双引发体系合成固体聚羧酸减水剂的性能研究
- 格式:pdf
- 大小:1.56 MB
- 文档页数:2
2020年06月当考虑气候因素。
有些气井由于地理位置较为偏远,无法连接电源、水源,对这些气井实施增压开采需要考虑对外来电源、水源要求较低或能够不依靠外来电源、水源,安装、维修简单的增压设备。
因此在选择增压设备时,必须根据天然气气田增压开采的特点来进行,在某些特殊情况下,为了保证增压气井生产的稳定性,需要对井内增压、输送过程的增压设备等进行合理的选择与改造。
2.4气田与压缩机工况的协调性对气井实施增压开采需要根据气井的实际生产情况来进行,由于气井进口的压力值、井内的实际情况、天然气的运输状况都不是固定不变的,面对这种动态的变化,对压缩机的型号、数量等的要求也存在差别。
因此在压缩机的选择上,需要根据具体的情况做出调整,保证压缩机工况能够与气田的开采状况相协调,以此来保证增产效果。
尤其是一些生产变化较大的气田中,可以对转速、压缩缸余隙等部件的调整来调整工况,来满足气田集输采气的变化情况。
比如当气田的气水率相对较高时,需要通过备用机组来预防气田的变化。
对开采过程实时监控,是为了对增压开采情况进行及时的调整,能够确保压缩机工况与开采工艺相适应。
只有增压开采工艺的应用达到最优值,才能够保证气田开采的经济效益达到最高。
2.5应用优化对于天然气增压开采工艺的应用效果,可以通过一定的方法进行优化,保证后续作业的顺利进行。
如在页岩气气田的开采中,可以通过计算非线性方程的方式来将增压开采技术进一步优化,保证各个目标值的组合解能够达到最优值,从而保证气井开发后期开采效果的最大化。
在天然气增压开采工艺技术的具体应用中,应当在工艺的应用基础上,根据气井的特点来进行应用优化,使其更适应天然气开采的具体情况。
3结语天然气能源的需求量在不断上涨,但随着气田开采的不断进行,气井资源量将逐渐降低至最低可采储量,为了进一步提高气井的采收率,必须要通过增压开采设备的应用来使气田的工况重新满足开采标准。
通过对增压开采工艺的应用进行研究,对如何达到应用的最优值进行分析,可以有效提高相应气田的采收率,保证我国清洁能源的供应。
聚羧酸减水剂的合成及其引气与早强性能研究共3篇聚羧酸减水剂的合成及其引气与早强性能研究1聚羧酸减水剂是一种新型的高效混凝土减水剂,与传统的磺酸盐减水剂相比,具有优异的减水效果和低泌水率特性。
其主要成分是聚羧酸及其改性产物,可以通过复杂的化学反应过程进行合成。
本文将介绍聚羧酸减水剂的合成方法,并对其引气和早强性能进行研究。
一、聚羧酸减水剂的合成方法1. 聚合法聚合法是一种常见的聚羧酸减水剂合成方法。
该方法的步骤如下:首先将单体与引发剂混合,在所需温度下进行聚合反应,得到聚羧酸。
然后将聚羧酸与交联剂混合,进行交联反应,最终形成聚羧酸减水剂。
聚合法合成的聚羧酸减水剂具有分子量大、结构稳定的特点。
但该方法存在聚合反应难控制、引发剂残留等问题。
2. 缩合反应法缩合反应法是另一种常见的聚羧酸减水剂合成方法。
该方法的步骤如下:将羟基聚氧化物和羧酸混合反应,使其发生缩合反应,得到聚羧酸酯。
再将聚羧酸酯与羧酸混合反应,得到聚羧酸减水剂。
缩合反应法合成的聚羧酸减水剂具有结构简单、反应温和等优点,但副反应简单易失活、成本较高等问题。
综合比较,聚合法和缩合反应法各有优缺点,应根据实际情况选择合适的方法进行合成。
二、聚羧酸减水剂的引气性能研究引气是混凝土中的微气泡,可以降低混凝土的密实度和提高其抗冻性、耐久性等性能。
聚羧酸减水剂可以通过控制化学结构实现引气作用。
目前较为常用的引气剂是联苯甲酸类聚羧酸减水剂,其引气机理是气泡在混凝土中的生成、扩散和稳定。
由于聚羧酸减水剂中与引气作用相关的络合基团结构不同,引气性能也有差异。
研究表明,以亲水性较高的羟基带有醛基的聚羧酸为基础的聚羧酸减水剂引气性能较好,可获得满意的减水效果和引气效果。
同时,引气剂的加入量、混凝土的水胶比和气孔度等因素也会影响聚羧酸减水剂的引气性能。
三、聚羧酸减水剂的早强性能研究早强是指混凝土在一定养护期内表现出的强度发展速度。
聚羧酸减水剂中常常添加缓凝剂,可以充分利用其多种羧酸基团作用,实现早强效果。
聚羧酸系减水剂的研究现状与发展趋势聚羧酸系减水剂是混凝土添加剂中的一种重要成员,具有优异的分散性和流动性,能够有效减少混凝土的水灰比,提高混凝土的强度和耐久性,因此在工程建设中得到广泛应用。
随着现代工程建设的发展,对混凝土性能要求越来越高,聚羧酸系减水剂也在不断地发展和完善。
本文将对聚羧酸系减水剂的研究现状和发展趋势进行探讨。
1. 聚羧酸系减水剂的种类和特点聚羧酸系减水剂是一类由聚羧酸高分子化合物制成的减水剂,其分子结构具有丰富的羧基和疎水基团,能够与水泥颗粒发生强烈的吸附作用,形成高度分散的胶体颗粒,从而改善混凝土的流动性和分散性。
根据其分子结构和性能特点的不同,聚羧酸系减水剂可分为缩微粉聚羧酸系减水剂、液态聚羧酸系减水剂和固体聚羧酸系减水剂等多种形式。
目前,聚羧酸系减水剂已经成为混凝土中不可或缺的重要添加剂,被广泛应用于各类重要工程建设中,如高层建筑、大型桥梁、高速公路、地铁隧道等。
在实际应用中,聚羧酸系减水剂不仅能够显著降低混凝土的水灰比,提高混凝土的流动性和抗渗性,还能够控制混凝土的凝结时间和提高混凝土的强度等方面发挥积极作用。
目前,针对聚羧酸系减水剂的研究主要集中在以下几个方面:(1) 新型聚羧酸系减水剂的合成和性能改进。
随着材料科学和化学工程技术的不断进步,新型聚羧酸高分子化合物的合成技术和改性方法不断涌现,以提高聚羧酸系减水剂的分散性、流动性和稳定性,以适应不同混凝土工程的需求。
(2) 聚羧酸系减水剂与水泥混合体系的相互作用机制研究。
混凝土是复杂的多相体系,聚羧酸系减水剂与水泥、矿物掺合料等各种材料之间的相互作用机制对其性能表现起着关键作用。
深入研究聚羧酸系减水剂在混凝土中的分子尺度相互作用机制,对于指导聚羧酸系减水剂的合理应用具有重要的理论和实用意义。
(3) 聚羧酸系减水剂在不同混凝土体系中的应用性能研究。
由于混凝土在不同工程条件下具有不同的性能要求,且受到原材料和环境条件的影响较大,因此需要深入研究聚羧酸系减水剂在各种不同混凝土体系中的应用性能,以便更好地指导其在实际工程中的应用。
两性型聚羧酸减水剂的制备与应用性能研究江嘉运;张士停;毕菲;肖姗姗【摘要】探讨两性型聚羧酸减水剂的合成工艺,设计采用含氨基的中间体衍生物(MAAL)与丙烯酸(AA)、甲基丙烯磺酸钠(SMAS)、异戊烯基聚氧乙烯醚(TPEG2400)共聚,通过试验得到适宜的单体摩尔比、聚合温度、滴加反应时间等最佳工艺参数.红外光谱仪和凝胶色谱分析表明,合成减水剂MAALPC分子引入的官能团与预先设计基本相符,分子质量大小适中且分布较为集中.MAALPC的混凝土减水率为28.6%,且具有优良的混凝土中后期增强效果.【期刊名称】《新型建筑材料》【年(卷),期】2018(045)008【总页数】5页(P24-27,87)【关键词】两性型聚羧酸减水剂;制备;表征;应用性能【作者】江嘉运;张士停;毕菲;肖姗姗【作者单位】吉林建筑大学材料科学与工程学院,吉林长春 130118;吉林建筑大学材料科学与工程学院,吉林长春 130118;吉林建筑大学材料科学与工程学院,吉林长春 130118;吉林建筑大学材料科学与工程学院,吉林长春 130118【正文语种】中文【中图分类】TU528.042+.20 引言1991年,日本Nippon Shokubai(触媒株式会社)率先报道了成功研发两性型聚羧酸减水剂[1]。
2007年,冉千平[2]以甲基丙烯酰氧乙基三甲基氯化铵(DMC)为阳离子单体,合成了一种两性型聚羧酸减水剂,受到国内科研人员的普遍关注。
由于在水泥熟料矿物中,其中C3S和C2S的ζ电位为负值,C3A和C4AF的ζ电位为正值,因此,两性型聚羧酸减水剂可以增大熟料矿物的饱和吸附量,是一种功能型减水剂[3-4]。
该类减水剂属于α-长链烷基甜菜碱系列表面活性剂,研究表明,它具有较好的相容性、优异的分散性能和保坍性,能够有效降低水泥早期水化速率和放热量,提高早期强度,并不显著延缓水泥正常凝结时间[5-7]。
虽然其性能较为优异,但是,功能性原料水溶性阳离子单体DMC的质量要求较高,还需要多种特制的关于原材料制备、酯化的催化剂,因此进一步推广应用受到一定限制。
·79·聚羧酸减水剂的合成及性能研究 高淑星(山东易和环保科技有限公司,山东 济南 201100)1 引言聚羧酸减水剂与传统的减水剂相比,性价比更高,更适用于现代建筑工程中。
聚羧酸减水剂在使用过程中体现出少掺量、高性能的产品特色,既可以使建筑外体美观牢固、不易燃、不易爆,安全适用于火车和汽车运输;同时,聚羧酸减水剂还是绿色环保产品,可应用于居住及办公场所等。
2 聚羧酸减水剂简述聚羧酸减水剂是一种水泥分散剂,主要与水泥混凝土配合应用于建筑工程中,这种新一代的高性能减水剂深受建筑工程市场好评。
聚羧酸减水剂2003年由国外引进,2007年聚羧酸减水剂产量增加,直至2017年大幅增加,年均产量在700×104 t。
目前,我国是聚羧酸减水剂使用量最大的国家。
2.1 聚羧酸减水剂的结构聚羧酸减水剂由主链和众多的支链组成,属于梳型分子结构,它采用自由基水溶液共聚方法合成。
聚羧酸减水剂中的聚羧酸高性能减水剂带有羧基(-COOH)等活性亲水基团及聚氧化乙烯链基等不饱和单体,主要原料有甲基丙烯酸、丙烯酸等,其分子结构转变为静电斥力效应和空间位阻效应共同作用结构,放弃了最初的单一静电斥力效应结构,最终形成立体分散系统。
聚羧酸减水剂最初在生产中采用酯类大单体减水剂为原料,导致较多的生产缺陷,如设备使用复杂不易操作、生产周期长、供应市场能力弱等问题,随着科研技术的发展,在多次试验和实践中,逐渐使用成本低、效率高的醚类大单体,使聚羧酸系减水剂的生产过程变得简化且效率高。
2.2 聚羧酸减水剂的合成2.2.1 聚羧酸减水剂母液的合成不饱和聚醚大单体在引发剂的作用下产生共聚,将带有活性基因的枝连接到主链上,采用不同品种的聚醚大单体、丙烯酸为主要原料,常温合成或加热合成。
2.2.2 聚羧酸减水剂的复配以聚羧酸减水剂母液为原料,根据需要适量添加缓凝、引气、消泡、防冻、保水等多种成分,溶解混合过程。
2.2.3 聚羧酸减水剂的合成方法聚羧酸减水剂的合成方法主要包括原位聚合接枝法、先聚合后功能化法和单体直接共聚法。
探究常温合成聚羧酸减水剂工艺及性能1.辽宁同德环保科技有限公司2.抚顺矿业集团有限责任公司摘要:常温合成聚羧酸减水剂不仅可以有效降低生产能耗和成本,而且还能简化生产操作流程。
聚羧酸减水剂常温制备工艺简单、操作方便,生产成本和能耗也低,本篇文章在此基础上,主要对聚羧酸减水剂常温制备工艺及性能方面进行研究和分析。
关键词:聚羧酸减水剂;常温制备;合成工艺;材料性能一、聚羧酸减水剂常温制备工艺的实验研究1.1工艺分析聚羧酸减水剂是一种新型的混凝土外加剂,在水泥混凝土材料中的掺量低,但是减水率高,使用环保,因而工程效益显著,聚羧酸减水剂在自由度设计方面,能够对其进行改性,具有多种功能,改性产品包括保坍剂和早强减水剂等。
对聚羧酸减水剂的常温制备工艺进行分析,能够对其技术环节进行适当的改进,一般聚羧酸减水剂合成温度在60℃~80℃之间,聚羧酸减水剂常温制备过程中的升温和调温会对生产周期造成影响,能耗和成本均会增加,在这种情况下,将聚羧酸减水剂合成用原材料和反应单体等,放置在常温的储罐中通过滴加搅拌使其充分反应,不需要再对其进行加温,直接保温6小时,然后得到成品,其分散性能高。
1.2合成材料聚羧酸减水剂在常温制备的过程中,由于聚合反应的温度明显降低,反应速率也会同步降低,同一反应时间内,聚羧酸减水剂产物聚合度低,产品性能受影响,对此,要对聚羧酸减水剂制备材料进行分析。
聚羧酸减水剂合成的实验材料包括甲基丙烯磺酸钠、丙烯酸、抗坏血酸、氢氧化钠和过硫酸铵等。
其中工业级的甲基烯丙基聚氧乙烯醚的分子量为2400,合成聚羧酸减水剂,是将一定量的去离子水和甲基烯丙基聚氧乙烯醚加入到容量为500ml的烧瓶中,调制氢氧化钠的ph值在7.0左右,氢氧化钠质量分数为40%。
获得试样后,调制去离子水固含量40%,整个工艺流程不需要进行加热处理,控制聚合体系的温度在25℃。
1.3性能测试对聚羧酸减水剂的常温制备工艺进行研究,能够及时发现减水剂合成中的技术问题,改进合成方案,控制产品的生产能耗以及制备成本等。
聚羧酸减水剂的合成工艺及性能研究一种新型聚醚类聚羧酸减水剂的合成工艺及性能研究摘要:采用奥克公司的新型聚醚OXAB-608和丙烯酸为聚合单体,通过水溶液自由基聚合合成了减水剂,研究了合成工艺对减水剂性能的影响规律。
结果表明:当聚醚与丙烯酸摩尔比为4.5,引发剂用量为聚合单体总质量的0.5%,链转移剂用量为聚合单体用量的0.17%,反应温度为60℃时,合成的聚羧酸减水剂在掺量为水泥质量的2.0%时,减水剂效果最好。
关键词:聚羧酸减水剂,丙烯酸,聚醚,自由基聚合Synthesis and Properties of new polyether polycarboxylatesuperplasticizerSun gui-e ,Fan lei ,Fu yang ,Zhou li-ming ,Liu zhao-bin,Zhu jian-min (Liaoning Oxiranchem. GROUP CO., LTD, Liaoning Liaoyang 111003) Abstract: oxiranchem corporation 's new polyether with OXAB-608 and acrylic acid as monomer was synthesized by aqueous solution radical polymerization water-reducing agent to study the properties of the synthesis process on water-reducing agent were investigated. The results showed that: When the ether with acrylic acid molar ratio of 4.5, triggering agent is the total mass of monomer 0.5%, chain transfer agent is 0.17% of monomer amount, the reaction temperature is 60 ℃, the synthesized poly - carboxylic acid water reducer for cement quality in the ash 2.0%, the water reducer best results.Keywords: polycarboxylate water reducer, acrylic acid, polyether, free radical polymerization1、前言高效减水剂又称超塑化剂,它的两种基本作用是使混凝土的水胶比降到最低和流动性达到最大。
高性能聚羧酸系减水剂的制备和性能研究近年来,随着大量的行业应用,高性能聚羧酸系减水剂的应用越来越广泛,它们具有极高的抗氧化性能和保湿能力,在新型万能型聚羧酸系减水剂里面备受追捧。
本文将从聚羧酸系减水剂的组成、配方和合成方法入手,主要针对高性能聚羧酸系减水剂的制备和性能进行专业研究,以期能够有效提高减水剂在使用中的效果。
首先,聚羧酸系减水剂的组成是非常复杂的,它们基本由羟基和羧基组成,如羧甲基纤维素(CMC)、聚乙二醇(PEG)、聚氧乙烯(PVA)、二乙氨基二硫(DEAS)、聚羧酸(PAA)等以及其他表面活性剂等。
在配方设计上,需要将这些成分的配比把握好,以尽可能保证聚羧酸系减水剂具有良好的耐久性能和性能特性。
此外,高性能聚羧酸系减水剂可以通过氧化聚合法、乙醇溶液混合法、高温熔融法以及其他合成工艺实现制备,但在制备过程中一定要注意选择合适的反应条件,以确保获得更高的质量。
其次,聚羧酸系减水剂的性能研究也是相当重要的一环,为了研究其高性能,可以对聚羧酸减水剂进行综合性能测试,以检测其耐水性、耐碱性、耐温性、耐化学性以及耐久性等性能,以确定哪些成分能够更好地保护织物,防止出现氧化、水洗、染色等损伤。
最后,有效控制聚羧酸减水剂的制备过程能够有效避免不良反应的发生,使其有效利用,而对减水剂的性能要求更高的要求,也是需要更多的实验进行核查,以确定性能的最终变化,从而保证更高的质量。
总之,高性能聚羧酸系减水剂的制备和性能研究仍然是一个极具挑战性的工作,但只要有足够的经验和技术,就能够取得卓越的成果,希望本文能够对聚羧酸系减水剂的研究有一定的参考价值,并能够帮助更多的行业实现提高性能。
以上就是有关《高性能聚羧酸系减水剂的制备和性能研究》的3000字文章,希望对您有所帮助。
聚羧酸减水剂的合成与探究摘要:以聚乙二醇、马来酸酐、对甲基苯磺酸为单体、过硫氨酸为引发剂,经水溶液聚合制备了可用作聚羧酸盐高效减水剂的共聚物。
并通过水泥流动度和黏度测定了本实验制备的聚羧酸盐高效减水剂的作用和应用效果。
关键词:聚羧酸盐;减水剂;马来酸酐;对甲基苯磺酸;大分子单体前言近年来,混凝土高效减水剂的研究和应用越来越朝着多功能化和高效化方向发展,品种繁多.在众多系列的高效减水剂中,具有梳形分子结构的聚羧酸盐高效减水剂因其分散性强、掺量低、混凝土坍落度损失小等优点而日益受到世人的瞩目.根据聚羧酸盐高效减水剂的减水作用机理,人们通常从两方面来设计大分子一是合成具有强极性基团,如羧基、羟基、磺酸基等,以提供静电斥力,使团聚的水泥粒子得以分散;二是在分子链上引入亲水性长侧链,如聚氧乙烯基醚等,以提供空间位阻效应,从而有利于水泥浆体在较长时间内保持较好的流动性. 在此类减水剂的合成中, 减水剂中间大分子单体聚乙二醇单丙烯酸酯( PEA)的合成是决定减水剂性能的关键因素, 但目前国内这方面研究成果不多。
本研究通过聚乙二醇与丙烯酸的酯化, 在聚氧乙烯基链上接枝双键, 再进行下一步减水剂的共聚合成; 并比较了用有机溶剂环己烷、乙酸乙酯、甲基丙烯酸甲酯合成单酯、以及不使用有机溶剂、真空抽吸直接催化合成单酯的合成工艺。
实验目的(1)了解聚羧酸系减水剂的分子结构;掌握聚羧酸系减水剂的合成原理和方法。
(2)掌握优化制备工艺的方法。
(3)掌握减水剂对水泥净浆塑化效果和新拌混凝土性能的影响。
(4)运用现代测试技术(如IR、XRD、SEM等)分析减水剂的结构和水泥浆体的动力学研究。
(5)掌握减水剂的复配技术。
实验原理1.高效减水剂的作用机理(1)静电斥力理论静电斥力理论以 DLVO 平衡理论、双电层理论为基础,从表面物理学来看,水泥颗粒是带有电荷的物质,水泥发生水化后,高效减水剂会定量吸附在它的表面,水泥颗粒表面带上相同电荷,形成双电子层,亲水基指向水相。
高效减水剂(又名超塑化剂)是一种重要的混凝土外加剂,是新型建筑材料支柱产业的重要产品之一。
自上世纪80年代起,国外就开始着手研发聚羧酸系减水剂。
它以石油化工产品为原料,以极高的减水率,极好的坍落度保持性和优异的增强效应,逐渐受到混凝土工程界的亲睐。
聚羧酸减水剂研究的最终目标是通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效减水、控制坍落度损失和抗收缩、不影响水泥的凝结硬化等作用。
本文将概述国内外聚羧酸减水剂的研究和发展状况,探讨聚羧酸减水剂结构与性能之间的关系及其作用机理的研究成果,并分析聚羧酸减水剂研究中存在和亟待解决的一些问题,希望对我国从事聚羧酸系减水剂研究、应用的同行有所启发。
1聚羧酸系减水剂的发展1.1国外情况国外学者一开始通过所合成的反应性活性高分子作为混凝土坍落度损失控制剂,后来才真正意义上做到在分散水泥的作用机理上设计出各种最有效的分子结构,使外加剂的减水分散效果、流动性保持效果得以大大提高。
1986年日本专家首先研制成功聚羧酸系减水剂,90年代中期正式工业化生产,并开始在建筑施工中应用。
该类减水剂大体分为烯烃/顺丁烯二酸酐聚合物和丙烯酸/甲基丙烯酸脂聚合物等。
据报道,1995年后聚羧酸系减水剂在日本的使用量就已超过了萘系减水剂,且其品种、型号及品牌名目繁多。
尤其是近年来大量高强度、高流动性混凝土的应用带动了聚羧酸系减水剂的技术发展和应用水平。
目前日本生产聚羧酸系减水剂的厂家主要有花王、竹木油脂、NMB株式会社和藤泽药品等,每年利用此类减水剂生产的各类混凝土为1000万m3左右,并有逐年递增的发展趋势。
与此同时,其它国家对聚羧酸系减水剂的研究与应用也逐渐加强.虽然日本是研发应用聚羧酸系减水剂最早也是最为成功的国家,但目前北美和欧洲也十分重视对聚羧酸系减水剂的研究。
从最近的文献可知,聚羧酸系减水剂的研究已由第一代甲基丙烯酸/烯酸甲酯共聚物,到第二代丙烯基醚共聚物,又发展到第三代酰胺/酰亚胺型,而且专家们正在着手研发第四代聚酰胺-聚乙烯乙二醇支链的新型高效减水剂。
专利名称:一种双激发体系生产固体聚羧酸减水剂及其制备方法
专利类型:发明专利
发明人:庞顺星,朱佳宇,潘二军,梁英,马立功
申请号:CN201610728042.6
申请日:20160826
公开号:CN106279565A
公开日:
20170104
专利内容由知识产权出版社提供
摘要:本发明公开了一种双激发体系生产固体聚羧酸减水剂及其制备方法,是采用氧化‑还原激发体系与本体聚合两种自由基聚合工艺生产固体聚羧酸减水剂。
本工艺生产的固体聚羧酸减水剂是以不饱和羧酸和不饱和聚氧乙烯醚类大单体在引发剂及链转移剂作用下进行分子的聚合、接枝而形成的具有和常规液体聚羧酸减水剂相同的梳型分子结构的固体聚羧酸减水剂。
由于本工艺方法采用双激发工艺,分子结构灵活,可通过引入不同基团得到不同性能的产品,对混凝土地材适应性强,制得的固体聚羧酸减水剂中不含任何挥发性溶剂,产品可通过冷凝切片技术或机械粉碎制得片状或粉状固体聚羧酸减水剂,在使用过程中可配制成各种浓度的水溶液,具有节省运输成本、使用方便的特性,并且粉状的固体聚羧酸减水剂可直接用于干粉砂浆的配制中,具有非常好的市场应用前景。
申请人:石家庄市海森化工有限公司
地址:050000 河北省石家庄市平安北大街158号紫晶广场A座12楼
国籍:CN
代理机构:石家庄君联专利代理事务所(特殊普通合伙)
代理人:赵立军
更多信息请下载全文后查看。
专利名称:一种双引发体系合成固体抗泥型聚羧酸减水剂的制备方法
专利类型:发明专利
发明人:徐忠洲
申请号:CN202010705788.1
申请日:20200721
公开号:CN111925486A
公开日:
20201113
专利内容由知识产权出版社提供
摘要:本发明公开了一种双引发体系合成固体抗泥型聚羧酸减水剂的制备方法,包括以下步骤:S1:将不饱和聚氧乙烯醚、乳化剂加入到反应器中,升温;S2:向S1所得液体中依次加入浓硫酸、偶氮类引发剂和油溶性氧化剂,搅拌;S3:保持反应器内温度,向S2所得液体中滴加由不饱和羧酸单体、不饱和磷酸酯、链转移剂和还原剂的混合液;S4:向S3所得液体中加入适量有机碱,调节pH,将液态聚合产物经过冷凝切片机进行切片。
本发明所制备的固体抗泥型聚羧酸减水剂具有纯度高、溶解性好、抗泥性能优异等特点,避免了高含泥量砂石骨料中黏土成分对聚羧酸减水剂性能的不良影响,同时其固体特性也极大的降低了包装和运输成本,具有良好的应用前景。
申请人:北京水木佳维科技有限公司
地址:101399 北京市顺义区高丽营镇金马园二街259号
国籍:CN
代理机构:北京联瑞联丰知识产权代理事务所(普通合伙)
代理人:郭堃
更多信息请下载全文后查看。