甘肃省白银市会宁县枝阳初级中学2013-2014学年八年级数学上册《探索勾股定理》学案(三)
- 格式:doc
- 大小:313.50 KB
- 文档页数:1
2020年初中数学八年级上册《探索勾股定理》精品版北师大版初中数学八年级上册《探索勾股定理》精品教案【学情分析】勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
【教学目标】(一)知识与技能掌握直角三角形三边之间的数量关系,学会用符号表示。
学生在经历用数格子与割、补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。
(二)过程与方法通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。
(三)情感态度与价值观通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感。
使学生从经历定理探索的过程中,感受数学之美和探究之趣。
【教学重点】用面积法探索勾股定理,理解并掌握勾股定理。
【教学难点】计算以斜边为边长的大正方形C面积及割补思想的理解与应用。
【教学方法】教法:选择引导探索法,采用“问题情境→建立模型→解释、应用与拓展”的模式进行教学。
学法:自主探索—合作交流的研讨式学习,乐于创新—参与竞争的积极性学习。
【课前准备】为了更好地体现本节课课堂评价的主题,课前将全班学生划分为6个小组,每个小组的同学推举一位组长和副组长,在黑板上展示出以组长名字划分的6个小组的竞技台,由班长和数学课代表一起完成本节课的记分任务。
另外,老师加以说明,本节课同学们积极参与课堂评价,我们将评选出1~2个优胜小组获得老师准备的奖品,评选出5~6位表现突出的同学获得老师赠与的礼物。
【教学过程】(一)故事引入,引发思考图1图2图3相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客。
在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来。
北师大版八年级数学上册:1.1《探索勾股定理》教案一. 教材分析《探索勾股定理》这一节的内容是八年级数学上册的开篇,主要让学生了解勾股定理的证明过程,培养学生的逻辑思维能力和探索精神。
教材通过引入古希腊人证明勾股定理的故事,引导学生学习运用几何图形和数学逻辑来证明这个重要的数学定理。
二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念和性质,对几何图形的认知和推理能力有所提高。
但勾股定理的证明过程涉及到较复杂的逻辑推理,对学生来说是一个较大的挑战。
因此,在教学过程中,需要关注学生的学习反馈,适时给予引导和帮助。
三. 教学目标1.让学生了解勾股定理的证明过程,理解并掌握勾股定理的证明方法。
2.培养学生的逻辑思维能力和探索精神,提高学生运用几何图形和数学逻辑解决问题的能力。
3.激发学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 教学重难点1.勾股定理的证明过程及证明方法的掌握。
2.逻辑推理能力的培养,如何将问题转化为几何图形进行证明。
五. 教学方法1.采用问题驱动的教学方法,引导学生思考和探索勾股定理的证明过程。
2.运用几何图形和数学逻辑,进行直观演示和推理,帮助学生理解和掌握勾股定理。
3.分组讨论和合作探究,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学材料,如PPT、黑板、几何图形等。
2.设计好教学问题和活动,准备好相关的解答和反馈。
七. 教学过程1.导入(5分钟)通过引入古希腊人证明勾股定理的故事,激发学生的学习兴趣,引导学生思考和探索勾股定理的证明过程。
2.呈现(10分钟)呈现勾股定理的证明过程,运用几何图形和数学逻辑进行直观演示和推理。
在此过程中,关注学生的学习反馈,适时给予引导和帮助。
3.操练(10分钟)学生分组讨论和合作探究,运用几何图形和数学逻辑尝试证明勾股定理。
教师巡回指导,解答学生的问题,并提供反馈。
4.巩固(10分钟)针对学生的证明过程,进行总结和点评,帮助学生巩固所学内容。
《探索多边形的内角和与外角和(二)》学案教学设计(收获)二、小组学习:(四人合力,同心解决问题)研究:在四边形的四个内角中,最多能有个钝角,最多有个锐角。
三、展示反馈 (展开思维,大胆展示才华!)1、一个多边形的每个外角都等于与它相邻的内角,这个多边形是,每个外角是度。
2、若两个多边形的边数相差1,则它们的内角和相差,外角和。
3、一个多边形的外角都等于60°,这个多边形是,这个多边形的内角和是,每个内角是度。
4、是否存在一个多边形,它的每个外角都等于相邻内角的51?简述你的理由5、已知一个多边形的各个内角都相等,都等于150°,则这个多边形是。
四、拓展检测:1.已知一个多边形的内角和与外角和的度数比是9:2,那么它是边形。
2.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,求这个多边形的边数?学习目标:掌握多边形外角和定义及角度公式的推导及公式重点:多边形外角和应用;难点:探索多边形外角和的过程一、自主学习(多边形的内角和我们已经认识,现在让我们来探索它的外角和吧!)(一)自学指导(请在老师的指导下学习)1.用2分钟时间认真预习P129页第二段,勾画关键词...,认识多边形外角及外角和的定义,并完成如下练习:(判断正误,简单说明理由)如图(1)∠1和∠2、∠3都是△ABC的外角()(2)∠1+∠2 +∠5+∠6+∠8+∠9它们的和叫做这个三角形的外角和()(3)∠1=∠2 ()2. 用10分钟研读128页,归纳这个五边形的外角和为度。
3. 如图4-34,可知五边形内角和为度,∠1+∠BAE=∠2+∠CBA=∠3+∠BCD=∠4+∠CDE=∠5+∠AED= 度,则此10个角的和为度,则可知∠1+∠2 +∠3+∠4+∠5= 度,即外角和为度。
4. 若广场是三角形、四边形、五边形它们的外角和是度,则任何多边形的外角和是度。
5. 认真研读例1、明确每步的依据,明确它用了方程思想教学反思(疑惑)1。
北师大版数学八年级上册《探索勾股定理》教案1一. 教材分析《探索勾股定理》是北师大版数学八年级上册的一章内容。
本章通过探究直角三角形三边之间的关系,引导学生发现并证明勾股定理。
教材内容丰富,既有历史文化的传承,也有数学证明的严谨性,有助于提高学生的学习兴趣和探究能力。
二. 学情分析学生在七年级时已经学习了相似三角形、平方根等知识,为本章的学习奠定了基础。
但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和推理能力。
此外,学生对数学文化的认识还不够深入,需要教师在教学中加以引导。
三. 教学目标1.了解勾股定理的发现过程,感受数学文化的魅力。
2.掌握勾股定理的内容,并能运用勾股定理解决实际问题。
3.培养学生的探究能力、合作能力和数学思维能力。
四. 教学重难点1.重难点:勾股定理的证明及应用。
2.难点:理解并证明勾股定理,运用勾股定理解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究勾股定理。
2.运用历史背景法,让学生了解勾股定理的文化价值。
3.采用合作交流法,培养学生团队合作精神。
4.利用几何画板等软件,直观展示勾股定理的证明过程。
六. 教学准备1.教师准备PPT、几何画板等教学工具。
2.学生准备笔记本、尺子、圆规等学习用品。
七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的历史背景,引导学生了解勾股定理的文化价值。
2.呈现(10分钟)教师通过几何画板展示直角三角形,引导学生观察并猜想勾股定理。
3.操练(15分钟)学生分组讨论,每组尝试用尺子、圆规等工具验证勾股定理。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生代表汇报验证结果,其他学生补充意见。
教师总结勾股定理的证明过程。
5.拓展(10分钟)教师提出一系列与勾股定理相关的问题,引导学生运用勾股定理解决实际问题。
6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。
7.家庭作业(5分钟)布置一道运用勾股定理解决问题的作业,巩固所学知识。
《探索勾股定理一》教案教材义务教育课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2~ P6。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
教学目标1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。
学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。
2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。
3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。
使学生从经历定理探索的过程中,感受数学之美,探究之趣。
教学重点、难点重点:用面积法探索勾股定理,理解并掌握勾股定理。
难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。
教学方法选择引导探索法,采用“问题情境----建立模型----解释、应用与拓展”的模式进行教学。
教具准备多媒体课件;若干张已画好直角三角形的方格纸;剪刀;已剪好的纸片若干张。
教学过程一、创设情境,引入新课(师)请同学们观察动画,我国科学家曾向太空发射勾股图试图与外星人沟通,在2002年的国际数学家大会上采用弦图作为会标,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理。
(设计意图:用一段生动有趣的动画,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境。
)二、师生互动,探究新知活动1:(观察图1)你知道正方形C的面积是多少吗?你是怎样得出上面结果的呢?(生)独立思考后交流,采用直接数方格的办法,或者是分割成几个等腰直角三角形的方法计算正方形C的面积。
1
学习内容:探索勾股定理(三) 二、小组学习(发挥分的面积,通过计算,你能得到、求两直角边的长分别为多少厘米?
、如图:已知折叠矩形的一边使点AB=8cm,BC=10cm,四、拓展提升米的半圆形,一辆高2.4米,宽3米的卡车能通过隧道吗?请说
12-14、仔细分析课本中介绍的各种剪拼方法,开动你的大脑,看看你还有哪些方法可以证明勾股、当年毕达、利用割补法计算课本P14页图1-15中各正方形的面积,分析图中三角形的三边是否满足
? 说明:如果一个三角形不是直角三角形,那么它的三边a 、b 、(二)自学检测。