圆锥齿轮传动比计算
- 格式:docx
- 大小:3.29 KB
- 文档页数:2
11-4直齿圆柱齿轮传动的作用力及计算载荷:一、齿轮上的作用力:为了计算齿轮的强度,设计轴和选用轴承,有必要分析轮齿上的作用力。
当不计齿面的摩擦力时,作用在主动轮齿上的总压力将垂直于齿面,(因为齿轮传动一般都加以润滑,齿轮在齿啮合时,摩擦系数很小,齿面所受的摩擦力相对载荷很小,所以不必考虑),即为P175图11-5b所示的Fn(沿其啮合线方向),Fn可分解为两个分力:圆周力:Ft=2T1/d1 N径向力:Fr=Fttgα N而法向力:Fn=Ft/cosα NT1:小齿轮上的扭矩 T1=9550000p/n1 n·mmP:传递的功率(KW) d1:小齿轮分度圆直径 mmα:压力角 n1:小齿轮的转速(r·p·m)Ft1:与主动轮运动方向相反;Ft2与从动轮运动方向一致。
各力的方向 Fr:分别由作用点指向各轮轮心。
Fn:通过节点与基圆相切(由法切互为性质)。
根据作用力与反作用力的关系,主从动轮上各对的应力应大小相等,方向相反。
二、计算载荷:Fn是根据名义功率求得的法向力,称为名义载荷,理论上Fn沿齿宽均匀分布,但由于轴和轴承的变形,传动装置的制造安装误差等原因,载荷沿齿宽的分布并不均匀,即出现载荷集中现象(如P176图11-6所示,齿轮相对轴承不对称布置,由于轴的弯曲变形,齿轮将相互倾斜,这时,轮齿左端载荷增大,轴和轴承刚度越小,b越宽,载荷集中越严重。
此外,由于各种原动机和工作机的特性不同,齿轮制造误差以及轮齿变形等原因,还会引起附加动载荷。
精度越低,圆周速度V越大,附加载荷越大。
因此在计算强度时,通常以计算载荷K·Fn代替名义载荷Fn,以考虑上两因素的影响。
K—载荷系数表达式11-311-5 直齿圆柱齿轮的齿面接触强度计算:一、设计准则:齿轮强度计算是根据齿轮失效形式来决定的,在闭式传动中,轮齿的失效形式主要是齿面点蚀,开式传动中,是齿轮折断,在高速变截的齿轮传动中,还会出现胶合破坏,因胶合破坏的计算方法有待进一步验证和完善。
锥齿轮减速比计算公式全文共四篇示例,供读者参考第一篇示例:锥齿轮减速比计算公式是在机械传动领域中常用的计算工具,它能帮助工程师和设计师确定设计中所需的减速比,以满足特定的性能要求。
锥齿轮是一种具有斜齿齿轮面的传动装置,通常用于转速和扭矩转换,其减速比是通过其齿轮的几何参数来确定的。
锥齿轮减速比计算的基本原理是根据输入齿轮和输出齿轮的齿数、模数、压力角等参数,利用几何关系和齿轮齿形的计算方法来确定两个齿轮之间的传动比。
在实际设计中,通常需要根据所需的输出转速和扭矩来计算所需的减速比,以满足设计要求。
锥齿轮的减速比计算公式主要包括两种,一种是基于齿数的计算方法,另一种是基于模数的计算方法。
下面将分别介绍这两种计算方法及其应用。
一、基于齿数的计算方法基于齿数的计算方法是一种简单直观的计算方式,通过输入齿轮和输出齿轮的齿数来确定减速比。
假设输入齿轮的齿数为Z1,输出齿轮的齿数为Z2,则减速比可以通过以下公式计算:减速比= Z2 / Z1如果输入齿轮的齿数为20,输出齿轮的齿数为40,则减速比为40/20=2,即输出轴的转速是输入轴的一半。
这种计算方法简单易懂,适用于一些简单的传动系统设计。
但是在实际应用中,通常还需要考虑更多的因素,如压力角、模数等参数对减速比的影响。
基于模数的计算方法是一种更为精确的计算方式,它考虑了齿轮的几何参数对传动比的影响。
在这种方法中,减速比可以通过以下公式计算:减速比= Z2 / Z1 = (D1 / D2) * (cos(α) / sin(β))Z1、Z2分别为输入齿轮和输出齿轮的齿数,D1、D2分别为输入齿轮和输出齿轮的分度圆直径,α为输入齿轮的压力角,β为输出齿轮的压力角。
这种计算方法考虑了更多的几何参数,能够更准确地确定传动比,适用于更复杂的传动系统设计。
在实际应用中,通常需要根据具体情况选择合适的计算方法,以满足设计要求。
锥齿轮减速比的计算是机械传动设计中重要的一环,能够帮助工程师和设计师确定合适的传动比,以实现所需的传动性能。
圆锥齿轮的画法单个圆锥齿轮结构画法[文本]圆锥齿轮通常用于交角90°的两轴之间的传动,其各部分结构如图所示。
齿顶圆所在的锥面称为顶锥面、大端端面所在的锥面称为背锥,小端端面所在的锥面称为前锥,分度圆所在的锥面称为分度圆锥,该锥顶角的半角称为分锥角,用δ表示。
圆锥齿轮的轮齿是在圆锥面上加工出来的,在齿的长度方向上模数、齿数、齿厚均不相同,大端尺寸最大,其它部分向锥顶方向缩小。
为了计算、制造方便,规定以大端的模数为准计算圆锥齿轮各部分的尺寸,计算公式见下表。
其实与圆柱齿轮区别也不大,只是圆锥齿轮的计算参数都是打断的参数,齿根高是1.2倍的模数,比同模数的标准圆柱齿轮的齿顶高要小,另外尺高的方向垂直于分度圆圆锥的母线,不是州县的平行方向。
单个圆锥齿轮的画法规则同标准圆柱齿轮一样,在投影为非圆的视图中常用剖视图表示,轮齿按不剖处理,用粗实线画出齿顶线、齿根线,用点画线画出分度线。
在投影为非圆的视图中,只用粗实线画出大端和小端的齿顶圆,用点画线画出大端的分度圆,齿根圆不画。
[文本]注意:圆锥齿轮计算的模数为大端的模数,所有计算的数据都是大端的参数,根据大端的分度圆直径,分锥角画出分度线细点画线,量出齿顶高、齿根高,即可画出齿顶和齿根线,根据齿宽,画出齿形部分,其余部分根据需要进行设计。
单个齿轮的画法同圆柱齿轮的规定完全相同。
应当根据分锥角,画出分度圆锥的分度线,根据分度圆半径量出大端的位置,根据齿顶高、齿根高找出大端齿顶和齿根的位置,向分度锥顶连线,就是顶锥(齿顶圆锥)和根锥(齿根圆锥),根据齿宽量出分度圆上小端的位置,做分度圆线的垂直线,其他的次要结构根据需要设计即可。
啮合画法[文本]锥齿轮的啮合画法同圆柱齿轮相同,如图所示。
弧齿锥齿轮的传动设计(弧齿锥齿轮的传动设计14.1 弧齿锥齿轮的基本概念14.1.1 锥齿轮的节锥对于相交轴之间的齿轮传动,一般采用锥齿轮。
锥齿轮有直齿锥齿轮和弧齿锥齿轮。
齿 轮 系 传 动 比 计 算1 齿轮系的分类在复杂的现代机械中,为了满足各种不同的需要,常常采用一系列齿轮组成的传动系统。
这种由一系列相互啮合的齿轮(蜗杆、蜗轮)组成的传动系统即齿轮系。
下面主要讨论齿轮系的常见类型、不同类型齿轮系传动比的计算方法。
齿轮系可以分为两种基本类型:定轴齿轮系和行星齿轮系。
一、定轴齿轮系在传动时所有齿轮的回转轴线固定不变齿轮系,称为定轴齿轮系。
定轴齿轮系是最基本的齿轮系,应用很广。
如下图所示。
二、行星齿轮系若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个轴线转动的轮系称为行星齿轮系,如下图所示。
1. 行星轮——轴线活动的齿轮2. 系杆 (行星架、转臂3. 中心轮 —与系杆同轴线、4. 主轴线 5. 基本构件载荷的构件.行星齿轮系中,既绕自身轴线自转又绕另一固定轴线(轴线O1)公转的齿轮2形象的称为行星轮。
支承行星轮作自转并带动行星轮作公转的构件H 称为行星架。
轴线固定的齿轮1、3则称为中心轮或太阳轮。
因此行星齿轮系是由中心轮、行星架和行星轮三种基本构件组成。
显然,行星齿轮系中行星架与两中心轮的几何轴线(O1-O3-OH )必须重合。
否则无法运动。
根据结构复杂程度不同,行星齿轮系可分为以下三类:(1)单级行星齿轮系: 它是由一级行星齿轮传动机构构成的轮系。
一个行星架及和其上的行星轮及与之啮合的中心轮组成。
(2)多级行星齿轮系:它是由两级或两级以上同类单级行星齿轮传动机构构成的轮系。
(3)组合行星齿轮系:它是由一级或多级以上行星齿轮系与定轴齿轮系组成的轮系。
行星齿轮系根据自由度的不同。
可分为两类: (1) 自由度为2 的称差动齿轮系。
(2) 自由度为1 的称单级行星齿轮系。
按中心轮的个数不同又分为:2K —H 型行星齿轮系;3K 型行星齿轮系;K —H —V 型行星齿轮系。
1450rpm53.7rpm2 定轴齿轮系传动比的计算一、齿轮系的传动比齿轮系传动比即齿轮系中首轮与末轮角速度或转速之比。
各种齿轮系传动比的计算齿轮传动是常见的机械传动形式之一,通过不同齿数的齿轮之间的啮合,实现输出轴的转速和转矩的传递。
传动比是指输入轴和输出轴的转速之比,常用于计算机械系统的传动效率和输出速度。
齿轮传动比的计算需要确定输入轴和输出轴的齿轮齿数,并根据齿数的关系得出传动比。
以下是常见的四种齿轮传动形式及其传动比的计算方法:1.平行轴齿轮传动平行轴齿轮传动是最常见的传动形式,通过两个平行轴上的啮合齿轮实现转速的传递。
传动比计算公式如下:传动比=输出齿轮齿数/输入齿轮齿数例如,如果输入齿轮齿数为20,输出齿轮齿数为40,则传动比为40/20=22.穿轴齿轮传动穿轴齿轮传动是指两个轴不平行的齿轮传动形式,通过一个或多个齿轮对实现转速的传递。
传动比计算公式如下:传动比=输出齿轮齿数之积/输入齿轮齿数之积例如,如果输入轴上的齿轮齿数为20和30,输出轴上的齿轮齿数为40和60,则传动比为(40*60)/(20*30)=43.内外啮合齿轮传动内外啮合齿轮传动是指一个齿轮位于另一个齿轮的内部并与其啮合的传动形式,通过齿轮的运动将旋转轴方向转换为轴线的转速和转矩。
传动比计算公式如下:传动比=1/(输入齿轮齿数/输出齿轮齿数)例如,如果输入齿轮齿数为40,输出齿轮齿数为20,则传动比为1/(40/20)=0.54.斜齿轮传动斜齿轮传动是通过斜齿轮的啮合实现转速传递的传动形式,常用于垂直传动和传递大转矩的场合。
传动比计算公式如下:传动比=输出齿轮齿数/输入齿轮齿数*齿数系数齿数系数是考虑斜齿轮齿面压力角的修正系数。
以上是常见齿轮传动形式的传动比计算方法,根据实际情况选择适合的传动形式,并根据齿轮齿数和齿数系数计算传动比。
对于复杂的齿轮系统,可以通过级联多个传动,将多个传动比相乘来得到整个系统的传动比。
可以通过合理的设计和计算,实现满足机械系统性能要求的传动比。
机械设计课程设计任务书设计题目:带式运输机圆锥—圆柱齿轮减速器 设计内容:(1)设计说明书(一份) (2)减速器装配图(1张) (3)减速器零件图(不低于3张系统简图:原始数据:运输带拉力 F=2100N ,运输带速度 s m 6.1=∨,滚筒直径 D=400mm工作条件:连续单向运转,载荷较平稳,两班制。
环境最高温度350C ;允许运输带速度误差为±5%,小批量生产。
设计步骤:一、 选择电动机和计算运动参数(一) 电动机的选择1. 计算带式运输机所需的功率:P w =1000FV =10006.12100⨯=3.36kw 各机械传动效率的参数选择:1η=0.99(弹性联轴器), 2η=0.98(圆锥滚子轴承),3η=0.96(圆锥齿轮传动),4η=0.97(圆柱齿轮传动),5η=0.96(卷筒).所以总传动效率:∑η=21η42η3η4η5η=96.097.096.098.099.042⨯⨯⨯⨯ =0.808 3. 计算电动机的输出功率:d P =∑ηwP =808.036.3kw ≈4.16kw 确定电动机转速:查表选择二级圆锥圆柱齿轮减速器传动比合理范围∑'i =8~25(华南理工大学出版社《机械设计课程设计》第二版朱文坚 黄平主编),工作机卷筒的转速w n =40014.36.1100060d v 100060⨯⨯⨯=⨯π=76.43 r/min,所以电动机转速范围为min /r 75.1910~44.61143.7625~8n i n w d )()(’=⨯==∑。
则电动机同步转速选择可选为 750r/min ,1000r/min ,1500r/min 。
考虑电动机和传动装置的尺寸、价格、及结构紧凑和 满足锥齿轮传动比关系(3i i 25.0i ≤=I ∑I 且),故首先选择750r/min ,电动机选择如表所示 表1(二) 计算传动比:1. 总传动比:420.943.76720n n i w m ≈==∑ 2. 传动比的分配:I I I ∑⨯=i i i ,∑I =i 25.0i =355.2420.925.0=⨯<3,成立355.2420.9i i i ==I ∑∏=4 (三) 计算各轴的转速:Ⅰ轴 r/m in 720n n m ==I Ⅱ轴 r/min 73.305355.2720i n n ===I I ∏ Ⅲ轴 r/min 43.76473.305i n n ===∏∏I I I (四) 计算各轴的输入功率:Ⅰ轴 kw 118.499.016.41d =⨯==I ηP PⅡ轴 kw 874.396.098.0118.432=⨯⨯==I ∏ηηP P Ⅲ轴 42ηη∏I I I =P P =3.874×0.98×0.97=3.683kw 卷筒轴 kw 573.399.098.0683.312=⨯⨯==I I I ηηP P 卷 (五) 各轴的输入转矩电动机轴的输出转矩mm 1052.572016.41055.9n 1055.946m d 6d •⨯=⨯⨯=⨯=N P T 故Ⅰ轴 =⨯==I 99.051778.51d ηT T 5.462mm 104•⨯NⅡ轴 mm 102103.110355.296.098.046260.5i 5432•⨯=⨯⨯⨯⨯==I I ∏N T T ηη Ⅲ轴 m m 10602.410497.098.021028.1i 5542•⨯=⨯⨯⨯⨯==∏∏I I I N T T ηη 卷筒轴 mm 10465.41099.098.0602.45512•⨯=⨯⨯⨯==∏N T T ηη卷二、 高速轴齿轮传动的设计(一) 选定高速级齿轮类型、精度等级、材料及齿数1. 按传动方案选用直齿圆锥齿轮传动2. 输送机为一般工作机械,速度不高,故选用8级精度。
圆锥齿轮传动比计算
圆锥齿轮传动比是指圆锥齿轮传动中输入轴和输出轴转速之间的比值。
在工程设计中,需要准确计算传动比,以确保传动系统的正常运行和性能要求的满足。
本文将介绍圆锥齿轮传动比的计算方法和相关考虑因素。
圆锥齿轮传动比的计算需要考虑几个重要参数,包括齿轮的齿数、模数、齿轮的分度圆直径以及齿轮的压力角等。
这些参数对传动比的计算具有重要影响。
传动比的计算公式可以通过几何关系得到。
对于直齿圆锥齿轮传动,传动比等于输出齿轮齿数除以输入齿轮齿数。
即:
传动比 = 输出齿轮齿数 / 输入齿轮齿数
在实际应用中,传动比的计算还需要考虑到齿轮的压力角和齿轮的模数等因素。
压力角是指齿轮齿面与齿轮轴线之间的夹角,模数是指齿轮齿数与齿轮分度圆直径之间的比值。
在计算传动比时,需要确保输入齿轮和输出齿轮的齿数相等,以保证传动比的准确性。
如果输入齿轮和输出齿轮的齿数不相等,将会导致传动比的误差。
还需要考虑到传动过程中的摩擦和传动效率等因素。
摩擦会引起传
动系统的能量损失,降低传动效率。
因此,在实际设计中,需要合理选择齿轮材料和润滑方式,以减小摩擦损失,提高传动效率。
除了直齿圆锥齿轮传动,还存在斜齿圆锥齿轮传动和螺旋齿圆锥齿轮传动等不同类型的圆锥齿轮传动。
这些不同类型的传动在传动比的计算上也存在一定的差异。
在实际工程中,圆锥齿轮传动比的计算是一个复杂而重要的任务。
需要考虑到多种因素,包括齿轮的几何参数、摩擦损失以及传动效率等。
只有在准确计算传动比的基础上,才能保证传动系统的正常运行和性能要求的满足。
圆锥齿轮传动比的计算需要考虑多个因素,包括齿轮的几何参数、摩擦损失和传动效率等。
在实际设计中,需要根据具体情况选择合适的计算方法和参数,以确保传动系统的正常运行和性能要求的满足。