鲁教版2018九年级数学上册期末模拟测试题六(附答案详解)
- 格式:doc
- 大小:1.07 MB
- 文档页数:20
一、选择题1.从1,2,3,4,5这5个数字任取两个数字,使其乘积为偶数的概率为()A.45B.710C.35D.122.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同3.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.120B.115C.920D.4274.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.795.如图,正方形ABCD内接于O,直径//MN AD,则阴影部分的面积占圆面积的()A.12B.16C.13D.146.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥C .若32BE EC =,则AC 是O 的切线 D .若BE EC =,则AC 是O 的切线7.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°8.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( ) A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案9.如图,在ABC ∆中,30,8,5BAC AB AC ∠===,将ABC ∆绕点A 顺时针旋转30得到ADE ∆连接CD ,则CD 的长是( )A .7B .8C .12D .1310.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3B .0<m≤3C .m <0D .m <0或m >311.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .412.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( ) A .1B .﹣1C .12D .12-二、填空题13.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 14.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.15.已知抛物线的解析式为21y ax bx =++,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a 、b 的值,则抛物线21y ax bx =++与x 轴有两个交点的概率是_____.16.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.17.如图所示,在⊙O 中,AB 为弦,交AB 于AB 点D ,且OD=DC ,P 为⊙O 上任意一点,连接PA ,PB ,若⊙O 的半径为1,则S △PAB 的最大值为_____.18.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________ 19.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()ba b c a++的值为______. x … 3-2-0 … y…31.68- 1.68-…20.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.三、解答题21.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A ,B 是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形,同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请用画树状图或者列表的方式说明理由.22.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个. (1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生?(3)当n 为何值时,这个事件可能发生? 23.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.24.在下列网格图中,每个小正方形的边长均为1个单位.在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1; (2)若点B 的坐标为(-3,5),试在图中画出平面直角坐标系,并标出A ,C 两点的坐标. 25.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.26.解下列方程(1)2210x x ++= (2)233x x【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积为偶数的情况,再利用概率公式即可求得答案. 【详解】 解:画树状图得:∵共有20种等可能的结果,其乘积为偶数的有14种情况, ∴其乘积为偶数的概率为:1472010=, 故选:B . 【点睛】本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C 【分析】根据古典概率模型的定义和列树状图求概率分别对每个选项逐一判断可得. 【详解】解:A 、A 盘转出蓝色的概率为12、B 盘转出蓝色的概率为13,此选项错误; B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误; C 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, D 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误; 故选:C . 【点睛】此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.3.C解析:C 【解析】 由题意得760+2060=920,所以选C. 4.A解析:A 【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一. 【详解】解:∵既是2的倍数,又是3的倍数只有6一个, ∴P (既是2的倍数,又是3的倍数)=19. 故选:A . 【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.5.D解析:D 【分析】 连接OC 、OD ,设O 半径为r ,利用正方形性质得:MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,利用面积差可得S 阴影部分=S 扇形COD ,再利用正方形的性质得到∠COD =90°,则S 扇形=214r ,所以阴影部分面积是圆的面积的14【详解】解:如图,连接OC 、OD ,设O 半径为r ,∵直径//MN AD ,AD ∥BC ∴MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON , ∴S 阴影部分=S 扇形COD ,∵四边形ABCD是正方形∴∠COD=90°,∴S扇形=290360rπ︒︒=214rπ,∵圆的面积为2rπ∴所以阴影部分面积是圆的面积的14故选:D【点睛】本题考查扇形面积计算公式、正方形的性质,利用了面积的和差计算不规则图形的面积,解题的关键是掌握扇形的面积公式.6.D解析:D【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项正确;由于C正确,D自然就错误了.【详解】解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、如图,∵,∴BE,∵AB=BC,BO=BE,∴OB,∴,∴AC是⊙O的切线,∴C选项正确.D、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,2∴D选项错误;故选:D.【点睛】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.7.C解析:C【分析】延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可; 【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒, ∴345∠=︒,∵DA DB =,OA OB =, ∴△△AOD BOD ≅, ∴OD 是AOB ∠的角平分线, 又∵AO BO =, ∴DH AB ⊥,∴290345∠=︒-∠=︒, 又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒. 故选:C . 【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.8.D解析:D 【分析】设展开后的圆半径为r ,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积. 【详解】解:设展开后的扇形半径为r ,由题可得: 4π=2r π解得r =8 ∴S 扇形=14π×82 =16π 故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键. 9.A解析:A【分析】过点D 作DF AC ⊥与F ,由旋转的性质可得AD=AB=8,30BAC DAB ∠=∠=︒,由直角三角形的性质可得AF=4,DF=3AF=43,由勾股定理可求解.【详解】解:过点D 作DF AC ⊥与F ,将ABC ∆绕点A 顺时针旋转30得到ADE ∆,830AD AB BAC DAB ∴==∠=∠=︒,,60CAD ∴∠=︒,且DF AC ⊥,AD=84343AF DF AF ∴===,,1CF ∴=,224817CD DF CF ∴=+=+=故选A ..【点睛】本题考查了旋转的性质、勾股定理,添加合适的辅助线构造直角三角形是解题的关键. 10.C解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P (-m ,m-3)关于原点O 的对称点是P′(m ,3-m ),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m 的取值范围.【详解】解:点P (-m ,m-3)关于原点O 的对称点是P′(m ,3-m ),∵P′(m ,3-m ),在第二象限,∴030m m <⎧⎨->⎩, ∴m <0.故选:C .【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.11.C解析:C【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断.【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确; ③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确.所以①②④三项正确,故选:C .【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.12.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.二、填空题13.【分析】列举出所有等可能的情况数找出能构成三角形的情况数即可求出所求概率【详解】从长为35710的四条线段中任意选取三条作为边所有等可能情况有:357;3510;3710;5710共4种其中能构成三解析:1 2【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【详解】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=21 42 =,故答案为12.【点睛】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.14.【分析】用白球的个数除以球的总个数即可确定摸到白球的概率【详解】解:盒子中装有9个大小相同的乒乓球其中3个是黄球6个是白球则摸到白球的概率是:故答案为【点睛】本题考查概率的求法与运用正确应用概率公式解析:2 3【分析】用白球的个数除以球的总个数,即可确定摸到白球的概率.【详解】解:盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,则摸到白球的概率是:62 93 =.故答案为23.【点睛】本题考查概率的求法与运用,正确应用概率公式是解答本题的关键.15.【分析】根据题意可知有两个不相等的实数根结合概率公式进行分析计算即可【详解】解:由抛物线与轴有两个交点可知有两个不相等的实数根根据图可知共有12种不同的情况而满足有两个不相等的实数根的情况有9种所以解析:34【分析】根据题意可知21=0ax bx ++有两个不相等的实数根,结合概率公式进行分析计算即可.【详解】解:由抛物线21y ax bx =++与x 轴有两个交点可知21=0ax bx ++有两个不相等的实数根,2=40b a ->,根据图可知共有12种不同的情况,而满足21=0ax bx ++有两个不相等的实数根的情况有9种,所以抛物线21y ax bx =++与x 轴有两个交点的概率是93124=. 故答案为:34. 【点睛】本题考查二次函数相关以及概率公式,熟练运用方程思维以及结合概率公式进行分析是解题的关键. 16.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论【详解】∵在△ABC 中∠A =60°∠ABC =80°∴∠C =180°﹣60°﹣80°=40°∵将△ABC 绕点B 逆时针旋转得到△DB解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC 中,∠A =60°,∠ABC =80°,∴∠C =180°﹣60°﹣80°=40°,∵将△ABC 绕点B 逆时针旋转,得到△DBE ,∴∠E =∠C =40°,∵DE ∥BC ,∴∠CBE =∠E =40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA解析:4【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴32=, S △ABE =1332AB DE =, ∵在△ABP 中,当点P 与点E 重合时,AB 边上的高取最大值,此时△ABP 的面积最大,∴S △ABP 的最大值=4.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.18.或【分析】首先根据题意画出图形然后在优弧上取点C连接ACBC在劣弧上取点D连接ADBD易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC在劣弧上取点D连接ADBD解析:30或150︒【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC、BC,在劣弧上取点D,连接AD、BD,易得OAB是等边三角形,再利用圆周角定理,即可得出答案.【详解】解:如图,在优弧上取点C,连接AC、BC,在劣弧上取点D,连接AD、BD,4,4OA OB cm AB cmOA OB AB===∴==OAB∴是等边三角形,601302180150AOBC AOBD C∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况.19.6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1则−=−1所以=2再利用x =−3和x =1对应的函数值相等得到a +b +c =3然后利用整体代入的方法计算(a +b +c )的值【详解】解:∵抛物线解析:6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1,则−2b a =−1,所以b a=2,再利用x =−3和x =1对应的函数值相等得到a +b +c =3,然后利用整体代入的方法计算b a (a +b +c )的值.【详解】解:∵抛物线经过点(−2,−1.68),(0,−1.68),∴抛物线的对称轴为直线x =−1,即−2b a =−1, ∴b a=2, ∴x =−3和x =1对应的函数值相等,∵x =−3时,y =3,∴x =1时,y =3,即a +b +c =3, ∴b a(a +b +c )=2×3=6. 故答案为:6.【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.20.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解 解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解.【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.【点睛】 本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键.三、解答题21.公平,图表见解析【分析】画出树状图,求出配成紫色的概率判断即可.【详解】解:这个游戏对双方公平,理由如下:画树状图如下:由树状图可知,所有等可能的结果共有6种,其中能配成紫色的结果有3种, ∴()31==62P 小颖去,()31==62P 小亮去, ∵11=22, ∴这个游戏对双方是公平的.【点睛】本题考查了游戏公平性的判断,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,画出树状图,求出各自获胜的概率是解答本题的关键.22.(1)n=5或6;(2)n=1或2;(3)n=3或4【分析】(1)利用必然事件的定义确定n 的值;(2)利用不可能事件的定义确定n 的值;(3)利用随机事件的定义确定n 的值.【详解】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.23.(1)相切;(2)94π 【分析】(1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+,解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.24.(1)见解析;(2)见解析;A(0,1),C(-3,1)【分析】(1)根据图形旋转的性质画出△AB 1C 1即可;(2)根据B 点坐标,作出平面直角坐标系,即可写出各点坐标.【详解】(1)解:旋转后图形如图所示(2)解:由B 点坐标,建立坐标系如图所示,则A (0,1),C (-3,1).【点睛】本题考查的是作图-旋转变换,熟知图形旋转的性质是解答此题的关键.25.(1)()4,2A --;()2,2B -;(2)①244y x x =---;②43m -≤≤-或0<5m ≤【分析】(1)根据已知直线和对称点的性质即可求出A 、B .(2)①根据抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-求解即可;②根据已知条件判断出二次函数顶点的位置,计算即可;【详解】(1)直线2l y x =+:与2y =-的交点为A ,则可得到:22x -=+,∴4x =-,∴点A 的坐标是()4,2--, 设(),2Bb -,点A 与点B 关于1x =-对称,则()()141b ---=--, ∴2b =,∴()2,2B -;(2)①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,此时抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-, 则222b b x a =-==-, ∴4b =-,代入顶点可得4c =-, ∴抛物线的解析式为244y x x =---;②抛物线2y x bx c =-++与线段AB 有交点,∴顶点坐标为(),2m m +,∴抛物线的解析式可化为()22y x m m =--++, 把点()4,2A --代入解析式可得,()2242m m -=---++,13m =-,24m =-,∴43m -≤≤-,把点()2.2B -代入解析式得, ()2222m m ---++=-, 30m =,45m =,∴0<5m ≤;综上所述:43m -≤≤-或0<5m ≤.【点睛】本题主要考查了二次函数与一次函数的综合,准确分析计算是解题的关键.26.(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=,2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x , 3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.。
鲁教版2018九年级数学上册期末模拟测试题四(附答案详解)1.关于反比例函数y=2x的图象,下列说法正确的是() A . 图象经过点(1,1) B . 两个分支分布在第二、四象限C . 两个分支关于x 轴成轴对称D . 当x <0时,y 随x 的增大而减小2.如图,A 、B 是函数2y x的图像上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . S =2B . S =4C . 2<S <4D . S >43.如图,二次函数y =ax 2+bx +c (a ≠0)的大致图象,关于该二次函数下列说法正确的是( )A . a >0,b <0,c >0B . b 2﹣4ac <0C . 当﹣1<x <2时,y >0D . 当x >2时,y 随x 的增大而增大4.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .B .C .D .5.某闭合电路中,电源的电压为定值,电流与电阻成反比例.如图表示的是该电路中电流与电阻之间关系的图象,则用电阻表示电流的函数解析式为( ).A .B .C .D .6.如图,已知⊙O 的半径为2,AB 是⊙O 的弦,将劣弧AB 沿弦AB 翻折,恰好经过圆心O ,连接OA 、OB ,得到阴影部分的扇形,剪下阴影部分围成圆锥,则圆锥的底面半径是( )A .12 B . 23 C . 13D . 17.如图,四边形ABCD内接于⊙O,已知∠ADC=130°,则∠AOC的大小是()A.80°B.100°C.60°D.40°8.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若40P∠=,则B∠等于()A.20°B.25°C.30°D.40°9.如图9.如图,点P在反比例函数的图象上,且PD⊥x轴于点D,连接OP,若△POD的面积为6,则k的值是(),A.6 B.12 C.-3 D.-1210.如图所示,已知点P为反比例函数y=(x>0)图象上的一点,且PA⊥x轴于点A,PA,PO分别交于反比例函数y=图象于B,C两点,则△PAC的面积为()A.1 B.1.5 C.2 D.311.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.12.如果二次函数y=a(x+3)2有最大值,那么a___0,当x=___时,函数的最大值是___.13.如图,AB是⊙O直径,弦AD、BC相交于点E,若CD=5,AB=13,则DEBE=_____.14.在菱形ABCD中,AB=5,AC=8,点P是AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF沿EF折叠,使点A落在点A'处,当△A'CD是直角三角形时,AP的长为________.15.若点O 是等腰△ABC 的外心,且∠BOC=60°,底边BC=2,则△ABC 的面积为____________.16.对于二次函数y =x 2+2x -5,当x =1.4时,y =-0.24<0,当x =1.45时,y =0.002 5>0,所以方程x 2+2x -5=0的一个正根的近似值是_____.(精确到0.1).17.二次函数的一般形式是 .18.已知A ()11,y -,B ()22,y -,C ()33,y 三点都在二次函数()222y x =-+的图象上,则1y , 2y , 3y 的大小关系为___________.19.如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是_________.20.如果月亮和地球的距离增加1米,那么月亮绕着地球转一圈要比原来多走(_________)米(圆周率取3.14) 。
一、选择题1.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A .34B .13C .23D .122.做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A .0.50B .0.21C .0.42D .0.583.下列事件中,属于必然事件的是( )A .掷一枚硬币,正面朝上B .三角形任意两边之差小于第三边C .一个三角形三个内角之和大于180°D .在只有红球的盒子里摸到白球 4.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.若3枚鸟卵全部成功孵化,则3只雏鸟中恰有2只雄鸟的概率是( )A .23B .58C .38D .165.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个6.如图△ABC 中,∠C =90°,∠B =28°,以C 为圆心,CA 为半径的圆交AB 于点D ,则AD 的度数为( )A.28°B.56 °C.62°D.112°7.如图,半径为1cm的P在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2A.73πB.75πC.76πD.77π8.如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:①BC=2NC;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是()A.1 B.2 C.3 D.49.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1) 10.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°11.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A . B .C .D .12.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM二、填空题13.已知一元二次方程23m 0x x -+=,从m =-1,1,0,2,3的值中选一个作为m 的值,则使该方程无解的m 值的概率为_________14.一只小鸟自由自在在空中飞翔,然后随意落在下图中,则落在阴影部分的概率是______。
鲁教版2018九年级数学上册期末模拟测试题三(附答案详解)1.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定2.已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y随x的增大而减小,其中正确的有()A.1个B.2个C.3个D.4个3.一定质量的干松木,当它的体积V=2m3时,它的密度为ρ=0.5×103kg/m3,且ρ与V 成反比例,则ρ与V的函数关系式为( )A.ρ=1000V B.ρ=V+1000C.ρ=D.ρ=4.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,关于该二次函数,下列说法中错误的是()A.函数有最小值B.对称轴是直线x=C.当﹣1<x<2时,y<0D.当x>时,y随x的增大而增大5.点在反比例函数的图象上,则下列各点在此函数图象上的是A.B.C.D.6.将抛物线y=x2-2x+3先向左平移2个单位,再向上平移1个单位,得到的抛物线的解析式为( )A.y=(x-3)2+4B.y=(x+1)2+4C.y=(x+1)2+3D.y=(x-1)2+27.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.28.已知函数y=mx+n与y=,其中m≠0,n≠0,则它们在同一平面直角坐标系中的大致图象可能是( )A.A B.B C.C D.D9.如图,是⊙O的直径,,则阴影部分的面积为()A.B.C.D.10.若长方形的长为x,宽为y,面积为10,则y与x的函数关系用图象表示大致为()A.B.C.D.11.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.12.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).13.二次函数y=x2+3x﹣1的对称轴是直线_____.14.(题文)已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.15.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为________16.已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m_____n.(填“>”、“<”或“=”)17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足,与BC交于点D,S△BOD=24,则k=_____.18.如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为_____m2.19.如图,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD:DB=2:3,AC=10,则sinB=_____.20.已知二次函数y=ax|a﹣1|+3在对称轴的左侧,y随x的增大而增大,则a=________.21.如图,李军在A处测得风筝(C处)的仰角为30°,同时在A处正对着风筝方向距A处30m的B处,李明测得风筝的仰角为60°.求风筝此时的高度.(结果保留根号)22.已知函数(m为常数).(1)试判断该函数的图象与x轴的公共点的个数;(2)求证:不论m为何值,该函数的图象的顶点都在函数的图象上;(3)若直线y=x与二次函数图象交于A、B两点,当﹣4≤m≤2时,求线段AB的最大值和最小值。
一、选择题1.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.25个C.35个D.45个2.甲、乙、丙三个小朋友玩滑梯,他们通过抽签的方式决定玩滑梯的先后顺序,则顺序恰好是甲→乙→丙的概率是()A.1 3B.14C.15D.163.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82A.0.90 B.0.82 C.0.85 D.0.844.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃5.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A .70°B .45°C .30°D .20°6.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( )A .25B .43C .25或45D .23或437.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6π B .2π C .23π D .π8.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60°9.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°10.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°11.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .12.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( ) A .3125x x +=- B .31(25)x x +=-- C .31(25)x x +=±-D .3125x x +=±-二、填空题13.在一个不透明的布袋中,蓝色,黑色,白色的玻璃球共有20个,除颜色外其他完全相同.将布袋中的球摇匀,从中随机摸出一个球,记下它的颜色再放回去,通过多次摸球试验后发现,摸到黑色、白色球的频率分别稳定在10%和35%,则口袋中蓝色球的个数很可能是_____.14.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.15.有四张背面完全相同的卡片,正面上分别标有数字﹣2,﹣1,1,2.把这四张卡片背面朝上,随机抽取一张,记下数字为m ;放回搅匀,再随机抽取一张卡片,记下数字为n ,则y =mx+n 不经过第三象限的概率为_____.16.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点B ,O (分别落在点1B ,1C 处,点1B 在x 轴上,再将11AB C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x 轴上,依次进行下去,…,若点(3,0),(0,4),5A B AB =,则点2021B 的坐标为________.17.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____.18.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________19.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______.20.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.三、解答题21.把一副普通扑克牌中的4张:黑2,红3,梅4,方5,洗匀后正面朝下放在桌面上. (1)从中随机抽取一张牌是红心的概率是 ;(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽取的两张牌牌面数字之和大于7的概率. 22.某校团委在“五·四”青年节举办了一次“我的中国梦”作文大赛,广三批对全校20个班的作品进行评比在第一批评比中,随机抽取A 、B 、C 、D 四个班的征集作品,对其数量进行统计后,绘制如下两幅不完整的统计图,(1)第一批所抽取的4个班共征集到作品 件;在扇形统计图中表示C 班的扇形的圆心角的度数为 ; (2)补全条形统计图;(3)第一批评比中,A 班D 班各有一件、B 班C 班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品在两个不同班级的概率.23.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC 于点E ,过点C 作CG ⊥AB 交AB 于点G ,交AE 于点F ,过点E 作EP ⊥AB 交AB 于点P ,∠EAD =∠DEB .(1)求证:BC 是⊙O 的切线; (2)求证:CE =EP ;(3)若CG =12,AC =15,求四边形CFPE 的面积.24.如图1,等腰Rt ABC 中,90A ∠=︒,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______. (2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若8AD =,20AB =,请直接写出PMN 面积的最大值.25.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系202600y x =+.(1)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(2)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少? 26.解方程:22350x x --= (请用两种方法解方程)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可. 【详解】∵小红通过多次摸球试验后发现,估计摸到黄球的概率为0.3, ∴黄球的个数为50×0.3=15, 则白球可能有50-15=35个. 故选:C . 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.2.D解析:D 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案. 【详解】 画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为16,故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.3.B解析:B【分析】根据大量的实验结果稳定在0.82左右即可得出结论.【详解】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.【点睛】本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.4.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A、抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:36=12=0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是39=13≈0.33,故本选项正确; D 、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是1352=0.25,故本选项错误; 故选:C . 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.5.C解析:C 【分析】由BC 是⊙O 的切线,OB 是⊙O 的半径,得到∠OBC =90°,根据等腰三角形的性质得到∠A =∠ABO =30°,由外角的性质得到∠BOC =60°,即可求得∠C =30°. 【详解】∵BC 是⊙O 的切线,OB 是⊙O 的半径, ∴∠OBC =90°, ∵OA =OB , ∴∠A =∠ABO =30°, ∴∠BOC =60°, ∴∠C =30°. 故选:C . 【点睛】本题考查了切线的性质,等腰三角形的性质,三角形的外角性质,解题的关键是灵活运用所学知识解决问题.6.C解析:C 【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】 连结OA , ∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴3OM ==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM =+=故选C . 【点睛】本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.7.A解析:A 【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可. 【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2 ∴AC=2, ∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15° ∴EF 的长为:152180π⨯=6π故选:A 【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.8.B解析:B 【分析】由线段AB 是⊙O 的直径,弦CD 丄AB ,根据垂径定理的即可求得=BC BD ,然后由圆周角定理,即可求得答案. 【详解】解:∵线段AB 是⊙O 的直径,弦CD 丄AB , ∴=BC BD , ∵∠CAB =20°,∴∠BOD=2∠CAB=2×20°=40°. 故选:B . 【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.9.A解析:A 【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案; 【详解】 解:如图,∵ABC 和A B C ''均为等边三角形, ∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=, ∵160BDA '∠=︒∴160DOA A ''∠+∠=︒ ∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒∴20ACA '∠=︒ ∴α的大小是20° 故选:A 【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.10.C解析:C 【分析】直接根据四边形AEHB 的四个内角和为360°即可求解. 【详解】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG , ∴∠BAE =35°,∠E =90°,∠ABD =45°, ∴∠ABH =135°,∴∠DHE =360°-∠E -∠BAE -∠ABH =360°-90°-35°-135°=100°. 故选C . 【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.11.D解析:D 【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象. 【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0,c <0时,二次函数开口向上,一次函数经过一、三、四象限,故C 选项错误; 当a <0,c >0时,二次函数开口向下,一次函数经过一、二、四象限,故A 选项错误,D 选项正确; 故选:D . 【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.12.C解析:C 【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解. 【详解】解:22(31)(25)x x +=- 开方得31(25)x x +=±-,故选:C.【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.二、填空题13.【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数【详解】解:∵摸到黑色白色球的频率分别稳定在10和35∴摸到蓝色球的频率稳定在1-10-35=55∴蓝色球的个数为:20×55=11个故答解析:11【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数.【详解】解:∵摸到黑色、白色球的频率分别稳定在10%和35%,∴摸到蓝色球的频率稳定在1-10%-35%=55%,∴蓝色球的个数为:20×55%=11个,故答案为:11.【点睛】考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.14.【分析】先观察次地板一共有多少块小正方形铺成再把是黑色的小正方块数出来用黑色的小整块数目比总的小正方块即可得到答案【详解】解:由图可知该地板一共有3×5=15块小正方块黑色的小正方块有5块因此停在黑解析:1 3【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块,因此,停在黑色方砖上的概率是51 153,故答案是1 3 .【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.15.【分析】根据题意列表然后根据表格求得所有等可能的结果与直线y =mx+n 不经过第三象限的的情况数根据概率公式求解即可【详解】列表得:mn -2 -1 1 2 -2 (-2-2) (-2-1) (-2解析:14【分析】根据题意列表,然后根据表格求得所有等可能的结果与直线y =mx+n 不经过第三象限的的情况数,根据概率公式求解即可. 【详解】 列表得:其中使得直线y =mx+n 不经过第三象限有(-2,1)、(-2,2)、(-1,1)、(-1,2)共4种情况, 所以直线y =mx+n 不经过第三象限的概率为:41164=, 故答案为:14. 【点睛】本题考查了列表法或树状图法求概念,一次函数的图象与性质,熟练掌握相关知识是解题的关键.16.【分析】先计算出的值再根据至的变化规律得到B 点的变化规律从而得到的坐标【详解】解:由题意可得:即由上可知从纵坐标为0不变横坐标变为:∵20=8+12×∴的横坐标为故答案为(121280)【点睛】本题 解析:(12128,0)【分析】先计算出13B B ,的值,再根据1B 至 3B 的变化规律,得到B 点的变化规律,从而得到2021B 的坐标.【详解】解:由题意可得:()()()123,0,3503540A B C +++,,,, ()()2335430,354350A B +++++++,,,即()()()()()12233,0,80120150,200A B C A B ,,,,,,, 由上可知,从13B B →,纵坐标为0不变,横坐标变为:1222238843520B C C A A B +++=+++=,∵20=8+12×312-,∴2021B 的横坐标为 202118128101012121282-+⨯=+⨯=, 故答案为(12128,0). 【点睛】本题考查旋转的应用,根据旋转的性质找出相等的线段是解题关键.17.12【分析】连接OAOBOC 过点O 作OE ⊥AD 于EOF ⊥BC 于F 根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB 再由DF=BD-BF 得出DF 然后等腰直角三角形的性质求出OF 根解析:12 【分析】连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB ,再由DF=BD-BF 得出DF ,然后等腰直角三角形的性质求出OF ,根据勾股定理求出AE ,再根据AD=AE+OF 得到答案. 【详解】解:∵BD=6,DC=4, ∴BC=BD+DC=10 ∵∠BAC=45°, ∴∠BOC=90°, ∴252==OB BC 连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,∴BF=FC=5, ∴DF=BD-BF=1, ∵∠BOC=90°,BF=FC ∴OF=12BC=5, ∵AD ⊥BC ,OE ⊥AD ,OF ⊥BC , ∴四边形OFDE 为矩形,∴OE=DF=1,DE=OF=5,在Rt △AOE 中,227,=-=AE OA OE ∴AD=AE+DE=12. 【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.18.或【分析】首先根据题意画出图形然后在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD 易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD解析:30或150︒ 【分析】首先根据题意画出图形,然后在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,易得OAB 是等边三角形,再利用圆周角定理,即可得出答案. 【详解】解:如图,在优弧上取点C ,连接AC 、BC , 在劣弧上取点D ,连接AD 、BD ,4,4OA OB cm AB cmOA OB AB===∴==OAB ∴是等边三角形, 601302180150AOB C AOB D C ∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒ 故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况.19.【分析】设点E (mm2﹣4m+8)过E 作EM 垂直于x 轴交AB 于点M 作BF ⊥EMAG ⊥EM 垂足分别为FG 由题意可得M (mm )从而可用含m 的式子表示出EM 的长根据二次函数的性质及三角形的面积公式可得答案 解析:218【分析】设点E (m ,m 2﹣4m +8),过E 作EM 垂直于x 轴交AB 于点M ,作BF ⊥EM ,AG ⊥EM ,垂足分别为F ,G ,由题意可得M (m ,m ),从而可用含m 的式子表示出EM 的长,根据二次函数的性质及三角形的面积公式可得答案. 【详解】解:设点E (m ,m 2﹣4m +8),过E 作EM 垂直于x 轴交AB 于点M ,作BF ⊥EM ,AG ⊥EM ,垂足分别为F ,G ,由题意得:M (m ,m ), ∴EM =m 2﹣4m +8﹣m =m 2﹣5m +8 =257()24m -+, ∴S △ABE =S △AEM +S △EMB =1122EM AG EM BF ⋅+⋅ 1()2EM AG BF =+ 12=(m 2﹣5m +8)×(4-1) 32=(m 2﹣5m +8) =23521()228m -+,由302>,得S △ABE 有最小值. ∴当m =52时,S △ABE 的最小值为218. 故答案为:218. 【点睛】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.20.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值. 【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根, ∴240n mn n ++=,即()40n n m ++=, ∵0n ≠,∴4n m ++,即4m n +=-, 故答案为:4-. 【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.三、解答题21.(1)14;(2)图表见解析,13【分析】(1)根据概率的意义,从4张扑克牌中,任选一张,是红心的概率为14; (2)用列表法表示所有可能出现的结果情况,再求相应的概率即可. 【详解】解:(1)从黑2,红3,梅4,方5这4张扑克牌中任摸一张,是红心的可能性为14, 故答案为:14;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中和大于7的有4种,所以抽取的两张牌牌面数字之和大于7的概率为412=13.【点睛】本题考查用列表法或树状图法求概率,注意树状图法与列表法要不重复不遗漏所有可能的结果,概率=所求情况与总情况数之比.22.(1)24;150°(2)见解析(3)13 15【分析】(1)根据B班的作品数量及占比即可求出第一批所抽取的4个班共征集的作品件数,再求出C班的作品数量,求出其占比即可得到扇形的圆心角的度数;(2)根据C班的作品数量即可补全统计图;(3)根据题意画出树状图,根据概率公式即可求解.【详解】(1)第一批所抽取的4个班共征集到作品为6÷25%=24套,∴C班的作品数量为24-4-6-4=10套,故C班的扇形的圆心角的度数为150°故答案为24;150°;(2)∵C班的作品数量为10套,故补全条形统计图如下:(3)依题意可得到树状图:∴P(抽取的作品在两个不同班级)=2613.3015【点睛】本题考查了统计调查与概率的求解,解题的关键是熟知利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A 或事件B的概率.也考查了统计图.23.(1)见解析;(2)见解析;(3)面积是45【分析】(1)由等腰三角形的性质和直径定理可得∠AED=90°,∠OED=∠ADE,由余角的性质可得∠DEB+∠OED=90°,进而可得∠BEO=90°,可得结论;(2)由平行线的性质和等腰三角形的性质可证AE为∠CAB的角平分线,由角平分线的性质可得CE=EP;(3)连接PF,先证四边形CFPE是菱形,可得CF=EP=CE=PF,由“AAS”可证△ACE≌△APE,可得AP=AC=15,由勾股定理可求CF的长,即可求解.【详解】证明:(1)连接OE,∵OE=OD,∴∠OED=∠ADE,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,又∵∠DEB=∠EAD,∴∠DEB+∠OED=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴AE为∠CAB的角平分线,又∵EP⊥AB,∠ACB=90°,∴CE=EP;(3)连接PF,∵CG=12,AC=15,∴AG22-9,AC CG-225144∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=PE,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵∠CAE=∠EAP,∠EPA=∠ACE=90°,CE=EP,∴△ACE≌△APE(AAS),∴AP=AC=15,∴PG=AP﹣AG=15﹣9=6,∵PF2=FG2+GP2,∴CF2=(12﹣CF)2+36,∴CF =152, ∴四边形CFPE 的面积=CF ×GP =152×6=45. 【点睛】本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.24.(1)PM PN =, PM PN ⊥;(2)PMN 是等腰直角三角形,理由见解析;(3)98【分析】(1)根据题意可证得BD CE =,利用三角形的中位线定理得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线定理得出//PM CE ,得出DPM DCA =∠∠,通过角的转换得出DPM ∠与DPN ∠互余,证得PM PN ⊥.(2)先证明E ABD AC ∆≌,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论.(3)当BD 最大时,PMN 的面积最大,而BD 最大值是28AB AD +=,21()2PMN S PM =⨯,计算得出结论. 【详解】(1)线段PM 与PN 的数量关系是PM PN =,位置关系是PM PN ⊥.∵等腰Rt ABC 中,90A ∠=︒,∴AB=AC ,∵AD=AE ,∴AB-AD=AC-AE ,∴BD=CE ,∵点M ,P ,N 分别为DE ,DC ,BC 的中点, ∴12PM CE =,12PN BD =, ∴PM PN =;∵//PM CE ,∴DPM DCA ∠=∠,∵90A ∠=︒,∴90ADC ACD ∠+∠=︒,∵ADC DPN ∠=∠(两直线平行内错角相等),∴90MPN DPM DPN DCA ADC ∠=∠+∠=∠+∠=︒,∴PM PN ⊥.(2)PMN 是等腰直角三角形.证明:由旋转可知,BAD CAE ∠=∠,AB AC =,AD AE =,∴()ABD ACE SAS ≌△△,∴ABD ACE ∠=∠,BD CE =, 根据三角形的中位线定理可得,12PN BD =,12PM CE =, ∴PM PN =, ∴PMN 是等腰三角形,同(1)的方法可得,PM //CE ,∴DPM DCE ∠=∠, 同(1)的方法得,//PN BD ,PNC DBC ∠=∠,∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,∵90BAC ∠=︒,∴90ACB ABC ∠+∠=︒,∴90MPN ∠=︒,∴PMN 是等腰直角三角形.(3)由(2)知,PMN 是等腰直角三角形,12PM PN BD ==, ∴PM 最大时,PMN 面积最大,∵点D 在BA 的延长线上,BD 最大,∴28BD AB AD =+=,∴14PM =, ∴2211149822PMN S PM ==⨯=最大△. 【点睛】本题主要考查了三角形中位线定理,等腰直角三角形的性质与判定,全等三角形的性质与判定,直角三角形的性质的综合运用,熟练掌握中位线定理是解题关键.25.(1)这种衬衫定价为70元;(2)售价定为65元可获得最大利润,最大利润是19500元【分析】(1)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(2)求出w 的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.【详解】解:(1)()()5020260024000x x --+=,解得,170x =,2110x =,∵尽量给客户优惠,∴这种衬衫定价为70元;(2)由题意可得,()()()250202600209032000w x x x =--+=--+,∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50x ≤,()505030%x -÷≤,解得,5065x ≤≤,∴当65x =时,w 取得最大值,此时19500w =,答:售价定为65元可获得最大利润,最大利润是19500元,【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.26.152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.。
一、选择题1.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程211x a ax x++--=3有正数解,则符合条件的概率是()A.15B.25C.35D.452.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数3.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.384.小王掷一枚质地均匀的硬币,连续抛3次,硬币均正面朝上落地,如果他再抛第4次,那么硬币正面朝上的概率为()A.1 B.12C.14D.155.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠ACB=30°,AB= 3,则阴影部分的面积()A.32B.33C.3π26-D.3π36-6.已知△ABC的外心为O,连结BO,若∠OBA=18°,则∠C的度数为()A .60°B .68°C .70°D .72°7.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40°8.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°9.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .2B .3C .3D .3211.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0 乙:若4b =,则点P 的个数为1丙:若3b =,则点P 的个数为1 A .甲乙错,丙对 B .甲丙对,乙错 C .甲乙对,丙错 D .乙丙对,甲错 12.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( )A .1B .-1C .1或-1D .0二、填空题13.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.14.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.15.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________. (2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。
一、选择题1.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数2.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.183.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案4.下列事件属于不可能事件的是()A.太阳从东方升起B.1+1>3C.1分钟=60秒D.下雨的同时有太阳5.如图在ABC中,∠B=90°,AC=10,作ABC的内切圆圆O,分别与AB、BC、AC相切于点D、E、F,设AD=x,ABC的面积为S,则S关于x的函数图像大致为()A.B.C.D.6.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠ACB=30°,AB= 3,则阴影部分的面积()A.32B.33C.3π26-D.3π36-7.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB =8.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .229.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个10.如图,把△ABC 绕着点A 逆时针旋转40°得到△ADE ,∠1=30°,则∠BAE =( )A .10°B .30°C .40°D .70°11.设A(﹣2,y 1),B(1,y 2),C(2,y 3)是抛物线y =﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 12.已知m是方程2210--=的一个根,则代数式2x x-+的值为()242020m mA.2022 B.2021 C.2020 D.2019二、填空题13.有一个转盘如图所示,转动该转盘两次,则指针两次都落在黄色区域的概率是________.14.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.15.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.16.如图,PA,PB分别与O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若8AP=,则PDE△的周长为______.BC=,若点P是矩形ABCD上一动点,要使得17.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.APB6018.如图,平行四边形ABCD的两条对角线AC与BD相交于直角坐标系的原点.若点A的坐标为(-2,3),则点C的坐标为___________.19.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是______.20.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题21.“赏中华诗词,寻文化基因,品生活之美”,雅礼集团举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整;(2)请求出所有参赛学生成绩的中位数落在哪个组内?(3)现将从包括小芳和小文在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小芳与小文同时被选中的概率.22.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个. (1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生? (3)当n 为何值时,这个事件可能发生?23.已知:如图,ABC 中,BC AC =,以BC 为直径的O 交AB 于点O ,过点D 作DE AC ⊥于点E ,交BC 的延长线于点F .求证:(1)AD BD =,(2)DF 是O 的切线.24.如图,△ABC 在平面直角坐标系中,每个小正方形网格的边长都是1个单位长度. (1)画出ABC 关于x 轴的对称图形111A B C △,并写出点1A 的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的222A B C △,并写出A 2的坐标. (3)直接写出12B B 的长度.25.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元). (1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润等于6000元时,应如何确定销售价格. 26.用配方法解方程:22510x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.2.C解析:C【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.3.B解析:B【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812.故②正确;虽然该球员“罚球命中”的频率的平均值是0.809,但是“罚球命中”的概率不是0.809,故③错误. 故选:B . 【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.4.B解析:B 【分析】不可能事件就是一定不会发生的事件,依据定义即可判断. 【详解】A . 太阳从东方升起,是必然事件,故本选项错误;B . 1+1=2<3,故原选项是不能事件,故本选项正确;C . 1分钟=60秒,是必然事件,故本选项错误;D . 下雨的同时有太阳,是随机事件,故本选项错误. 故选:B . 【点睛】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.A解析:A 【分析】连接OD 、OE ,根据三角形内切圆证得四边形DBEO 是正方形,在根据勾股定理即可得解; 【详解】连接OD 、OE ,如图,O 的半径为r ,∵△ABC 的内切圆O 分别于AB 、BC 、AC 相切与点D 、E 、F , ∴⊥OD AB ,OE BC ⊥,AF=AD=x ,CE=CF=10-x , 易得四边形DBEO 是正方形, ∴DB BE OD r ===,∵()()2△1110101022ABC S r AB BC AC r x r r x r r =++=+++-+=+,∵222AB BC AC +=, ∴()()2221010x r x r ++-+=,∴221010r r x x +=-+,∴()2210525S x x x =-+=--+(0<x <10).故答案选A . 【点睛】本题主要考查了切线的性质,三角形的内切圆与圆心,函数图像,准确分析判断是解题的关键.6.C解析:C 【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可. 【详解】 连接OB .∵AB 是⊙O 切线, ∴OB ⊥AB ,∵OC =OB ,∠C =30°, ∴∠C =∠OBC =30°, ∴∠AOB =∠C +∠OBC =60°,在Rt △ABO 中,∵∠ABO =90°,AB 3∠A =30°, ∴OB =ABtan30°=1,∴S 阴=S △ABO −S 扇形OBD =1232601360π⋅3π6-.故选:C . 【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.7.D解析:D【分析】根据垂径定理得到CM=DM,BC BD=,然后根据圆周角定理得=,AC AD∠ACD=∠ADC,而对于OM与MB的大小关系不能判断.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,BC BD=,=,AC AD∴∠ACD=∠ADC.而无法比较OM,MB的大小,故选:D.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.8.A解析:A【分析】如图,连接OB、OC.首先证明△OBC是等边三角形,求出BC、BM,根据勾股定理即可求出OM.【详解】解:如图,连接OB、OC.∵ABCDEF是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC是等边三角形,∴BC=OB=OC=4,∵OM⊥BC,∴BM=CM=2,在Rt△OBM中,2222-=-=,4223OM OB BM故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.9.C解析:C【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误.【详解】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12323④错误;故选:C.【点睛】本题考查了旋转变换、等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.10.D解析:D 【分析】先找到旋转角,根据∠BAE =∠1+∠CAE 进行计算. 【详解】解:根据题意可知旋转角∠CAE =40°,所以∠BAE =30°+40°=70°. 故选D . 【点睛】本题主要考查了旋转的性质,解题的关键是找准旋转角.11.A解析:A 【分析】根据二次函数的性质解答. 【详解】由抛物线y =﹣(x +1)2+a 可知:抛物线开口向下,对称轴为直线x=-1, ∴点离对称轴越近该点的函数值越大, ∵2(1)1(1)2(1)---<--<--, ∴y 1>y 2>y 3, 故选:A . 【点睛】此题考查二次函数的增减性:当a>0时,对称轴左减右增;当a<0时,对称轴左增右减.12.A解析:A 【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=, ∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=, 故选:A . 【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题13.;【分析】将黄色的部分再平均分成2份使出现每一种情况的可能性均等再利用列表法表示所有可能出现的结果进而求出相应的概率【详解】如图将黄色的部分再平均分成2份分别记作黄1黄2这样就可以列举法表示所有可能解析:49;【分析】将黄色的部分再平均分成2份,使出现每一种情况的可能性均等,再利用列表法表示所有可能出现的结果,进而求出相应的概率.【详解】如图,将黄色的部分再平均分成2份,分别记作黄1,黄2,这样就可以列举法表示所有可能出现的开个情况如下:共有9种等可能出现的结果情况,其中两次都是黄色的有4种,∴P两次黄色=49,故答案为:49.【点睛】本题考查用列表法求简单事件发生的可能性,列举出所有空白出现的结果情况是解决问题的关键.14.【分析】先观察次地板一共有多少块小正方形铺成再把是黑色的小正方块数出来用黑色的小整块数目比总的小正方块即可得到答案【详解】解:由图可知该地板一共有3×5=15块小正方块黑色的小正方块有5块因此停在黑解析:1 3【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块,因此,停在黑色方砖上的概率是51 153,故答案是1 3 .【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.15.【解析】【分析】列举出所有情况看两个指针同时落在偶数上的情况数占总情况数的多少即可【详解】列表得:(16)(26)(36)(46)(56)(15)(25)(35)(45)(55)解析:6 25【解析】【分析】列举出所有情况,看两个指针同时落在偶数上的情况数占总情况数的多少即可.【详解】列表得:∴两个指针同时落在偶数上的概率是625.故答案为:6 25.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.16【分析】根据切线的性质和切线长定理得到DA=DCBE=ECAP=BP然后根据三角形周长公式等量代换线段和差解答即可【详解】解:∵DADCEBECAPPB分别是的切线∴DA=DCEB=ECPA=P解析:16【分析】根据切线的性质和切线长定理得到DA=DC、BE=EC、AP=BP,然后根据三角形周长公式、等量代换、线段和差解答即可.【详解】AP解:∵DA、DC、EB、EC、AP、PB分别是O的切线,8∴DA=DC,EB=EC,PA=PB=8,∵DE=EC+CD∴DE=BE+DA,∴PDE△的周长为PD+PE+DE=PD+DA+PE+BE=PA+PB=16.故答案为:16.【点睛】本题主要考查了切线的性质、切线长定理等知识点,掌握切线长定理是解答本题的关键.17.或4或8【分析】取CD中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B=60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:43或4或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=43,即可证△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD中点P1,连接AP1,BP1,如图1,∵四边形ABCD是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90° ∵点P 1是CD 中点 ∴CP =DP 1=23 ∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB ∴△APB 是等边三角形 ∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交, ∴这样的P 点一共有3个 当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴43,43,90AB A CD AD =∠===︒ ∵260,AP B ∠=︒ ∴221,2P A P B =即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形, ∴∠B=90° ∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP =在3Rt ABP ∆中,22233,AP BP AB -=222331(),2AP AP -=23348,4AP = ∴8,AP =综上所述,AP 的长为:4或8.故答案为:4或8. 【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.18.【分析】根据平行四边形是中心对称的特点可知点A 与点C 关于原点对称所以C 的坐标为(2-3)【详解】∵在平行四边形ABCD 中A 点与C 点关于原点对称∴C 点坐标为(2-3)故答案为:(2-3)【点睛】本题主 解析:(2,3)-【分析】根据平行四边形是中心对称的特点可知,点A 与点C 关于原点对称,所以C 的坐标为(2,-3). 【详解】∵在平行四边形ABCD 中,A 点与C 点关于原点对称, ∴C 点坐标为(2,-3). 故答案为:(2,-3). 【点睛】本题主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A 与点C 关于原点对称的特点,是解题的关键.19.或【分析】由表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3. 故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.20.且【分析】根据题意结合一元二次方程的定义和根的判别式可得关于k 的不等式然后解不等式即可求解【详解】解:∵关于的一元二次方程有两个不相等的实数根∴∴的取值范围是且故答案为:且【点睛】本题考查了一元二次解析:0k >且1k ≠ 【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解. 【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩, ∴k 的取值范围是0k >且1k ≠, 故答案为:0k >且1k ≠. 【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.三、解答题21.(1)见解析;(2)所有参赛学生成绩的中位数落在80到90这个组内;(3)16【分析】(1)根据各组频数之和等于总数可得70~80分的人数,据此即可补全直方图; (2)由中位数的定义即可得出答案;(3)画出树状图,得出所有等可能结果,再根据概率公式求解可得. 【详解】解:(1)70到80分的人数为50﹣(4+8+15+12)=11(人), 补全频数分布直方图如下:(2)∵50个参赛学生成绩的中位数为第25个和第26个成绩的平均数,4+8+11=23, ∴所有参赛学生成绩的中位数落在80到90这个组内; (3)把小芳和小文分别记为A 、B ,其他两名同学记为C 、D , 画树状图如图:共有12种等可能的情况,小芳与小文同时被选中的情况有2种, ∴小芳与小文同时被选中的概率为212=16. 【点睛】本题考查了列表法和画树状图求概率、频数分布直方图,解题的关键是明确题意,正确画出树状图.22.(1)n=5或6;(2)n=1或2;(3)n=3或4 【分析】(1)利用必然事件的定义确定n 的值; (2)利用不可能事件的定义确定n 的值; (3)利用随机事件的定义确定n 的值. 【详解】(1)当n=5或6时,这个事件必然发生; (2)当n=1或2时,这个事件不可能发生; (3)当n=3或4时,这个事件为随机事件. 【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.23.(1)证明见解析;(2)证明见解析. 【分析】(1)如图(见解析),先根据圆周角定理可得90BDC ∠=︒,再根据等腰三角形的三线合一即可得证;∠=∠,再根据等腰三角形的性质可得(2)先根据等腰三角形的三线合一可得ACD BCD∠=∠,然后根据平行线的判定与性质可得ODC BCD∠=∠,从而可得ACD ODC⊥,最后根据圆的切线的判定即可得证.OD DF【详解】(1)如图,连接CD,BC是O的直径,⊥,∴∠=︒,即CD AB90BDC=,又BC AC∴是AB边上的中线(等腰三角形的三线合一),CD∴=;AD BD(2)如图,连接OD,=⊥,BC AC CD AB,∴∠=∠,ACD BCD=,OC OD∴∠=∠,ODC BCD∴=∠∠,ACD ODCOD AC∴,//⊥,DE AC⊥,即DF AC∴⊥,OD DF又OD是O的半径,∴是O的切线.DF【点睛】本题考查了等腰三角形的三线合一、圆周角定理、圆的切线的判定等知识点,较难的是题(2),熟练掌握圆的切线的判定定理是解题关键.24.(1)图见详解,A1(-3,-5);(2)图见详解;A2(5,3);(3)B1B22【分析】(1)找到A、B、C关于x轴的对称点A1、B1、C1连接各点即可得到结果,同时得到点A1的坐标;(2)找到A、B、C绕着O点旋转90°后的对应点A2、B2、C2连接各点即可得到结果,同时得到点A2的坐标;(3)利用勾股定理求出B1B2的长.【详解】 解:(1)如图所示,△A 1B 1C 1即为所求,A 1(-3,-5);(2)如图所示,△A 2B 2C 2即为所求,A 2(5,3);(3)B 1B 22233+2.【点睛】本题考查利用轴对称变换和旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.25.(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.26.1544x =+,2544x =- 【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=, 配方得:2255251()024162x x -+--+=, 即:2517()416x -=,两边同时开平方得:54x -=,即154x =254x =-. 【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.。
鲁教版2018九年级数学上册期末模拟测试题六(附答案详解) 1.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:则一元二次方程ax2+bx+c=0的一个解x满足条件 x 1.1 1.2 1.3 1.4 1.5 1.6 y –1.59 –1.16 –0.71 –0.24 0.25 0.76 A. 1.22.如图,在⊙O中, AB是直径, CD是弦, ABCD,垂足为E,连接CO, AD, 20BAD,则下列说法中正确的是( ).
A. 2ADOB B. CEEO C. 40OCE D. 2BOCBAD 3.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为( ) A. 15° B. 20° C. 25° D. 30° 4.对于二次函数y=2(x﹣1)2﹣3的图象性质,下列说法不正确的是( ) A. 开口向上 B. 对称轴为直线x=1 C. 顶点坐标为(1,﹣3) D. 最小值为3 5.一次函数yaxb与二次函数2yaxbxc在同一直角坐标系中的图象可能是( )
A. B. C. D. 6.如图,桌面上有一个球和一个圆柱形茶叶罐靠在一起,则主视图正确的是( )
A. B. C. D. 7.如图,CD是⊙O的直径,弦AB⊥CD于点E,连接BC,BD,下列结论中不一定正确的是( )
A. AE=BE B. C. OE=DE D. ∠DBC=90° 8.如图是由四个相同的小立方体搭成的几何体,它的主视图是( ) A. B. C. D. 9.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧 、 是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为( )
A. 4π+2 B. π﹣2 C. π+2 D. 4π 10.二次函数y=x2﹣2x+5图象的顶点坐标为_____. 11.如图,点A是双曲线y=﹣3x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k=______. 12.下面是“已知线段AB,求作在线段AB上方作等腰Rt△ABC.”的尺规作图的过程. 已知:线段AB. 求作:在线段AB上方作等腰Rt△ABC. 作法:如图
(1)分别以点A和点B为圆心,大于AB的长为半径作弧, 两弧相交于E,F两点;; (2)作直线EF,交AB于点O; (3)以O为圆心,OA为半径作⊙O,在AB上方交EF于点C; (4)连接线段AC,BC. △ABC为所求的等腰Rt△ABC. 请回答:该尺规作图的依据是____________________________.
13.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12 cm,OA=13 cm,则扇形AOC中的长是__ cm.(计算结果保留π) 14.已知扇形的半径为4cm,面积为203πcm2,则该扇形的弧长等于________. 15.如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为________.
16.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于__________.
17.已知反比例函数y= 的图象如图所示,则k___0,在图象的每一支上, y值随x的增大而____.
18.如图,抛物线y=ax2+bx+1(a≠0)经过点A(-3,0),对称轴为直线x= -1,
则(a+b)(4a-2b+1)的值为____________.
19.如图,在平面直角坐标系中,抛物线21111(0)yaxka与抛物线22222(0)yaxka都经过y轴正半轴上的点A.过点A作x轴的平行线,分别与
这两条抛物线交于B、C两点,以BC为边向下作等边△BCD,则△BCD的面积为________.
20.如图,菱形ABCD中,,,以点A为圆心的与BC相切于点E. 求证:CD是的切线; 求图中阴影部分的面积. 21.如图,直线AB交x轴于点B(2,0),交y轴于点A(0,2),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=3,连接DA,∠DAC=90°. (1)求直线AB的解析式. (2)求D点坐标及过O、D、B三点的抛物线解析式. (3)若点P是线段OB上的动点,过点P作x轴的垂线交AB于F,交(2)中抛物线于E,连CE,是否存在P使△BPF与△FCE相似?若存在,请求出P点坐标;若不存在说明理由.
22.计算: 02220172sin6013; 23.如图,由六个棱长为1cm的小正方体组成一个几何体. (1)分别画出这个几何体的主视图、左视图、俯视图. (2)该几何体的表面积是__cm2.
24.如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点B(0,-5). (1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.
25.计算:2cos45°﹣tan60°+sin30°﹣|﹣|. 26.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求出y与x的函数关系式 (2)问销售该商品第几天时,当天销售利润最大?最大利润是多少? (3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.
答案 1.C
【解析】由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.42.D 【解析】∵ABCD, AB是直径,
∴BCBD, CEDE, ∴240BOCBAD. 故选D. 3.B 【解析】试题解析:连接AC,如图,
∵AB为直径, ∴∠ACB=90°, ∴1109020ACDDCBACB, ∴20AEDACD. 故选B. 点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等. 4.D 【解析】根据二次函数的性质即可直接判断. 解:A.a=2>0,则函数开口向上,故命题正确; B.对称轴是x=1,故命题正确; C.顶点坐标是(1,﹣3),命题正确; D.最小值是﹣3,命题错误. 故选D. 点睛:本题考查了二次函数的性质,正确记忆函数的性质是解决本题的关键. 5.B 【解析】试题解析:A.由一次函数的图象可知,a>0,b>0,由二次函数图象可知,a<0,b<0,故错误. B.由一次函数的图象可知,a<0,b<0,由二次函数图象可知,a<0,b<0,正确; C.由一次函数的图象可知,a>0,b>0,由二次函数图象可知,a>0,b<0,故错误. D.由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,故错误. 故选B. 6.A 【解析】这是由一个球和一个圆柱组合成的几何图形,它的主视图是一个圆和一个长方形,且圆在左边,长方形在右边,故选A. 7.C 【解析】∵CD⊥AB,CD是⊙O的直径,AB是弦, ∴AE=BE,弧 AD=弧BD,∠DBC=90°, ∴AD=BD,
∴A、B、D正确. 无法说明OE=DE,故C不一定正确. 故选C. 8.D 【解析】分析:主视图是从正面看所得到的图形,从左往右分2列,正方形的个数分别是:2,1;依此即可求解.
详解:主视图是从正面看所得到的图形,由图中小立方体的搭法可得主视图是. 故选:D. 点睛:此题主要考查了简单组合体的三视图,关键是掌握三种视图所看的位置. 9.A
【解析】解:∵AB=4,∠A=30°,∴BC=2,AC=,∴图中阴影部分的面积=Rt△ABC的
面积+扇形ABA′的面积﹣扇形CBC′的面积=×2÷2+ = =. 故选A.
点睛:本题考查的是扇形面积的计算和旋转的性质,掌握扇形面积公式S=是解题的关键. 10.(1,4) 【解析】∵y=x2﹣2x+5=(x﹣1)2+4, ∴二次函数图象的顶点坐标为(1,4), 故答案为:(1,4). 11.1 【解析】试题解析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点
E, ∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且120ACB, ∴CO⊥AB,30CAB, 则90AODCOE, ∵90DAOAOD, ∴∠DAO=∠COE, 又∵90ADOCEO, ∴△AOD∽△OCE, ∴tan603ADODOAEOCEOC,
∴233AODEOCSS, ∵点A是双曲线3yx在第二象限分支上的一个动点, ∴13322AODS, ∴131322OCES, 即1122k, ∴1k, 又∵0k, ∴1k.