约束:量子色动力学是描述夸克和胶子之间相互作用的理论。
然而,这个理论中存在许多未解决的问题,例如夸克和胶子的质量、磁矩和相互作用等。
8. 宇宙的起源:关于宇宙的起源是一个重大问题,科学家们提出了许多理论,例如大爆炸理论、暗物质理论和暴胀理论等。
目前,科学家们还没有一个确定的答案。
9. 统一物理定律:统一物理定律是指将所有已知的物理定律合并为一个统一的理论。
尽管已经取得了一些进展,但科学家们还没有找到一个统一的理论。
10. 反物质的去向:反物质是与物质相对的物质,例如正电子和负质子等。
物理学中的25个难题世界著名理论物理学家、2004年诺贝尔物理学奖获得者、美国Kavli理论物理研究所所长大卫·格罗斯(David Gross)教授在2005年2月27日中国科学院理论物理所作了题为“The future of physics--物理学的将来”的科学报告。
格罗斯教授的“The Future of Physics”报告,讨论了当前物理学面临的25个问题及它们如何引导物理学未来25年的发展。
格罗斯说,过去25年到35年中,物理学取得了巨大进展,但同时人们面临的未知事物同样增多。
他将这些“未知”归纳为当前物理学面临的25个问题,认为它们将引导物理学下一个25年的发展。
分属宇宙论、天体物理学、凝聚态物理学、粒子物理学、弦理论、生物物理学和科学政策及社会学七大领域的这25个问题,广泛涉及宇宙起源、暗物质、暗能量、星体形成、广义相对论、量子力学、复杂性、量子计算机、理论生物学、基因组学和计算物理学等。
2005年2月27日,格罗斯教授在“前沿科学论坛”上发表演讲的具体问题包括:1.宇宙起源:宇宙学观测表明宇宙是膨胀着的。
通过对微波背景辐射和宇宙大尺度结构等的观测,宇宙的历史可以追溯到极早期发生的大爆炸。
我们所知的基本物理,比如广义相对论和粒子物理标准模型,在那里都不适用。
为理解宇宙起源,需要了解大爆炸时期的基本物理。
2.暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。
但是它们的起源仍然是个谜。
3.暗能量的本质4.恒星、行星的形成:天体的形成是天体物理学中的重要问题。
适合生物存在的行星,在银河系中出现的几率到底是多少?5.广义相对论:广义相对论在所有尺度上都是正确的吗?6.量子力学:量子力学取得了巨大成功,但它描述的是自然的最终理论吗?也许它会在很小的距离上和非常复杂的系统中失效,是否可用来描绘整个宇宙也还值得探讨。
7.标准模型:粒子物理标准模型无疑极为成功,但人们并没有理解夸克和轻子的质量混合的物理起源和中微子的质量等。
物理学难题集萃(增订本)在浩瀚的物理学世界中,有一些问题如同宇宙中的黑洞,深深吸引着科学家们的目光,却又难以捉摸。
这些难题,不仅是科学界的挑战,更是人类智慧的试金石。
它们如同一座座高峰,等待勇敢的攀登者去征服。
一、量子力学中的测量问题量子力学,这个描述微观世界的理论,自诞生以来就充满了神秘。
其中,测量问题尤为引人注目。
当我们观察一个量子系统时,我们似乎总是得到一个确定的结果,但这个结果是如何从无数可能的状态中涌现出来的呢?这个问题困扰了无数科学家,至今没有一个令人满意的答案。
二、宇宙的起源与命运从大爆炸到黑洞,宇宙的起源和命运一直是物理学中最深奥的问题之一。
我们生活的宇宙是如何从无到有,又将在何时走向终结?这些问题不仅关乎物理学的本质,更触及人类对生命和存在的思考。
三、暗物质与暗能量的本质在宇宙中,有一种我们看不见、摸不着的物质,它不发光、不发热,却占据了宇宙总质量的很大一部分。
这就是暗物质。
而暗能量,则是驱动宇宙加速膨胀的神秘力量。
它们的本质是什么?它们是如何影响宇宙的演化的?这些问题至今仍是未解之谜。
四、弦论与多宇宙假说弦论,这个试图统一所有物理力的理论,提出了一个惊人的观点:我们生活的宇宙可能只是无数个宇宙中的一个。
这些宇宙可能有着不同的物理定律和维度。
而多宇宙假说,则进一步提出了一个更加大胆的观点:宇宙可能不断地从一个状态跃迁到另一个状态,形成一个无限循环的过程。
五、量子引力与时空的几何性质在量子力学和广义相对论的框架下,时空被描述为一个连续的几何结构。
然而,当我们试图将这两个理论结合起来时,却遇到了一个难题:量子效应会导致时空的几何性质变得不稳定,甚至出现奇点。
这个问题,被称为量子引力问题,是物理学中最为棘手的问题之一。
六、信息悖论与黑洞熵黑洞,这个宇宙中的吞噬者,吞噬着一切进入其视界的物质和信息。
然而,根据量子力学的原理,信息是不可能被完全消灭的。
这就引出了一个悖论:黑洞熵问题。
这个问题不仅关乎黑洞的本质,更触及了量子力学和广义相对论的根本原理。
当今世界十大物理难题当今世界十大物理难题100年前,德因数学家戴维·希尔伯特在巴黎的国际数学家大会上以一番发人深省的话语开始了他划时代的讲话。
他在讲话中罗列了当时尚未解决的23个重大难题。
希尔伯特宣称:“—个伟大时代的结束,不仅要求我们回首过去,而且还引导我们回首对未知的将来进行深思。
”随着又一个世纪——实际上是整整一个千年纪元的结束,有一种要求显得比以往任何时候更为紧迫,那就是通过罗列最引人入胜的宇宙之谜来显示人类的无知。
2008年5月,马萨诸塞州剑桥的克莱数学学会仿效希尔伯特,在巴黎宣布了7道“千年大奖难题”,每道题悬赏100万美元征求解答。
无独有偶,上月存圣巴巴拉加州大学,物理学家们像通常那样不事张扬地结束了一次有关超弦理论的会议。
他们的最后一次讨论题为“干年疯狂”,议程是挑选出他们领域中10个最匪夷所思的问题。
这就像是一场由科学界最聪明的一批人参加的荒岛游戏。
圣巴巴拉加州大学的理论物理学家戴维·格罗斯在公布选出的问题时说:“我是这样考虑的:如果我从现在起昏迷100年,当我醒来时,我会问什么问题。
”在剔除一些大法问答的问题(例如“怎样获得终身职位?”)后,评委们列出了足够让物理学家忙上100年的难题。
尽管没有任何悬赏,不过,解决下列问题中的任何一个差不多都能保证获得诺贝尔奖。
1.表达物理世界特征的所有(可测量的)无量纲参数原则上是否都可以推算,或者是否存在一些仅仅取决于历吏或量子力学偶发事件,因而也是无法推算的参数?爱因斯坦的表述更为清楚:上帝在创造宇宙时是否有选择?想象上帝坐在控制台前,准备引发宇宙大爆炸。
“我该把光速定在多少?”“我该让这种名叫电子的小点带多少电荷?”“我该把普朗克常数——即决定量子大小的参数——的数值定在多大?”他是不是为了赶时间而胡乱抓来几个数字?抑或这些数值必须如此,因为其中深藏着某种逻辑?2.量子引力如何帮助解释宇宙起源?现代物理学的两大理论是标准模型和广义相对论。
David Gross:21世纪物理学的25个难题大卫·格罗斯【①】作者简介:大卫·格罗斯(David Gross),美国国家科学院院士,加州大学圣巴巴拉分校(University of California at Santa Barbara)卡维利理论物理研究所(Kavli Institute for Theoretical Physics )所长。
格罗斯教授是量子色动力学的奠基人之一,当代弦理论专家,因发现强相互作用中的渐近自由现象2004年与弗兰克·维尔切克(Frank Wilczek)和戴维·波利策(David Politzer)分享了当年度的诺贝尔物理学奖。
编者按: 1900年,在巴黎国际数学家代表大会上,德国数学家大卫·希尔伯特(David Hilbert,1864-1943)根据19世纪数学研究成果和发展趋势,提出了新世纪数学家应该致力解决的23个数学问题。
希尔伯特的演讲,对20世纪的数学发展,产生了极大的影响。
100余年之后的2004年,另一个大卫,因发现量子色动力学中的“渐近自由”现象而荣获2004年诺贝尔物理学奖的美国物理学家大卫·格罗斯教授,同样就未来物理学的发展,提出了25个问题。
也许人们会说,在物理学领域提出问题要比数学领域容易得多,因为物理学就像大江大河,而数学则像尼罗河三角洲中纵横交错的河网。
但若是反过来想一想,既然物理学界对前沿问题具有更广泛的共识,我们就不难明白,格罗斯教授所提出的问题对未来物理学发展的重要意义。
有趣的是,这25个问题中,有1/3落在物理学的边缘地带,其中3个与计算机科学相关,3个与生物学相关,4个与哲学和社会学相关。
格罗斯教授的演讲,最初是为美国加州大学卡维利理论物理研究所成立25周年庆典而准备的,该庆典云集了物理学各领域的世界一流学者。
此后数月,格罗斯教授先后在欧洲核子中心(CERN)、中国科学院理论物理研究所、大学等地作过容相近的讲演。
这份讲稿来自于我在2004年10月7日卡维利理论物理研究所(KITP)25周年庆祝会议上所作的演讲。
在这次会议中,与会者被邀请提出一些可能引导物理学研究的问题,广泛地说,在未来25年可能引导物理学研究的问题,讲稿中的一部分容就来自于与会者所提出的问题。
1、宇宙起源第1个问题关于宇宙的起源。
这个问题不仅对于科学而且对于哲学和都是一个永久的问题。
现在它是理论物理学和宇宙学亟待解决的问题:“宇宙是如何开始的?”根据最新的观察,我们知道宇宙正在膨胀。
因此,如果我们让时光倒流,宇宙将会收缩。
如果我们应用爱因斯坦方程和我们关于粒子物理学的知识,我们可以或多或少对哪儿会出现“初始奇点”做出近似的推断。
在“初始奇点”,宇宙收缩成为一种难以置信的高密度和高能量的状态——即通常所称的“大爆炸”。
我们不知道在大爆炸点(at the big bang)发生了什么,我们所知的基础物理的所有方法——不仅是广义相对论和标准模型,甚至包括我所知的弦理论——都失灵了。
为了理解宇宙是如何开始的,我们需要了解什么是大爆炸。
宇宙学家观察到微波背景辐射中临近大爆炸时发生的量子涨落的痕迹。
这些涨落是宇宙大尺度结构的起源。
因此,对于宇宙学和天体物理学而言,理解在大爆炸点真正发生了什么是一个急迫的任务。
有没有方法能够直接观察到临近大爆炸时的物理状态?我们往回能够推多远?利用普通的辐射,我们能够回推到大爆炸之后的十万年左右,但是不能更早。
这次会议上有许多这样的讨论:我们能否利用引力辐射或CMB中的信号来发展出新的观察或理论方法,从而将我们的观察回推到大爆炸点为止的整个过程。
那么理论的状况又如何?我们可以确切地说出在宇宙创生时发生了什么吗?弦理论已经成功地消除了广义相对论中产生的奇点。
但是,弦理论能够处理的奇点不是大爆炸所产生的那种类型。
大爆炸所产生的是与时间无关的静态奇点。
弦理论能消除初始奇异点吗?能告诉我们宇宙是如何开始的吗?能告诉我们宇宙的初始状态是什么,或者宇宙的初始波函数是什么吗?一些人推测根本就不存在一个起点,而是宇宙很大,随后塌陷,然后再次膨胀。
一些人鼓吹一个循环的宇宙。
我相信更为可能的是,时间自身是一个突现的概念(emergentconcept),如弦理论所暗示的一样。
因此,为了回答诸如“宇宙是如何开始的”和“时间是如何开始的”这一类问题,我们需要重新明确表述这些问题或者改变这些问题,就如同在物理学中经常出现的那样。
随后这些问题可能更容易回答。
无论如何,上述问题无疑将在未来引导暴涨宇宙学和弦论宇宙学中的大量研究。
2、暗物质第2个问题研究的是我们在最近几年发现的暗物质的本质。
现在看来,宇宙中绝大多数物质不是由构成我们的粒子组成的,而是某种我们不能直接看到的新类型的物质。
这种“暗物质”不发出辐射,可以推想,它与普通粒子和辐射的相互作用非常微弱。
我们只能通过它的引力效应而知道它的存在。
我们可以通过观察星系边缘的普通物质的轨道而测量它的质量。
结果是宇宙的25%由暗物质组成,而不是由质子、中子、夸克或电子构成。
普通的重子物质,即组成我们的物质,仅占目前宇宙质量或能量密度的3-4%。
因此什么是暗物质?我们能在实验室直接观察到它吗?它是如何与普通物质相互作用的?主流的假设是暗物质由弱相互作用大质量粒子(Weakly Interacting Massive Particles,WIMP)组成。
粒子物理学家已经构造出许多推测模型,这些模型超出了粒子物理学的标准模型,通常包括许多可能组成暗物质的候选粒子。
我喜欢的候选粒子是“neutralino”(中性伴随子),标准模型的超对称扩展中的最轻的中性粒子,它是构成暗物质的一个理想的候选粒子。
但是暗物质也可能由“轴子”或其他粒子构成,轴子是为解决强CP问题而发明的另外一个预测粒子。
于是出现了观测问题,我们是否能在实验室中制造和检测暗物质?我们能直接探测到充满和包围星系的暗物质吗?暗物质在宇宙中是如何分布的?关于星系的结构和形成,暗物质向我们提供了什么信息?在星系的形成和分布的当前模型中,暗物质扮演了一个至关重要的角色。
正是暗物质进行了第一次塌陷,随后普通物质出现,并塌陷成为大块的暗物质(the clumps of dark matter)。
我们还不能以充足的定量细节来理解星系是如何形成的,为了达到这个目标,我们需要真正理解暗物质的本质和特性。
3、暗能量第3个问题与最近的发现有关,宇宙中的绝大部分能量是一种新形式的能量,即所谓的“暗能量”。
暗能量施加负压力,负压力导致了宇宙膨胀的加速,通过观察这种加速作用,天体物理学家已经推断出当前宇宙的70%的能量密度是暗能量的形式。
这是最近一二十年最神奇和最惊人的发现之一。
什么是暗能量?最简单的假设是暗能量是恒定的,但是它也可能会随着时间而发生变化,然而,如何从观察上确定暗能量真是恒定的还是随着时间变化?关于暗能量的最简单假设是它是“宇宙学常数”Λ,当初爱因斯坦将它引入他的方程以便得出一个静态的宇宙。
但是随后(人们)认识到爱因斯坦的静态宇宙是不稳定的;而且人们发现,宇宙不是静态的,它正在膨胀。
因此,爱因斯坦放弃了宇宙学常数。
他曾经说过Λ是他最大的错误。
但是现在测量显示,看来存在一个不为零的、并具有负压力的能量,它看起来就像是一个宇宙学常数。
它真是一个宇宙学常数吗?还是其他东西?我们应该怎样解释呢?宇宙中的绝大多数能量是真空能,然而却不可能“看到”它,除非您测量整个宇宙的膨胀,这真是令人惊奇。
还有检测暗能量的其他方法吗?4 恒星、行星的形成第4个问题研究的是更实际的天体物理问题:比星系小的恒星和行星物体的形成。
现在有一个关于恒星形成的合理理论,但它并不是定量的,我们希望让它成为定量理论。
我们能够真正理解恒星质量的围吗?有多少双星形成?最初双星被认为是罕见的。
现在认为所有恒星中至少有一半在双星中形成。
我们可以计算双星的频率吗?恒星是如何成组的?新的观察已经回溯到第一批恒星形成的时期,这在一定程度上重新唤起了人们对这些问题的兴趣。
第一批恒星形成时的环境与今天现存的环境是不同的。
例如,那时没有天体物理学家所称的“金属”——比氦重的元素,因为比氦重的所有元素都是在恒星中形成的。
第一批恒星只有氢和氦。
如果恒星形成的理论足够完善,那么天体物理学家就可以告诉我们第一批形成的恒星的本质。
但是,实际上,观测的结果出乎意料之外,它们与理论预测并不相符合。
因此,关于恒星形成的理论以及检验这些理论的新途径,还有很多东西我们并不清楚。
一个出现只有大约10年的新论题,是行星形成的理论。
我们第一次能够直接观察到我们自身的太阳系之外的行星。
现在已经观察到几百颗行星,我们正在开始积累关于行星系统的真实数据。
这是非常有趣的科学。
其中最有趣的事情之一就是寻找我们太阳系之外的生命。
因此,我们问道:适宜居住的行星有多大的频度?银河系中有多少行星能够支撑生命?我们能否发展出从观察上确定一个行星上面是否存在生命的技术?能否通过观察这些行星的大气层的谱线而确定它上面是否存在生命?这样看来,行星理论和行星科学突然变成一个非常有活力的领域,受到大部分非常年轻的天体物理学家的欢迎。
这是一个非常令人激动的研究领域。
5、广义相对论关于广义相对论(GR),爱因斯坦的引力理论,宇宙学的语言,以及讨论宇宙的大尺度结构的理论框架,存在许多问题。
这次会议的一些与会者问到:我们目前对GR的理解在所有尺度上都是正确的吗?GR在一些案例中已经得到了令人十分信服的验证。
但是有两个区域我们根本没有进行过实验。
一个是短距离。
事实上,对于小于一毫米的距离,我们的确没有检验过牛顿的引力理论。
另一个区域是引力非常强的地方,那里强大的引力造成了空-时流形的极度弯曲,例如黑洞附近。
一个好的问题是:我们能用观测来确定克尔度规(Kerr metric)是否正确描述了黑洞周围的几何学吗?在一个黑洞形成时,只要我们知道这个黑洞的质量和自旋,那么它周围的空间和时间的几何学便是完全确定的。
现在人们相信,宇宙中有许多黑洞。
事实上,看来在每个星系的中心都有一个质量巨大的黑洞。
天体物理学家和理论物理学家正在设法解决如何利用对掉进黑洞的物质所发出的辐射的观测来确定空间-时间几何。
或许我们能够确定克尔度规是否正确描述了我们的星系中心的黑洞外部的空间-时间。
6、量子力学现代物理学的另一个理论支柱是量子力学(QM)。
有趣的是,这次会议上,许多最卓越的参与者都在询问,QM是不是自然的最终解释。
一些人如霍夫特(t’Hooft)就提出,在极小距离上QM可能失效,并设想它将被一个决定论性的理论所代替。
拉格特(Tony Leggett)关心QM是否会在大型的复杂系统上失效。
理由如下:所有学习QM的人都知道,当你开始考虑薛定锷猫的时候,你就会有点不舒服。