果蝇的三点侧交的实验报告
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
实验四:果蝇的杂交姓名:许哲同组者:李永久班级:生科08级学号:200805140167 实验时间:周二下午摘要经典遗传学的三大遗传定律分别是:分离定律,自由组合定律和连锁与交换规律。
果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其在基因分离、连锁、交换等方面,对果蝇的研究更是广泛而充分。
本次通过自行设计实验方案,观察后代中果蝇的各种性状,结合各种统计处理方法,从而证明这三大定律。
1.引言孟德尔定律是G.J.孟德尔根据豌豆杂交实验的结果提出的遗传学中最基本的定律,包括分离定律和独立分配定律。
孟德尔最早选用豌豆,根据从简单到复杂的原则,提出了分离定律和自由组合定律。
对之后遗传学的发展奠定了基础。
分离定律(law of segregation)是指在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
其表现在两个具有相对性状的纯种个体进行杂交,F1代全部表现显性个体的性状,F1代自交,F2代出现隐性个体的性状。
并且,在理论上,F2代中,显性个体与隐性个体的比例为3:1。
孟德尔最初使用豌豆的花色(红花和白花来验证)。
理论如图所示:图一:分离定律图示自由组合定律(the Law of Independent Assortment)是指非同源染色体上的决定不同对性状的基因在形成配子时等位基因分离,不同对基因(非等位基因)之间互不干扰,其实质是F1产生配子时,等位基因分离,非同源染色体上的非等位基因自由组合。
最初由孟德尔在做两对相对性状(豌豆的子叶颜色黄色,绿色,圆粒和绉粒)的杂交实验时发现,基因分离比为9:3:3:1。
(如图所示)图二:自由组合定律图示独立组合位于不同染色体上的2个等位基因是独立传给子代的。
因此可在验证自由组合定律的同时,选取其中一组性状来验证分离定律。
用于杂交的2对等位基因必须位于不同染色体上,即不能连锁。
三点测交一、实验目的1、验证连锁互换定律2、掌握并进行连锁分析,熟悉作染色体图的实验方法3、了解伴性遗传与非伴性遗传的区别,了解伴性遗传在正反交中的差异二、实验原理三点测交是指三个基因包括在一次交配中,那就是用三杂合体abc/+++或ab+/++c跟三隐性个体abc/abc测交。
三点测交实验的优点:①一次三点测交实验即与三次两点测交实验的结果相同。
②一次三点测交实验中得到的三个重组值是在同一基因型背景同一环境条件下得到的,而三次两点测交就不一样了。
事实上,我们知道重组值既受基因背景的影响,也受各种环境条件的影响,所以只有从三点试验所得到的三个重组值才是严格地可以互相比较的。
③通过三点测交实验,还可以得到三次两点测交无法得到的资料,即双交换。
果蝇的白眼,小翅,卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛雌蝇(WNSn/WMSn)与野生型雄蝇交配(+++/y)。
F1雌蝇全部为野生型,雄蝇则全表现为三隐性突变型,让F1雌雄蝇互交,在F2中,不管雌雄性别,除了出现双亲类型外,还会出现新的表型种类,这是由于F1雌雄中两个染色体之间发生了互换的结果,根据基因在染色体上线性排列的遗传理论,对F2进行分析即可知不同基因间的连锁距离。
且在F2的雌性当中两条染色体为杂合的,故可以发生交换,所以F2当中还会出现一些发生单交换和双交换的基因型。
因为这三个基因位于性染色体上,所以这个实验也可用来作为伴性遗传实验,当基因位于性染色体上时,它与性别相连系的遗传现象,跟常染色体上的基因的遗传现象有所不同,这种遗传称为伴性遗传。
在果蝇中,性染色体是XY型,即在雌体上有一对X染色体(X,X),在雄体上有一条X染色体一条Y染色体(X,Y),当基因位于X染色体而Y染色体一般不含有相对的基因就产生伴性遗传,在伴性遗传中,正交和反交产生不同的结果,例如,在本实验中三、实验材料野生型果蝇,白眼、小翅、卷刚毛三隐性纯合体的果蝇装有培养基的空培养管,麻醉瓶,镊子,毛笔,乙醚,解剖镜四、实验步骤1、4月12日星期五早上10点至12点之间,在实验室向两瓶新培养基中分别放入5-6对的纯种野生型果蝇和纯种三隐型果蝇。
实验六、果蝇的杂交试验 一、实验目的 1、了解伴性遗传和常染色体遗传的区别 2、理解和验证伴性遗传和分离、连锁交换定律: 3、学习和掌握基因定位的方法 4、加深理解孟三个遗传定律 二、实验原理 红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。当红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼,F2中红眼:白眼=3:1,但雌蝇全为红眼,雄蝇中红眼:白眼=1:1;反交时F1中雌蝇为红眼,雄蝇为白眼,F2中红眼:白眼=1:1,雌蝇和雄蝇中的红眼与白眼的比例均为1:1。 正常翅(Sn3)对小翅(sn3)为显性,正常刚毛(M)对焦刚毛(m)为显性,与红眼(W)和白眼(w)一样,均位于(X)染色体上。利用三点测交的方法只需通过一次杂交和一次测交就能同时确定三个基因在染色体上的位置顺序和基因的相对距离,绘出连锁图。 让白眼小翅焦刚毛♀蝇与野生型♂蝇杂交,F1雌蝇是三杂合体:表型为野生型。F1♂蝇是白眼焦刚毛小翅。F1代的雌雄蝇互交实际上相当于三杂合体雌蝇与三隐性雄蝇的测交。通过对互交后代中各种表型比例的分析,就可进行w、sn3和m等基因的定位。
三、实验材料、器具和试剂 1、实验材料 野生型雄蝇、雌蝇、白眼焦刚毛小翅雌雄蝇。 野生型品系:长翅,直刚毛,红眼 突变型品系:小型翅,卷刚毛,白眼 2、实验器具 放大镜、显微镜、麻醉瓶、白瓷板、毛笔、记录本。
3实验试剂 乙醚、酒精棉球、培养基。
四、实验步骤 1.选处女蝇 选白眼焦刚毛小翅处女蝇8只,同时选野生型处女蝇8只。方法:将野生型和白眼焦刚毛小翅果蝇培养瓶内的成蝇全部赶去,12小时内将重新孵化出的雌雄果蝇分开,即可得所需处女蝇和雄蝇。
2.杂交 将白眼焦刚毛小翅处女蝇麻醉,并挑取野生型♂蝇8只麻醉后放入培养瓶,此杂交组合可用作伴性遗传和基因定位的观察统计。将野生型处女蝇8只麻醉,同时 将同样数量的白眼焦刚毛小翅雄蝇麻醉,放入培养瓶,此组合用于分离定律和伴性遗传实验的反交。贴好标签。注明杂交组合和日期,学生姓名。 3. 25℃条件下培养 7~8天后,赶去亲本蝇。
姓名班级同组人科目遗传学实验题目双因子杂交、伴性遗传和三点测交组别第五组一、研究背景果蝇(Drossphila)是遗传学试验中最常用的多年生物之一。
属昆虫纲,双翅目,果蝇科,果蝇属。
果蝇的染色体数目少(仅四对,2n=8),具有许多自然的或诱发的可遗传突变性状,世代周期短(25℃下10~12天一代,个体小易于饲养,培养费用低廉,繁殖能力强,后代数目繁多,故被作为遗传学实验的典型模式生物。
后续实验要作果蝇的杂交实验,需要大量的果蝇,本次实验可以学会识别果蝇的各种形状、区分果蝇的性别以及基本的饲养方法,为后续的实验打下基础。
黑腹果蝇(Drosophila melanogaster),果蝇科(Drosophilidae)果蝇属(Drosophila)昆虫。
因其生活史短(在25℃左右温度下十天左右繁殖一代),繁殖力强(雌性可一次产下400个0.5毫米大小的卵),相对性状明显且可遗传,易于培养,培养成本低(酵母和细菌,腐烂水果),符合上述遗传学实验研究要求,同时因其染色体仅4对,基因组仅约165Mb,并且基因组超过60%的片段同人类疾病基因相似。
故已将其作为一种常见的模式生物(model organism)大量使用在遗传学(genetics)和发育生物学(developmental biology)的研究。
二、研究目的1、通过对果蝇的杂交实验,正确理解分离定律的实质,并验证与加深理解三个的遗传规律。
2、认识伴性遗传的正、反交差别,掌握伴性遗传的特点。
3、掌握绘制遗传学图的原理和方法,加深对重组值、遗传学图、双交换、并发率和干涉等概念的理解。
4、掌握果蝇的杂交技术,并学会记录交配结果和掌握统计处理的方法。
5、尝试设计实验,验证缺刻翅的遗传型三、实验原理本次设计实验就是利用果蝇进行一系列的遗传学验证实验和染色体基因相对顺序和距离的测定,下面简要介绍关于双因子杂交、伴性遗传和三点测交的基本原理。
1、双因子杂交(dual factors hybridize):果蝇的灰体基因(E)与黑檀体基因(e)为一对相对性状,位于ⅢR70.7位置,而长翅(Vg)与残翅(vg)为另一对相对性状,位于ⅡR67.0位置。
果蝇杂交实验【实验目的】通过实验验证分离规律、自由组合规律、伴性遗传和连锁互换规律,掌握果蝇杂交的实验技术和基因定位的三点测验方法,在实验中纯熟运用生物记录的方法对实验数据进行分析。
【实验原理】1. 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有3000多种,我国已发现800多种。
大部分的物种以腐烂的水果或植物体为食,少部分则只取用真菌,树液或花粉为其食物。
以果蝇作为遗传学研究的材料,运用突变株研究基因和性状之间的关系已近一百年,至今,各种研究遗传学的工具已达完善的地步,果蝇对今日的遗传学的发展有其不可磨灭的奉献;从1980年初,Drs. C. Nesslein-V olhard和E. Weichaus以果蝇作为发育生物学的模式动物,运用其完备的遗传研究工具来探讨基因是如何调控动物体胚胎的发育,也带动了其它模式生物(线虫、斑马鱼、小鼠和拟南芥等)的研究,且有非常具体的成果。
通常用作遗传学实验材料的是黑腹果蝇(Drosophila melanogaster)。
用果蝇作为实验材料有许多优点:⑴饲养容易。
在常温下,以玉米粉等作饲料就可以生长,繁殖。
⑵生长迅速。
十天左右就可完毕一个世代,每个受精的雌蝇可产卵400~500个,因此在短时间内就可获得大量的子代,便于遗传学分析。
⑶染色体数少。
只有4对。
⑷唾腺染色体制作容易。
横纹清楚,是细胞学观测的好材料。
⑸突变性状多,并且多数是形态突变,便于观测。
果蝇的生活史:果蝇的生活周期长短与温度有密切关系。
一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。
生活周期长短与饲养温度的关系果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。
果蝇的生活史如下:雌蝇→减数分裂→卵受精雄蝇→减数分裂→精子第一批成虫羽化(第八天)(可活26~33天)产第一批卵蛹(第四天)第二次蜕皮第一批卵孵化(第二天)(第零天)第一次蜕皮幼虫(第一天)果蝇的生活周期和各发育阶段的通过时间果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是同样的,称常染色体。
果蝇的三点测交摘要此次我们选择野生型18号果蝇与6号白眼、小翅、焦刚毛果蝇为原始材料,通过合理设计实验,观察、统计F1、F2代果蝇性状情况,验证了连锁交换定律并学习掌握三点测交进行基因定位的方法。
前言基因定位是指确定的基因在染色体上的相对位置和排列顺序的过程。
基因在染色体上的位置是相对恒定的,因此人们就有可能根据基因彼此之间的重组率来确定它们在染色体上的相对位置。
染色体图又称连锁图或遗传图,是指依据测交的实验结果,测得某特定基因间的重组率。
或采用其他方法确定连锁基因在染色体上的相对位置而绘制的一种简单线性示意图。
图距是指两个连锁基因在染色体图上相对距离的数量单位。
1%的重组率去掉百分率的数值定义为一个图距单位。
图距的单位是厘摩(centimorgan,cM)。
我们通常利用三点测交(three-point testcross)来进行基因定位。
三点测交,它是指将3个基因在同一次交配中,取其三杂合体与三隐性体进行测交的方法。
进行三点测交实验一般是先将携带三个待测基因的两个亲本杂交,再用所得的F1与相应的三隐形纯合体进行测交,测交后代的表型实际上是F1配子的类型。
通过统计发生基因重组的F1个体数,可推算出交换值,再以此确定三个基因的距离极其相对位置先将野生型果蝇与三隐性果蝇杂交,作为三因子杂种(abc/+++),再用三隐性个体进行测交。
在测交后代中,因交换可得到各种类型的组合。
与两个亲本表型不同的称为重组合类型。
将三隐性个体与野生型杂交,取F1代雌蝇(三杂合子),用三隐性个体测交,得测交后代。
材料与方法材料器具:麻醉瓶,毛笔、解剖针,培养基,标签、恒温培养箱、解剖镜、酒精灯材料:野生型果蝇原种(18号)红眼、长翅、直刚毛(++、++、++);三隐性突变型果蝇原种(6号)白眼、小翅、焦刚毛(ww、snsn、mm)药品:乙醚,乙醇棉球等方法1、第一周:选处女蝇,以18号果蝇为父本、6号果蝇为母本进行正交;6号果蝇为父本、18号果蝇为母本进行反交,将以上两组移到新的杂交瓶中,贴好标签,于25℃培养;2、第二周:7d后,释放杂交亲本(一定要干净)再放回25℃培养。
果蝇X染色体上基因相对顺序和距离的测定宋蕊(同组者:张月)200900140103 生科四班摘要本实验用表型为白眼、小翅、焦刚毛(w sn3 m/w sn3 m)雌蝇与红眼、长翅、直刚毛(+++/Y)雄蝇纯合体杂交,产生雌蝇(w sn3 m/+++)和雄蝇(w sn3 m/Y),F1兄妹交即测交,通过统计F2代中各表型的个体数,估算这些基因间的交换值,确定其在X染色体上的相对位置,绘制出连锁遗传图。
1 引言1903年,Sutton 根据减数分裂中染色体的行为与Mendel假设的因子的行为平行,推断基因位于染色体上。
同时认为,一条染色体上必然有多个基因,这些基因在配子形成时不能自由组合而是相互连锁。
Morgan等人实验证实了这个推论,并发现连锁的基因可以通过交换产生重组,连锁强度与染色体上连锁基因的直线距离有关。
1913年,Sturtevant 按上述思路,以重组频率作为基因间的距离尺度。
确定了果蝇X 染色体上几个基因的相对顺序和距离。
绘制了遗传史上第一张遗传学图,并提出了基因在染色体上线性排列的观点。
位于同一条染色体上的基因是连锁的,同源染色体的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型。
重组型出现的多少,即重组值反映基因间发生交换的频率的高低。
根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系。
基因图距就是通过基因间重组值的测定而得到的。
如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正。
两个基因间的单交换往往影响邻近两个基因的单交换,使实际观察到的双交换值低于预期值(两个单交换频率的乘积),因为每发生单交换,邻近发生交换的机会减少,这叫干涉。
一般用符合系数表示干涉的程度。
符合系数=观察到的双交换频率/两个单交换频率的乘积研究重组值问题,最容易想到的方法就是研究几个相互连锁的基因间的重组值之间的关系。
遗传学实验
果蝇的三点侧交
一、实验原理
三点测交把三个基因包括在同一次交配中,即用三杂合体abc/+++或ab+/++c跟三隐性个体abc/abc测交。
进行这种试验,一次就等于三次“两点试验”,而且带有另外两个优点。
一次三点测验得到的三个重组值是在同一基因型背景、同一环境条件下得到的,而三次“两点试验”就不一定这样。
重组值既受基因型背景的影响,也受各种环境条件的影响,所以,只有从三点试验所得到的三个重组值才是严格地可以互相比较的。
通过三点测交试验,可以得到三次两点试验所不能得到的资料,即双交换的资料。
果蝇的白眼、小翅、卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛雌蝇(wmsn/wmsn)与野生型雄蝇交配(+++/Y),F1雌蝇全部为野生型,雄蝇则全部表现为三隐性突变型,让F1互交,在F2中,不管雌雄性别,除了出现双亲类型外,还会出现新的表型种类,这是由于F1雌蝇中两个染色体之间发生了互换的结果,根据基因在染色体线性排列的遗传理论,对F2进行分析即可知不同基因间的连锁距离。
因为这三个基因位于性染色体上,所以这个试验也可用来作为伴性遗传试验。
当基因位于X或Y染色体上时,一般不含相对的等位基因,产生伴性遗传,在正交和反交试验中产生不同的结果。
二、实验材料
1 、用具
显微镜,麻醉瓶,白色硬纸板,小毛笔或解剖针,培养瓶,标签、恒温培养箱、解剖镜2、材料
野生型果蝇原种、白眼突变型果蝇原种
3、药品
乙醚,乙醇,培养基
三、试验步骤
1、选三隐性雌性处女蝇(wmsn/wmsn )和野生型雄蝇(+++/Y 5~6对置于新鲜培养瓶中作正交,同时选野生型雌性处女蝇(+++/+++)和三隐性雄蝇(wmsn/Y)同置于新鲜培养瓶中,作为反交,贴上标签,注明亲本类型,实验日期,组别及姓名。
2、一周后,在实验室倒去亲本果蝇,一定要倒干净,一只也不能留。
(此时瓶壁上应有黑色蛹)
3、二周后,F1蝇长出,实验室内观察F1雌蝇和F1雄蝇的各个性状,并观察正反交不同组合的结果如何。
4、取5-6对F1果蝇放入新鲜培养瓶中,正交放两瓶,反交一瓶。
5、三周后,倒去F1,必须倒干净,一只也不能留。
6、四周后,F2成蝇长出,统计各类果蝇数(要求统计数量200只以上),统计过的果蝇处死。
应该统计的F2果蝇是正交中F2,但如果其数目不多,可借用反交中F2的雄蝇加以统计。
7、记录实验数据
四、实验结果
五、结果分析
数据分析:
1、重组率计算
RF(w-sn) = 39÷219=17.8%
RF(w-m) =39÷219=17.8%
RF(m-sn)= 18÷219=8.2%
2、由表型的数据比较可看出,白小直与红长卷为双交换表型,因此可以得出三个基因在染色体上的顺序为:
W-sn-m或者m–sn–w
双交换率= 9÷219=4.1%
3、表格中w与m间的重组率的计算没有将双交换的值计算在内,实际上它们之间在双交换时发生了两次交换,因此对其重组率的计算校正:
RF(w-m) = 38.11% + 2.05% * 2 = 42.21%
六、实验结论
果蝇控制眼色(红眼或白眼,w)、翅的形状(长翅或小翅,m)、刚毛的形状(直刚毛或卷刚毛,sn)三对性状的基因位于同一对染色体上,且sn基因在另两个基因的中间。
七、实验讨论
1、实验结果存在偏差的原因可能有:
(1)进行试验的环境条件有差异,由于不同环境条件下的重组值是有变化的。
(2)数量太少,进行三点测交需要大量的数量,实验数据越多越精确,实验室中果蝇数目有限这就对实验结果影响力加大,也是导致结果与理论值有偏差的原因之一。
(3)由于三隐性个体果蝇的生存力很弱,在幼虫密度较高时易在自然选择中被淘汰,在实验中此因素也有可能引起误差。
(4)观察果蝇时,有一些观察不到放走的,死掉的或者没有观察清楚的,判断失误的(小翅与长翅很容易判断错误,且判断时主观性较大)等等诸多因素都会影响到实验的结果。
2、要保证实验的成功,必须要注意:
(1)挑处女蝇时,每次只挑12小时内羽化成虫,超过12小时的成虫已逐渐有交配能力必须一只不留地倒出处死才能进行第二次挑选。
(2)刚羽化的果蝇色淡白,体软绵,难辨♀♂,务必小心区别。
(3)每个杂交组合放果蝇6-8对,用毛笔把果蝇扫进试管,试管要平放,待蝇醒后,方能竖起,避免果蝇粘在培养基上被闷死,杂交组合配好后,放回培养箱。
两周后停止对F2代的计数,此时可能已有F3代混入影响结果
(4)尽量避免由于操作不当造成的果蝇的逃逸,这样会对最后的结果产生影响。
(5)因为此次实验的连续性很强,所以一定要注意每一步的时间和操作,否则就会产生不可逆的后果,严重的要进行重做。
(6)判断F2果蝇性状时,由于数量巨大,应当耐心地观察判断,切忌粗心马虎导致判断出错,影响了最终的结果。