机械手总体方案设计
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
金相试样自动打磨抛光机械手设计金相试样制备是金相研究非常重要的一部分,其中手工抛光技术仍然延续使用多年前建立的程序。
早期的抛磨工作是由工人在抛磨机上通过手工操作来完成的,抛光的压力主要根据经验来决定,这种操作模式工艺水平达不到所需要求容易甚至造成安全事故和环境污染。
抛磨压力、时间和抛磨速度是样品制备中的关键,手工操作时压力无法量化,很难保证样品制作的效率的精准性。
但是利用机械自动化设备可以解决上述问题,实现金相试样高效、准确的制备。
作为机械一个分支的金相试样制作设备,正逐步由手工向半自动向自动化发展,因此开发金相试样自动打磨抛光机械手是非常重要的。
关键词:金相试样,抛磨机,机械手1、总体设计路线了解和分析打磨抛光机械手工作原理和主要用途,主要分析打磨抛光机械手核心部件和内外结构分析出其工作特点。
对 PLC 控制系统进行研究设计,画出外接电路图、程序梯形图、接线图。
搜集相关资料,确定所采用的工作形式和加工方法,在此基础上提出可行性方案,并选取择最佳方案。
设计打磨抛光机械手打磨方案、抛光方案等,建模并进行仿真分析。
图 1机械手初步设计模型图2机械机构简图该金相试样自动打磨抛光机械手主要由机械系统、电路控制系统组成。
机械系统机构主要由动力头加减压机构、抛磨盘 V 带传动机构、冷却水泵系统等组成,该机械手的初步设计模型见图1,机构简图见2。
1.1抛磨技术路线该金相抛磨机械手设计了手动抛磨和自动抛磨两工作模式,并设计了动力头自动复位程序,提高了金相抛磨机械手的工作能力和实用性。
该抛磨机械手通过采用高速计数单元与增量式编码器连接来对动力头位置和机械手的压力进行实时控制,这样不仅对金相试样抛磨压力的精确控制,还提高了系统的抗干扰性。
为了降低控制成本和提高系统稳定性,该系统采用驱动器驱动步进电机带动抛磨盘进行变频调速和正反转控制。
该机械手的自动抛磨模式通过采用高速计数单元与增量式编码器连接来对动力头位置和机械手的压力进行实时控制,这样不仅对金相试样抛磨压力的精确控制,还提高了系统的抗干扰性。
立柱式助力机械手设计方案范文毕业设计方案题目立柱式助力机械手设计学院机械工程学院专业机械工程及自动化班级机自0902学生学号指导教师二〇一三年三月二十五日毕业设计方案学院机械工程学院专业机械工程及自动化学生学号设计题目立柱式助力机械手设计一、选题背景与意义机械手是在机械化,自动化生产过程中发展起来的一种新型装置。
在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。
机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。
机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。
在工资水平较低的中国,塑料制品行业尽管仍属于劳动力密集型,机械手的使用已经越来越普及。
那些电子和汽车业的欧美跨国公司很早就在它们设在中国的工厂中引进了自动化生产。
但现在的变化是那些分布在工业密集的华南/华东沿海地区的中国本土塑料加工厂也开始对机械手表现出越来越浓厚的兴趣,因为他们要面对工人流失率高,以及工人交工伤费带来的挑战。
在机械工业中,机械手的应用具有以下意义:1.可以提高生产过程的自动化程度应用机械手,有利于提高材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化程度,从而可以提高劳动生产率,降低生产成本,加快实现工业生产机械化和自动化的步伐。
2.可以改善劳动条件、避免人身事故在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其它毒性污染以及工作空间狭窄等场合中,用人手直接操作是有危险或根本不可能的。
而应用机械手即可部分或全部代替人安全地完成作业,大大地改善了工人的劳动条件。
同时,在一些动作简单但又重复作业的操作中,以机械手代替人手进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。
数控车床自动上下料机械手结构设计摘要:本课题针对于数控车床而设计了结构圆柱坐标型的自动上下料机械手,通过对机械手的传动机构,驱动系统、液压系统以及控制系统进行了理论分析和计算。
同时对机械手整体结构进行了详细的设计,主要包括机械手的机身机座,机械手手臂,机械手手爪等部分。
并分析了数控车床自动上下料机械手的操作流程,主要采用液压缸、步进电机等元件实现机械手的运动部分。
关键词:数控车床;机械手;传动机构:液压系统;驱动系统1、数控车床自动上下料机械手的设计方案1.1机械手结构的设计工业机器人的结构形式主要包括直角坐标型机器人、圆柱坐标型机器人、球坐标型机器人、关节型坐标机器人四种。
其对应的特点如表1。
表1工业机器人结构类型球坐标型机器人两个回抬运动以及一个直线运动结构简单.造价成本较低、精度较差搬运机器人关节型机器人三个回转运动动作灵活、结构疑凌焊接机器人、喷漆机器人、搬运1.2数控车床自动上下料机械手手部设计1.2.1机械手手部的设计要求本课题机械手手爪开闭范围需够大。
在机械手工作时,其中一个手爪张开夹紧角度的最大变化量为开闭范围。
手爪开闭范围的要求与工件的形状以及尺寸等因素都有关联。
通常情况下,机械手手爪的开闭范围越大越好。
1.2.2手爪结构的采用方案结合具体的工作要求,综上所述,本课题采用的是齿轮齿条式。
通过活塞往返带动齿条完成手爪张开或夹紧的动作。
1.3数控车床自动上下料机械手腕部设计机械手手腕主要功能是可以使被夹持工件的方位产生变化,此时机械手手腕需做回转运动,即只存在一个回转自由度。
结合本课题,本设计手腕不加自由度以便于机械手结构简单,操作简单。
1.4数控车床自动上下料机械手手臂设计考虑到操纵器在工作中的稳定性和安全性,将两个平行的导向杆添加到该对象的水平框架中,使其与运动活塞杆截面形成等腰三角形结构,以保证其结构更加稳定牢靠。
垂直手臂添加四个导杆其截面为正四边形,每个导杆都选用空心结构以保证机械手整体重量。
基于PLC的机械手控制系统设计目录一、内容概括 (2)1. 研究背景和意义 (3)2. 国内外研究现状 (3)3. 研究目的和任务 (5)二、PLC技术基础 (6)三、机械手控制系统设计原理 (7)1. 机械手控制系统概述 (8)2. 机械手控制系统的组成 (9)3. 机械手控制系统的工作原理 (10)四、基于PLC的机械手控制系统设计 (11)1. 系统设计目标 (13)2. 系统设计方案 (13)3. 控制系统硬件设计 (15)4. 控制系统软件设计 (17)五、PLC在机械手控制系统中的应用实现 (18)1. PLC的选型与配置 (19)2. PLC的编程与调试 (20)3. 系统的人机界面设计 (22)4. 系统的安全性和可靠性设计 (24)六、系统实验与性能分析 (25)1. 实验目的和实验内容 (26)2. 实验方法和实验步骤 (26)3. 实验结果和分析 (28)七、系统优化与改进建议 (29)1. 系统优化方案 (30)2. 可能出现的问题及解决方案 (31)3. 对未来研究的建议 (32)八、结论 (34)1. 研究成果总结 (35)2. 对未来研究的展望 (36)一、内容概括本文档旨在阐述基于PLC(可编程逻辑控制器)的机械手控制系统的设计过程。
设计内容主要包括系统概述、系统需求分析、系统架构设计、硬件选型与配置、软件编程与调试等方面。
系统概述:介绍基于PLC的机械手控制系统的基本概念、应用领域及其在现代工业生产中的重要性。
系统需求分析:分析系统的功能需求、性能需求、环境需求等,明确系统的设计要求与目标。
系统架构设计:根据需求分析结果,设计系统的整体架构,包括PLC控制器、传感器、执行机构、人机界面等组成部分的布局与连接方式。
硬件选型与配置:根据系统架构设计,选择适当的硬件设备和传感器,进行配置与布局,确保系统的可靠性和稳定性。
软件编程与调试:基于PLC编程软件,编写控制程序,实现机械手的各项功能,包括运动控制、安全防护、数据处理等。
摘要在机械制造业中,机械手已被广泛应用,从而大大的改善了工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐,本设计通过对机械手各主要组成部分(手部、手腕、手臂和机身等)分析,从而确定各主要组成部分的结构,在此基础上对机械手进行设计计算,从而确定装配总图。
通过此次机械手设计,掌握相关机械手设计的主要步骤,对于CAD/CAM软件应用方面有了进一步的提高。
关键词:机械手,设计,手部,手腕,手臂,机身,结构The Design of Industry ManipulatorAbstractIn the mechanical manufacturing industry, the manipulator has been widely applied, thus the big improvement worker's work condition, the remarkable enhancement labor productivity, sped up realizes the industrial production mechanization and the automated step, this design through to the manipulator each main constituent (hand, skill, arm and fuselage and so on) analyzes, thus determined each main constituent the structure, carries on the design calculation in this foundation to the manipulator, thus determination assembly assembly drawing.Designs through this manipulator, the grasping correlation manipulator designs the main step, had the further enhancement regarding the CAD/CAM software application aspect.Keywords:Manipulator, design, hand, skill, arm, fuselage, structure目录1 绪论............................................................. 12 机械手设计要求................................................... 13 机械手总体设计方案............................................... 13.1 机械手的组成............................................... 13.1.1 执行机构............................................. 13.1.2 驱动机构............................................. 23.1.3 控制机构............................................. 23.2 机械手在生产中的应用....................................... 23.3 机械手的主要特点........................................... 23.4 机械手的技术发展方向....................................... 33.5 机械手坐标形式与自由度选择................................. 43.5.1 机械手坐标形式选择................................... 43.5.2 机械手自由度选择..................................... 43.6 机械手的规格参数........................................... 43.7 机械手手部设计计算......................................... 53.7.1 手部设计基本要求..................................... 53.7.2 手部力学分析......................................... 53.7.3 夹紧力与驱动力的计算................................. 73.7.4 手抓夹持范围计算..................................... 93.7.5 手抓夹持精度的分析计算............................... 93.8 机械手腕部设计计算.........................................103.8.1 腕部设计基本要求..................................... 103.8.2 腕部的结构选择....................................... 103.8.3 腕部回转力矩计算..................................... 113.8.4 腕部工作压力计算..................................... 133.8.5 液压缸盖螺钉计算..................................... 143.8.6 动片和输出轴联接螺钉计算............................. 153.9 机械手臂部设计计算......................................... 153.9.1 臂部设计基本要求..................................... 153.9.2 臂部的结构选择....................................... 163.9.3 手臂伸缩驱动力计算................................... 163.9.4 手臂伸缩液压缸参数计算............................... 183.10 机身升降机构计算...........................................193.10.1 手臂偏重力矩计算.....................................193.10.2 升降导向立柱不自锁条件...............................213.10.3 手臂升降驱动力计算...................................213.10.4 手臂升降液压缸参数计算...............................223.11 机身回转机构计算.......................................... 233.11.1 手臂回转液压缸驱动力矩计算...........................233.11.2 手臂回转液压缸参数计算...............................243.11.3 液压缸盖螺钉计算.....................................243.11.4 动片和输出轴间联接螺钉计算...........................254 机械手装配总图...................................................265 结论.............................................................27 致谢.............................................................27 参考文献.........................................................281 绪论工业机械手设计是机械制造、机械设计等方面的一个重要的教学环节,是学完技术基础课及有关专业课以后的一次综合设计,通过这一环节把有关课程中所获得的理论知识在实际中综合的加以应用,使这些知识能够得到巩固和发展,并使理论知识和生产密切的结合起来,通过设计培养学生独立思考能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础。
题目1、机械手的手腕结构与手臂结构设(CAD图)机械手的手腕结构方案设计考虑机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。
因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。
机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和升降(或俯仰)运动。
手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。
机械手的主要参数1、主参数机械手的最大抓重是其规格的主参数,目前机械手最大抓重以10公斤左右的为数最多。
故该机械手主参数定为10公斤,高速动作时抓重减半。
使用吸盘式手部时可吸附5公斤的重物。
2、基本参数运动速度是机械手主要的基本参数。
操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。
而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。
该机械手最大移动速度设计为1.2m/s,最大回转速度设计为1200°/s,平均移动速度为lm/s,平均回转速度为900°/s。
机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。
除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。
大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。
过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。
在这种情况下宜采用自动传送装置为好。
根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为1500mm,手臂安装前后可调200mm。
手臂回转行程范围定为2400(应大于180否则需安装多只手臂),又由于该机械手设计成手臂安装范围可调,从而扩大了它的使用范围。
手臂升降行程定为150mm。
定位精度也是基本参数之一。
该机械手的定位精度为土0.5~±lmm机械手的技术参数列表一、用途:用于 100 吨以上冲床上下料。
摘要机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,由其控制系统执行预定的程序实现对工件的定位夹持。
完全取代了人力,节省了劳动资源,提高了生产效率。
本设计以实现铣床自动上下料为目的,设计了个水平伸缩距为200mm,垂直伸缩距为200mm具有三个自由度的铣床上下料机械手。
机械手三个自由度分别是机身的旋转,手臂的升降,以及机身的升降。
在设计过程中,确定了铣床上下料机械手的总体方案,并对铣床上下料机械手的总体结构进行了设计,对一些部件进行了参数确定以及对主要的零部件进行了计算和校核。
以单片机为控制手段,设计了机械手的自动控制系统,实现了对铣床上下料机械手的准确控制。
关键词:机械手;三自由度;上下料;单片机AbstractManipulator , an automation equipment with function of grabbing and moving the workpiece ,is used in an automated production process.It perform scheduled program by the control system to realize the function of the positioning of the workpiece clamping. It completely replace the human, saving labor resources, and improve production efficiency.This design is to achieve milling automatic loading and unloading .Design a manipulator with three degrees of freedom and 200mm horizontal stretching distance, 120mm vertical telescopic distance. Three degrees of freedom of the manipulator is body rotation, arm movements, as well as the movements of the body. In the design process, determine the overall scheme of the milling machine loading and unloading manipulator and milling machine loading and unloading manipulator, the overall structure of the design parameters of some components as well as the main components of the calculation and verification. In the means of Single-chip microcomputer for controlling, design the automatic control system of the manipulator and achieve accurate control of the milling machine loading and unloading.Key words: Manipulator; Three Degrees of Freedom; Loading and unloading; single chip microcomputer目录摘要.........................................................................I第1章绪论.............................................................11.1选题背景................................................... (1)1.2设计目的.........................................................11.3国内外研究现状和趋势............................................21.4设计原则.........................................................2第2章设计方案的论证..................................................32.1 机械手的总体设计...............................................32.1.1机械手总体结构的类型....................................32.1.2 设计具体采用方案........................................42.2 机械手腰座结构设计.............................................52.2.1 机械手腰座结构设计要求.................................52.2.2 具体设计采用方案........................................52.3 机械手手臂的结构设计...........................................62.3.1机械手手臂的设计要求....................................62.3.2 设计具体采用方案........................................72.4 设计机械手手部连接方式.........................................72.5 机械手末端执行器(手部)的结构设计...........................82.5.1 机械手末端执行器的设计要求.............................82.5.2 机械手夹持器的运动和驱动方式..........................92.5.3 机械手夹持器的典型结构.................................92.6 机械手的机械传动机构的设计..................................102.6.1 工业机械手传动机构设计应注意的问题...................102.6.2 工业机械手传动机构常用的机构形式.....................102.6.3 设计具体采用方案.......................................122.7 机械手驱动系统的设计.........................................122.7.1 机械手各类驱动系统的特点..............................122.7.2 机械手液压驱动系统.....................................132.7.3机身摆动驱动元件的选取................................132.7.4 设计具体采用方案.......................................142.8 机械手手臂的平衡机构设计.....................................14第3章理论分析和设计计算............................................163.1 液压传动系统设计计算..........................................163.1.1 确定液压传动系统基本方案...............................163.1.2 拟定液压执行元件运动控制回路...........................173.1.3 液压源系统的设计........................................173.1.4 确定液压系统的主要参数.................................173.1.5 计算和选择液压元件......................................243.1.6机械手爪各结构尺寸的计算...................................26 第4章机械手控制系统的设计..........................................284.1 系统总体方案..................................................284.2 各芯片工作原理................................................284.2.1 串口转换芯片............................................284.2.2 单片机...................................................294.2.3 8279芯片...............................................304.2.4 译码器...................................................314.2.5 放大芯片................................................324.3 电路设计..................................................334.3.1 显示电路设计............................................334.3.2 键盘电路设计............................................334.4 复位电路设计..................................................334.5 晶体振荡电路设计.............................................344.6 传感器的选择..................................................34结论.....................................................................36致谢.....................................................................37参考文献................................................................38CONTENTS Abstract (I)Chapter 1 Introduction (1)1.1 background (1)1.2 design purpose (1)1.3 domestic and foreign research present situation and trends (2)1.4 design principles (2)Chapter 2 Design of the demonstration (3)2.1manipulator overall design (3)2.1.1 manipulator overall structure type (3)2.1.2 design adopts the scheme (4)2.2 lumbar base structure design of mechanical hand (5)2.2.1 manipulator lumbar base structure design requirements (5)2.2.2specific design schemes (5)2.3mechanical arm structure design (6)2.3.1 manipulator arm design requirements (6)2.3.2 design adopts the scheme (7)2.4 design of mechanical hand connection mode (7)2.5 the manipulator end-effector structure design (8)2.5.1 manipulator end-effector design requirements (8)2.5.2 manipulator gripper motion and driving method (9)2.5.3 manipulator gripper structure (9)2.6 robot mechanical transmission design (10)2.6.1 industry for transmission mechanism of manipulator design shouldpay attention question (10)2.6.2 industrial machinery hand transmission mechanism commonlyused form of institution (10)2.6.3 design adopts the scheme (12)2.7 mechanical arm drive system design (12)2.7.1 manipulator of various characteristics of the drive system (12)2.7.2 hydraulic drive system for a manipulator (13)2.7.3 Body swing the selection of drive components (13)2.7.4 Design the specific use of the program (14)2.8 mechanical arm balance mechanism design (14)Chapter 3 Theoretical analysis and design calculation (16)3.1 hydraulic system design and calculation (16)3.1.1 the basic scheme of hydrauic transmission system (16)3.1.2 formulation of the hydraulic actuator control circuit (17)3.1.3 hydraulic source system design (17)3.1.4 determine the main parameters of the hydraulic system (17)3.1.5 calculation and selection of hydraulic components (24)3.1.6 Manipulator calculation of the structural dimensions (26)Chapter 4 The robot control system design (28)4.1 Overall scheme (28)4.2 Chip works (28)4.2.1 serial conversion chip (28)4.2.2 MCU (29)4.2.3 8279 chip (30)4.2 .4 decoder (31)4.2.5 amplifier chip (32)4.3 Circuit design (33)4.3.1 show the circuit design (33)4.3.2 The keyboard circuit design (33)4.4 Reset circuit design (33)4.5 crystal oscillation circuit design (34)4.6 sensor selection (34)Conclusion (36)Acknowledgements (37)References (38)第1章绪论1.1选题背景机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
自动上下料机械手的设计摘要随着机电一体化技术和计算机技术的应用,机械手的研究和开发水平获得了迅猛的发展并涉及到人类社会生产及生活的各个领域,特别是工业机械手在生产加工中的应用。
机械手是近代自动控制领域中出现的一种新型技术装备,它能模仿人体上肢某些动作,在生产中代替人搬运物体或操持工具进行动作,已成为现代机械制造系统中的一个重要组成部分。
本次设计主要设计自动上下料的机械手,该系统采用液压驱动,传动平稳,且易于控制,控制系统采用一般PLC所具有的位移寄存器和位移指令来编程。
关键词:机械手,液压驱动,控制系统目录1绪论 (1)2 工业机械手的设计方案 (2)2.1 工业机械手的组成 (2)2.2 上下料机械手的工作原理 (3)2.3 规格参数的选择 (3)2.4 设计路线与方案 (4)2.4.1 机械手的总体设计方案 (4)2.4.2 设计步骤 (4)2.4.3 研究方法和措施 (4)3 机械手各部分的计算与分析 (5)3.1 手部计算与分析 (5)3.1.1 滑槽杠杆式手部设计的基本要求 (5)3.1.2 手部的计算和分析 (5)3.2 腕部计算与分析 (12)3.2.1 腕部设计的基本要求 (12)3.2.2 腕部回转力矩的计算 (13)3.2.3 腕部摆动油缸设计 (16)3.2.4 选键并校核强度 (18)3.3 臂部计算与分析 (18)3.3.1 臂部设计的基本要求 (18)3.3.2 手臂的设计计算 (20)3.4 机身计算与分析 (28)4 液压系统设计 (29)4.1 液压系统总体设计 (29)4.2 液压元件的选择 (29)4.2.1 液压缸 (29)4.2.2 液压泵的选取要求及其具体选取 (31)4.2.3 选择液压控制阀的原则 (33)4.2.4 选择液压辅助元件的要求 (33)5 液压元件的保养与维修 (37)5.1 液压元件的安装 (37)5.2 液压系统的一般使用与维护 (37)5.3 一般技术安全事项 (37)6 结论 (39)参考文献 (40)致谢 (41)附录 (42)1绪论工业机械手是人类创造的一种机器,更是人类创造的一项伟大奇迹,其研究、开发和设计是从二十世纪中叶开始的。
毕业设计(论文)论文题目基于PLC机械手设计姓名学号专业机械设计制造及其自动化指导教师2014年3月10日摘要工业机械手是近几十年发展起来的一种高科技自动生产设备。
工业机械手也是工业机器人的一个重要分支。
他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。
机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。
机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。
机械手的结构形式开始比较简单,专用性较强。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
关键字工业机械手,电磁阀,可编程控制器(PLC)AbstractIndustrial manipulator is a kind of high-tech automated production equipment,which is developed in recent decades.Industrial manipulator is an important branch of industrial robots.Its characteristics is that it can do theexpected task by programming , and it has the respective advantage of both manand machine on the structure and performance, particularly in the person's intelligence and adaptability.The accuracy of the manipulator operation and theability to work in the environment has a broad space for development in the fieldof national economy.Manipulator is a kind of multifunctional machine which can be automatically controlled and can be changed by new programming, it has multiple degrees of freedomand can complete the work carry objects in different environments.At first,thestructure of manipulator is relatively simple,but in has a strong specificity.Withthe development of industrial technology, Industrial manipulator is produced withthe process control to independently achieve repetitive operation, which is called "universal manipulator for program control" in wide scope of application, whichis called shortly as general manipulator.Because of general manipulator canquickly change the working procedure with strong adaptability, it was widely quotedby changing in the medium and small batch production of products .Key wordsIndustrial manipulator,Solenoid valve,Programmable Logic Controller(PLC)摘要 (1)Abstract (2)目录 (3)前言 (4)第一章机械手简介 (5)1.1 机械手的发展史 (5)1.2 机械手的分类 (5)1.3 功能与构成 (6)1.3.1 执行机构 (7)1.3.2 驱动机构 (7)1.3.3 控制系统 (8)1.4 课题的提出 (8)1.4.1 应用前景 (8)1.4.2 市场需求 (8)1.4.3 应用领域 (9)第二章机械手整体设计方案 (9)2.1 机械手总体设计 (9)2.1.1机械手整体结构的类型 (9)2.2 机械手工作过程 (10)第三章机械手控制系统设计 (12)3.1 可编程序控制器简介 (12)3.1.1 PLC的结构 (12)3.1.2 PLC的特点 (13)3.1.3 PLC的主要功能 (14)3.2 控制系统硬件设计 (14)3.2.1 PLC选型 (14)3.2.2地址分配 (15)3.3 控制系统软件设计 (16)3.4 PLC程序的调试 (21)3.4.1 PLC控制的安装与布线 (21)第四章结论 (22)参考文献 (23)用于再现人手的的功能的技术装置称为机械手。
三自由度搬运机械手机构设计搬运机械手机构设计-三自由度机械手臂一、引言随着科技的发展,机器人在工业生产、物流等领域发挥着越来越重要的作用。
机械手臂作为机器人的重要组成部分,具有广泛的应用前景。
本文将介绍一种三自由度搬运机械手机构的设计。
二、设计目标本设计的目标是设计一种具备三个自由度的搬运机械手臂,能够实现灵活的运动,达到高效搬运的目的。
具体要求如下:1.三自由度:机械手臂具备三个关节,分别可以实现水平旋转、垂直旋转和前后伸缩的运动。
2.高承载能力:机械手臂需要具备足够的承载能力,能够稳定搬运重物。
3.灵活性:机械手臂需要具备足够的灵活性,能够适应不同的工作环境和搬运任务。
4.可控性:机械手臂需要具备良好的控制性能,能够通过外部控制实现精确的运动。
三、设计方案基于上述设计目标,我们提出以下设计方案:1.结构设计:机械手臂由三个关节组成,分别为水平旋转关节、垂直旋转关节和前后伸缩关节。
其中,水平旋转关节和垂直旋转关节采用舵机作为驱动装置,前后伸缩关节采用滑轨设计。
这种结构设计既能满足机械手臂的运动需求,又能够实现紧凑的机械结构。
2.材料选择:机械手臂的主要材料选择应考虑强度和重量的平衡。
我们可以采用铝合金作为机械手臂的主要材料,既能够满足强度要求,又能够降低自身的重量。
3.控制系统设计:机械手臂的控制系统应具备良好的控制性能,能够通过外部控制实现精确的运动。
我们可以采用嵌入式控制系统,通过编程控制机械手臂的运动,并且可以与其他设备进行数据交互,实现智能化的控制。
4.承载能力设计:机械手臂的承载能力需要根据实际应用需求进行设计。
我们可以根据机械手臂的结构和材料选择,进行力学分析和仿真,来确定机械手臂的承载能力。
四、设计步骤1.结构设计:设计机械手臂的结构,确定关节类型和数量,并确定机械手臂的整体尺寸。
2.材料选择:根据机械手臂的要求和预算限制,选择合适的材料,并确定机械手臂的材料规格。
3.控制系统设计:根据机械手臂的运动要求,设计控制系统的硬件和软件部分,并确定控制系统的接口和通信方式。
第一章绪论随着工业自动化程度的提高,工业现场的很多易燃、易爆等高危及重体力劳动场合必将由机器人所代替。
这一方面可以减轻工人的劳动强度,另一方面可以大大提高劳动生产率。
例如,目前在我国的许多中小型汽车生产以及轻工业生产中,往往冲压成型这一工序还需要人工上下料,既费时费力,又影响效率。
为此,我们把上下料机械手作为我们研究的课题。
工业机械手是工业物流自动化中上网重要装置之一,是当今世界新技术革命的一个重要标志。
工业机械手是典型的机电一体化产品。
工业机械手的产生和推广是社会生产和发展的需要,也是现代生产和科技发展的新技术产品。
工业机械手已经在工业生产、资源开发、社会服务、排险救灾以及军事技术等方面发挥着愈来愈大的应用。
工业机械手的应用和推广已经并将获得极大的效益。
例如在机械制造工业、汽车工业等生产中采用电焊、弧焊、喷漆等机械手,可以大大提高劳动生产率,保证产品质量,改善劳动条件。
又如在微电子、医药等生产部门,采用机械手操作,可以消除人对产品的污染、确保产品质量。
机械手可以在有毒、噪音、高温、易燃、易爆等危险有害的环境中代替人长期稳定的工作,从根本上解决了操作者的安全保障问题。
因而在这方面应用和推广机器人技术是十分迫切和必要的。
近代工业机械手的原型可以从本世纪40代算起。
当时适应核技术的发展需要开发了处理放射性材料的主从机械手。
50年代初美国提出了“通用重复操作机器人”的方案,59年研制出第一工业机械手原型。
由于历史条件和技术水平关系,在60年代机械手发展较慢。
进入70年代后,焊接、喷漆机械手相继在工业中应用和推广。
随着电脑技术、控制技术、人工智能的发展、机械手技术得到迅速发展,出现了更为先进的可配视觉、触觉的机器人所应用的机械手。
如美国Unimation公司PUMA系列工业机器人相关的机械手,即使由直流伺服驱动、关节式结构、多cpu微机控制、采用专用语言编程的技术先进的机械手。
到了80、90年代机器人及相关的机械手开始在工业上普及应用。
毕业设计方案题目重物搬运机械手的结构设计学院机械工程学院专业机械设计制造及其自动化班级机自0917班学生廉开发学号20090421170指导教师苏东宁二〇一三四月十日学院机械工程学院专业机械设计制造及其自动化学生廉开发学号20090421170设计题目重物搬运机械手的结构设计一、选题背景与意义1.国外研究现状1962年,美国机械铸造公司在试制成一台数控试教再现型机械手。
商名为Unimate。
运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。
不少球坐标式通用机械手就是在这个基础上发展起来的。
同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。
1962年美国机械铸造公司也试验成功一种叫Versatran机械手,愿意是灵活搬运,该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是试教再现型。
虽然这两种机械手出现在60年代初,但都是国外工业机械手发展的基础。
1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于1毫米。
美国还十分注意提高机械手的可靠性,改进结构,降低成本。
如Unimate公司建立了8年机械手试验台,进行各种性能的试验。
准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。
它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到0.1毫米。
德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和准备的上下料等作业。
德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。
瑞士RETAB公司生产一种涂漆机械手,采用试教方法编制程序。
瑞士安莎公司采用机械手清理铸铝齿轮箱毛刺等。
日本是工业机械手发展最快、应用最多的国家。
自1969年从美国引进二种典型机械手后,着力研究机械手。
平面关节型机械手设计设计任务书一、通过设计平面关节型机械手,培养综合运用所学知识,分析问题和解决问题的能力。
有关资料:上下料搬运机械手,个自由度,平面关节型;需要搬运的工件:环类零件,内孔直径;高,厚,(只能从内孔夹持工件),材料钢,将工件从一条输送线搬运到与之平行的另一条输送线上,(两输送线距离为,高度差)。
要求:设计方案和计算正确,叙述清楚,图纸符合规范。
二、图纸:.机械手机构简图.工作空间投影图.机械手传动原理图.机械手装配图.零件图三、实习:.本校机械实验室组装各类机械手模型。
.学习工业机械人设计方面知识。
五、进度:月日到月日实习,拟订设计方案月日到月日机械手传动原理图月日到月日机械手装配图月日到月日零件图月日到月日写说明书引言平面关节型机械手是应用最广泛的机械手类型之一,既可以用于实际生产,又可以用于教学实验和科学研究。
用于实际生产,它能够满足装配作业内容改变频繁的要求;用于教学实验,它能够使人直观地了解机器人结构组成、动作原理等,所以开发设计和研究平面关节型机械手具有最广泛的实际意义和应用前景。
其中比较突出的是美国国家半导体公司生产的可编程全数字运动控制芯片,它具有位的位置、速度和加速度寄存器,内置算法,其参数可以修改;支持实时读取和设定速度、加速度以及位置等运动参数,内置的梯形图发生器能够自动生成速度曲线,平稳地加速、减速;支持增量式光电码盘的倍频输入;芯片的主频为和。
一机械手结构本文设计的平面关节型机械手的实物照片如图所示,其主要包括两个旋转关节(分别控制机械大臂和小臂旋转以及手抓张合)和一个移动关节(控制手腕伸缩),图为机械手简化模型。
各关节均采用直流电机作为驱动装置,在机械大臂和小臂的旋转关节上还装配有增量式光电编码器,提供半闭环控制所需的反馈信号。
直流电机的运动控制采用自行开发的基于和构成的多关节控制卡,并编制了能满足运动控制要求的软件,实现对机械手的速度、位置以及关节联动控制。
机械手方案机械手方案引言机械手是一种能够模拟人手的多关节机械装置,具有高度的灵活性和精确度。
它广泛应用于工业自动化领域,能够完成重复性高、精细度要求较高的任务。
本文将介绍一种基于机械手的方案,包括其结构设计、工作原理以及应用领域。
结构设计机械手的结构设计是保证其能够完成目标任务的关键。
一个典型的机械手通常由多个关节组成,每个关节通过电机驱动实现运动。
关节之间通过连杆连接,形成一个可以灵活变形的结构。
机械手的末端通常安装有工具、夹具等,用于完成具体的任务。
在机械手的结构设计中,需要考虑以下几个方面:1. 关节的数量和安排:关节的数量和安排取决于具体任务的要求。
较为复杂的任务可能需要更多的关节来实现更高的灵活性和精确度。
2. 关节的驱动方式:常见的关节驱动方式有电动驱动、气动驱动和液压驱动等。
选择适合的驱动方式可以提高机械手的运动效率和控制精度。
3. 运动范围和载荷能力:根据实际需求,需要确定机械手的运动范围和承载能力。
这将直接影响到机械手能够完成的任务类型和工作效率。
工作原理机械手的工作原理主要包括控制系统、传感器以及执行机构三个方面。
1. 控制系统:机械手的控制系统通常由微处理器、控制算法和驱动电路等组成。
控制系统通过分析传感器获取的反馈信息,计算出关节的位置和速度指令,通过驱动电路将指令传递给执行机构实现相应的运动。
2. 传感器:传感器用于获取机械手与工作环境之间的状态信息,如位置、力量、重量等。
常用的传感器包括编码器、力传感器和触摸传感器等。
这些传感器将获取的信息传递给控制系统,以便控制系统做出相应的调整。
3. 执行机构:执行机构是机械手实际运动的驱动源,通常由电机或气动元件等组成。
执行机构通过接收控制系统传递的运动指令,实现关节的运动。
应用领域机械手广泛应用于工业自动化领域,它的灵活性和精确度使得它可以完成多种重复性高、精细度要求较高的任务。
以下是一些机械手常见的应用领域:1. 组装线:机械手可以用于组装线上的零件抓取、装配和焊接等操作。
来源:网络转载
第2章机械手的总体方案设计
2.1机械手基本形式的选择
常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4
种:(1)直角坐标型机械手;(2)圆柱坐标型机械手;(3)球坐标(极坐标)型机械
手;(4)多关节型机机械手。其中圆柱坐标型机械手结构简单紧凑,定位精度较高,
占地面积小,因此本设计采用圆柱坐标11型。图2.1是机械手搬运物品示意图。
图中机械手的任务是将传送带B上的物品搬运到传送带A。
图2.1机械手基本形式示意
2.2、方案设计
(1)、黑箱结构如图2.1所示
图2.2设计方案
(2)、机械手动作分析及运动分析如图2.3所示,工件首先被机械手夹持,然后
再随之一起运动。其周期运动可以表现为(按动作顺序):大臂下降—夹紧工件
—手腕上翻—大臂上升—大臂回转—手臂延伸—放松工件—手臂收回—手腕下
翻—大臂回转—大臂下降。
图2.3机械手运动图
(3)、功能原理如图2.3所示
图2.4机械手功能原理图
(4)、方案设计
①传动系统如果机械手采用机械传动,则自由度少,难于实现特别复杂的运
动。而对于组合机床自动上下料的机械手,其工件的运动需要多个自由度才能完
成,故不宜采用机械传动方案。如果机械手采取气压传动,由于气控信号比光、
电信号慢得多,且由于空气的可压缩性,工作时容易产生抖动和爬行,造成执行
机构运动速度和定位精度不可靠,效率也较低。电气传动必须有减速装置和将电
机回转运动变成直线运动的装置,结构庞大,速度不易控制。气液联合控制和电
液联合控制则使系统和结构上很复杂。综上所述,我们选择液压传动方式。
②控制系统本机械手是专用自动机械手,选择智能控制方式中的PLC程序控
制方式,这样可以使机械手的结构更加紧凑和完美。
③执行系统分析本机械手的执行系统是手部机构。手部机构形式多样,但综
合其总体构型,可分为:气吸式、电磁式和钳爪式3种。根据本组合机床加工工
件的特征(导卫轮、精密铸钢件),选择钳爪式手部结构。
来源:网络转载
④常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4
种:(1)直角坐标型机械手;(2)圆柱坐标型机械手;(3)球坐标(极坐标)型机械
手;(4)多关节型机机械手。其中圆柱坐标型机械手结构简单紧凑,定位精度较高,
占地面积小,且根据本机械手坐标形式分析分析本机械手臂的运动形式及其组合
情况,采用圆柱坐标形式。因此方案确定机械手采用液压传动方式,PLC控制,
钳爪式手部结构,圆柱坐标形式。
2.3、机械手的运动分析
机械手的动作循环(工件平放):大臂下降300mm—夹紧工件—手腕回转90°
—大臂上升300mm—大臂回转90°—手臂延伸500mm—放松工件—手臂收缩
500mm—手腕反转90°—大臂回转90°—大臂下降300mm。
本机械手的工作频率是5次/min,即12s/次,也就是说,要在10s时间内完成
上述工作循环图中的一次循环。若采用分步运动的话,那么上述平均每一个动作
必须在1.25s内完成,这样必定增加动作的难度和结构的复杂性。因此,我们在
整个运动过程中都将采用协调运动,这样可缓减每个动作的紧迫性。
图2.5机械手运动流程图
如图2.5所示,从t=0s时开始,机械手大臂下降,用时2s,大臂下降速度:
150 mm/s;t=2s时,机械手做夹紧工件运动;在t=2.5s时开始的还有手腕回转
90°,用时1.5s;与此同时大臂开始以150 mm/s做上升运动,用时2s。在t=4.5s
时,大臂开始做回转运动,回转90°,用时1.5s;在t=6s时,手臂开始做向外延
伸500mm的运动,运动速度为250mm/s,用时2s;在t=8s时,机械手手指开始做放
松工件运动,用时0.5s;在t=8.5s时,手腕开始做下翻90°的运动,用时1.5s;
与此同时手臂开始收缩,收缩距离500mm,平均速度250mm/s,用时2s;在t=10.5s
时,手臂做90°回转运动,用时1.5s。上诉运动为一个整周期运动,完成上述运
动共用时12s。运动简图见图2.6所示。
图2.6机械手运动简图
2.4、本章小结
本章对机械手的整体部分进行了总体设计,选择了机械手的基本形式以及自
由度,确定了本设计采用液压驱动,给出了设计中机械手的一些技术参数。下面
的设计计算将以次进行。