平面与空间直线
- 格式:doc
- 大小:159.00 KB
- 文档页数:3
直线与平面的关系引言直线和平面是几何学中非常基本和重要的概念。
研究它们之间的关系可以帮助我们更好地理解空间中的几何性质。
在本文档中,我们将探讨直线与平面的几种关系及其性质。
平面的定义平面是一个无限大的二维空间,其中的每个点都在同一个平面上。
它可以用三个非共线的点来定义,也可以用一个点和与之垂直的法向量来定义。
直线和平面的关系直线可以与平面有三种不同的关系:平行、相交和包含。
平行关系如果一条直线与一个平面的所有点都不相交,那么我们说直线和平面是平行的。
这意味着直线和平面在空间中永远不会相交。
平行关系可以简单地通过观察直线的方向向量和平面的法向量来判断。
相交关系如果一条直线和一个平面的某一点相交,并且它在平面内部延伸出去,那么我们说直线和平面是相交的。
在相交的情况下,直线和平面只有一个交点。
判断直线和平面是否相交的方法可以通过求解直线和平面的方程来实现。
包含关系如果一条直线完全位于平面内部,并且在平面上存在无限多个与之平行的直线,那么我们说直线包含在平面内。
直线和平面的包含关系意味着直线的每一个点都在平面上。
这个关系可以通过考察直线上的任意两个点,然后检查它们是否在平面上来判断。
总结直线和平面是空间几何中重要的概念。
通过研究直线和平面的关系,我们可以更好地理解它们之间的性质和相互作用。
本文介绍了直线和平面的三种关系:平行、相交和包含。
这些关系可以通过直线的方向向量和平面的法向量以及求解方程来判断。
在实际应用中,对这些关系的理解对于解决几何问题和分析空间中的几何性质非常重要。
参考文献。
空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
空间中直线与平面的关系在空间几何学中,直线和平面是两种基本的几何要素,它们之间存在着紧密的关系。
本文将探讨直线与平面的相互作用,以及它们在空间中的几何性质。
一、直线在平面内的位置关系直线可以分为三种不同的位置关系:直线在平面内的情况、直线在平面上的情况和直线与平面相交的情况。
1. 直线在平面内的情况当直线和平面没有交点时,我们说直线在平面内部。
在这种情况下,直线与平面是平行的。
平行的定义是:两条直线在平面内不存在交点,并且它们的方向向量也是平行的。
例如,在笛卡尔坐标系中,直线方程为y = mx + c,而平面方程为ax + by + cz + d = 0,其中m、c、a、b、c、d为常数。
当平面的法向量[a, b, c]与直线的方向向量[1, m, 0]平行时,我们可以确定直线在平面内。
2. 直线在平面上的情况当直线与平面有交点时,我们说直线在平面上。
直线在平面上可以有不同的位置关系:直线与平面相切、直线在平面内部和直线穿过平面。
- 直线与平面相切:在这种情况下,直线与平面只有一个交点,并且这个交点同时属于直线和平面。
我们可以通过求解直线和平面的方程组来确定交点的坐标。
- 直线在平面内部:当直线与平面有无数个交点时,我们说直线在平面内部。
在这种情况下,直线与平面相交但不重合。
- 直线穿过平面:当直线与平面有无穷多个交点时,我们说直线穿过平面。
在这种情况下,直线与平面重合。
3. 直线与平面相交的情况当直线与平面相交时,我们可以进一步讨论相交点的情况。
直线可以与平面相交于一个点、一条直线或平面本身。
- 直线与平面相交于一个点:在空间几何中,直线与平面相交于一个点是最常见的情况。
这时,我们可以通过求解直线和平面的方程组来确定交点的坐标。
- 直线与平面相交于一条直线:在这种情况下,直线与平面共面并且有无数个公共点。
这种情况也可以通过求解直线和平面的方程组来确定。
- 直线与平面相交于平面本身:直线与平面之间存在特殊的关系,即它们有一条公共直线。
平面与空间直线平面及其方程我们把与一平面垂直的任一直线称为此平面的法线。
设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n为法线的平面方程可表示为:注意:此种形式的方程称为平面方程的点法式。
例题:设直线L的方向数为{3,-4,8},求通过点(2,1,-4)且垂直于直线L的平面方程.解答:应用上面的公式得所求的平面方程为:即我们把形式为:Ax+By+Cz+D=0.称为平面方程的一般式。
其中x,y,z的系数A,B,C是平面的法线的一组方向数。
几种特殊位置平面的方程1、通过原点其平面方程的一般形式为:Ax+By+Cz=0.2、平行于坐标轴平行于x轴的平面方程的一般形式为:By+Cz+D=0.平行于y轴的平面方程的一般形式为:Ax+Cz+D=0.平行于z轴的平面方程的一般形式为:Ax+By+D=0.3、通过坐标轴通过x轴的平面方程的一般形式为:By+Cz=0.通过y轴和z轴的平面方程的一般形式为:Ax+Cz=0,Ax+By=0.4、垂直于坐标轴垂直于x、y、z轴的平面方程的一般形式为:Ax+D=0,By+D=0,Cz+D=0.直线及其方程任一给定的直线都有着确定的方位.但是,具有某一确定方位的直线可以有无穷多条,它们相互平行.如果要求直线再通过某一定点,则直线便被唯一确定,因而此直线的方程就可由通过它的方向数和定点的坐标表示出来。
设已知直线L的方向数为{l,m,n},又知L上一点Po(x0,y0,z0),则直线L的方程可表示为:上式就是直线L的方程,这种方程的形式被称为直线方程的对称式。
直线方程也有一般式,它是有两个平面方程联立得到的,如下:这就是直线方程的一般式。
平面、直线间的平行垂直关系对于一个给定的平面,它的法线也就可以知道了。
因此平面间的平行与垂直关系,也就转化为直线间的平行与垂直关系。
平面与直线间的平行与垂直关系,也就是平面的法线与直线的平行与垂直关系。
空间直线与平面的方程与计算空间几何是数学中的一个重要分支,研究的是空间中各种几何对象的性质与关系。
其中,空间直线与平面是最基本的几何对象之一。
本文将介绍空间直线和平面的方程以及相关计算方法。
一、空间直线的方程空间直线可以通过一点和一个方向来确定。
假设直线上一点为P(x₁, y₁, z₁),且方向向量为d(a, b, c),则空间直线的方程可以表示为:x = x₁ + at (1)y = y₁ + bt (2)z = z₁ + ct (3)其中t为参数。
根据参数t的取值不同,可以得到直线上的不同点。
例子:已知空间直线L过点A(1, 2, 3)且平行于向量V(1, -1, 2),求直线L的方程。
解:直线L的方程可以表示为:x = 1 + ty = 2 - tz = 3 + 2t二、空间平面的方程空间平面可以通过三个不共线的点来确定。
假设平面上的三个点分别为A(x₁, y₁, z₁),B(x₂, y₂, z₂)和C(x₃, y₃, z₃),则空间平面的方程可以表示为:Ax + By + Cz + D = 0 (4)其中A、B、C、D为常数,可以通过已知点A、B、C来确定。
将A、B、C带入方程(4)中,可求解出常数A、B、C、D的值,进而确定平面的方程。
例子:已知空间平面P过点A(1, 2, 3),B(2, 3, 4)和C(3, 4, 5),求平面P的方程。
解:将点A(1, 2, 3)、B(2, 3, 4)和C(3, 4, 5)带入方程(4),得到方程为:x + y + z + D = 0再将点A(1, 2, 3)代入方程,可得:1 +2 +3 + D = 0D = -6因此,平面P的方程为:x + y + z - 6 = 0三、空间直线与平面的关系空间直线与平面可以相互交叉、平行或重合。
下面分别介绍这三种情况的判断方法。
1. 相交情况:若空间直线的方向向量与平面的法向量(平面的法向量可以通过方程(4)中的系数A、B、C确定)不平行,则直线与平面必相交。
直线与平面的关系及应用一、直线与平面的空间位置关系公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
1. 线面平行定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
拓展:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
2. 线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
二、空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1. 两条直线平行定义:在同一平面内,不相交的两条直线互相平行。
判定定理:(1)如果两直线同时平行于第三条直线,那么这两条直线平行(2)如果两直线同时垂直于同一个平面,那么这两条直线平行性质定理: 两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
拓展:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
空间直线与平面平行判定在空间几何中,判断直线和平面是否平行是一个重要的问题。
本文将介绍如何判定空间直线与平面的平行关系,并给出相关的数学公式和例子。
首先,我们来定义空间直线和平面。
定义•空间直线:空间中的直线由一个点和一个方向确定。
直线上的所有点满足其上的任意两个不同的点都可以通过直线的方向向量表示出来。
•空间平面:空间中的平面由三个不共线的点确定。
平面上的所有点满足其上的任意三个不共线的点都可以通过平面上的任意两个向量表示出来。
平行判定条件判断空间直线与平面是否平行,我们可以利用以下条件:1.直线的方向向量与平面的法向量垂直。
2.直线上的一点到平面的距离为0。
根据上述条件,我们可以得到以下判定公式:1. 方向向量与法向量的垂直判定设直线的方向向量为 $ \vec{v}(a, b, c) $,平面的法向量为 $ \vec{n}(d, e, f) $,则方向向量与法向量垂直,可以表示为以下条件:$ a \cdot d + b \cdot e + c \cdot f = 0 $2. 零点到平面的距离判定设直线上的一点为 $ P(x_0, y_0, z_0) $,平面的方程为 $ Ax + By + Cz + D = 0 $,其中 $ \vec{n}(A, B, C) $ 为平面的法向量。
平面上任意一点 $ Q(x, y, z) $ 到平面的距离可以利用以下公式计算:$ Distance = \frac{|Ax + By + Cz + D|}{\sqrt{A^2 + B^2 + C^2}} $当直线上的点到平面的距离为0时,可以判断直线与平面平行。
例子我们来看一个具体的例子,判定空间直线和平面的平行关系。
例子 1:直线 $ l: x = t, y = 2t, z = 3t $,判断直线与平面 $ \pi: 2x + 4y - 3z + 6 = 0 $ 是否平行。
首先,我们需要找到直线的方向向量和平面的法向量。
空间直线与平面的方程空间中的几何问题涉及到直线和平面的方程,这是解决问题的基础。
本文将介绍空间直线与平面的方程及其应用场景。
一、空间直线的方程空间中的直线可以由参数方程来描述,即通过给定的参数来确定直线上的点。
一条空间直线可以用以下形式的参数方程表示:x = x_0 + aty = y_0 + btz = z_0 + ct其中,(x_0, y_0, z_0) 是直线上的一点,而 a、b、c 是直线的方向向量的三个分量。
t为参数,代表直线上的任意一点。
这样的参数方程可以覆盖直线上的所有点。
二、空间平面的方程类似于直线,空间中的平面也可以通过一般方程或者点法向式方程来描述。
平面的一般方程形式为 Ax + By + Cz + D = 0,其中 A、B、C 是平面法向量的三个分量,(x, y, z) 是平面上的任意一点,D 是常数项。
通过给定 A、B、C 和 D 的值,可以确定一个唯一的平面。
如果已知平面上的一个点 P_0 和法向量 N,我们可以使用点法向式方程来表示平面方程。
点法向式方程的形式为:N · (P - P_0) = 0其中,N 是法向量,·表示向量的点积,(P - P_0) 是平面上的任意一点向量。
三、空间直线与平面的关系空间中的直线和平面可能有不同的关系。
下面介绍几种常见的情况:1. 直线在平面内或与平面重合:当直线的方向向量与平面的法向量垂直时,直线将与平面相交于一点,或者直线与平面重合。
根据直线的参数方程和平面的一般方程或点法向式方程,我们可以求解出直线与平面的交点或者判断直线是否与平面重合。
2. 直线与平面平行:当直线的方向向量与平面的法向量平行但不重合时,直线与平面平行。
在这种情况下,直线与平面没有交点。
根据直线的参数方程和平面的一般方程或点法向式方程,我们可以得到判断直线与平面平行的条件。
3. 直线与平面相交于一点:当直线的方向向量既不与平面法向量垂直,也不与平面法向量平行时,直线与平面将相交于一点。
第三章平面与空间直线本章以矢量为工具推导平面和空间直线各种形式的方程,讨论两平面,直线与平面,两直线的相互位置关系,并以矢量为工具推导两平面,直线与平面,两直线间的夹角公式以及点到平面,点到直线,两异面直线间的距离公式,最后又讨论了平面束方程及其应用。
本章的基本要求如下:A.掌握1.基本概念:平面的方位矢量和法矢量,量,方向角,方向余弦,方向数。
有轴平面束和平行面束。
点与平面间的离差,直线的方向矢量2.平面方程矢量形式的方程:点位式,一般式,参数式,点法式。
坐标形式的方程:点位式,三点式,截距式,一般式,参数式,点法式,法线式。
根据平面的方程画出平面的图形。
3.直线方程矢量形式的方程:点向式,参数式。
坐标形式的方程:对称式,两点式,参数式,一般式,射影式。
4.点,直线,平面的相关位置①用矢量方法讨论两平面的位置关系(相交,平行,重合),并求两平面间的夹角。
②点和平面的位置关系(点在或点不在平面上),利用平面的法线式方程求点与平面的离差和距离。
③用矢量方法讨论直线和平面的位置关系(相交,平行,直线在平面上),并求直线和平面间的夹角。
④点和直线的位置关系(点在直线上或点不在直线上),利用矢量方法求点到直线的距离。
⑤用矢量方法讨论两直线的位置关系(异面,相交,平行,重合)并求两直线间的夹角。
⑥平面束方程,利用平面束方程求空间直线在任一平面上的射影。
⑦空间圆的方程,圆心和半经的求法。
5.基本理论平面基本定理及其证明(定理3,1,1)有轴平面束方程及其证明(定理3,8,1)B.理解利用矢量方法求两异面直线的公垂线和两异面直线间的距离。
知识要求:1.知道决定平面的几何条件及矢量条件,会根据几何条件求出平面方程;2.掌握平面的参数方程、一般方程、法式方程、截距式方程;3.会求点到平面的距离;4.会用矢量条件判断平面与平面的位置关系;5.知道决定空间直线的几何条件及矢量条件,会根据几何条件求出直线方程;6.掌握空间直线的参数方程、两点式方程、一般方程、标准方程,会将参数方程、一般方程转化成标准方程;7.会用矢量条件判断直线与直线、平面与直线的的位置关系; 8.会求两直线之间的夹角;9.会求两异面直线之间的距离与公垂线方程; 10.了解平面束的概念。
第三章 平面与空间直线
本章教学目的:通过本章的学习,使学生掌握空间坐标系下平面、直线方程的各种形式,熟练
掌握平面与空间直线间各种位置关系的解析条件,会求平面与空间直线间各种距离和夹角。
本章教学重点:(1)空间坐标系下平面、直线方程的几种重要形式;
(2)平面与空间直线间各种位置关系的解析条件;
(3)平面与空间直线各种度量关系的量化公式。
本章教学难点:(1)空间直线一般方程向标准方程的转化;
(2)综合运用位置关系的解析条件求平面、空间直线方程。
本章教学内容:
§1 平面的方程
一 方程的建立:
约定:π——表示平面;
定义:与平面π平行的一对非共线矢量,称为π的方位矢量;与π垂直的非0矢量,称为π的法线矢量,简称法矢量。
1.已知π上一点0M 及其方位矢量b a ,时:
建立坐标系{}321,,;e e e o ,设0r =0OM ={},,,000z y x 对动点M ,设 r= ={x,y,z},则M ∈π⇔M 0,a ,b 共面⇔r-r 。
,a ,b 共面⇔ 0r r -=u a +v b ⇔0r r =+u a +v b ————π的矢量式参数方程 (1) 若令a ={1X ,1Y ,1Z },b ={2X ,2Y ,2Z },则
⎪⎩⎪⎨⎧++=++=++=v
Z u Z z z v Y u Y y y v X u X x x 210210210————π的坐标式参数方程 (2)
为得到π的普通方程,我们有
M ∈π⇔M 0 ,a ,b 共面⇔ 222
11
1000
Z Y X Z Y X z z y y x x ---=0 ——————π的普通方程 (3) (1)——(3)统称为π的点位式方程。
2。
已知平面π上三非共线点i M (i=1,2,3):
建立坐标系{O ;1e ,2e ,3e },设ri= i OM ={i x ,i y ,i z },i=1,2,3.对动点M , 令 r=OM ={x,y,z},由(1),(2),(3)有 M ∈π⇔
r=1r +u (2r -1r )+v (3r -r1) (4)
⎪⎩
⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x (5) 13131
3121
212111
z z y y x x z z y y x x z z y y x x ---------=0 (6) (4)——(6)统称为平面的三点式方程
特别地,若i M 是π与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0), 3M (0,0,c ), (abc ≠0),则
M ∈π⇔c a
b a z
y a
x 00---=0
即 1=++c
z b y a x ——————π的截距式方程 (7) 其中a,b,c 称为π在三坐标轴上的截距。
3 已知平面π上一点0M 及其法矢量n :
建立直角坐标系{O ;i ,j ,k},设0r = 0OM ={x 。
,y 。
,z 。
},n={A ,B ,C},
(图3.1)
对动点M ,令r=={x,y,z},则 M ∈π⇔M M 0⊥n ⇔A (x-x 。
)+B (y-y 。
)+C (z-z 。
)=0 (8)
————π的点法式方程或法线式方程
特别地,若M 。
是自O 向π所作垂线的垂足,而
n :
,且记 ∣0OM ∣=p , r 。
= 0OM =p n
∴m ∈πn (r-r 。
)=0⇔nr-nr 。
=0〈═〉
cos αx+cos βy+cos γz-P=0 (9)
其中n={cos α,cos β,cos γ},该方程称为π的法式方程,它有如下特征:
1°一次项系数的平方和等于1;
2°常数项-P ≦0。
二 平面的一般方程:
在空间坐标系下,对任一平面π,都可利用其上一点0M 及方位矢量a ,b 将其方程写成 Ax+By+Cz+D=0 (10)
其中A=2211
Z Y Z Y ,B=2211X Z X Z ,C=2211Y X Y X
由于a {1X ,1Y ,1Z }与b {2X ,2Y ,2Z }不共线,∴(10)是一三元一次方程。
反之,∀给一三元一次方程(10),不妨设A ≠0,取三点
P 。
(-
0,0,A D ), 1P (-)0,1,A D B +, 2P (-)1,0,A
D C +, 由于10P P ={-}0,1,A B ,20P P ={-}1,0,A
C ∴10P P ╫20P P ,即0P ,1P ,2P ,不共线,从而它们确定的平面π的方程为 1
001A C A B z y A D
x --+=0 展开即为(10) ∴我们有
定理(平面方程基本定理):在空间坐标系下,任意平面的方程均可表为三元一次方程,而且
任一三元一次方程也可表示空间中的一个平面。
称方程(10)为平面π的一般方程。
三 一般方程向法式方程的转化:
在直角坐标系下,若已知π的一般方程为Ax+By+Cz=0,则{A ,B ,C}是π的法矢量,
而法式方程(9)中的一次项系数是π的一特殊单位法矢量的分量。
∴若将一般方程化为法式方程只需在一般方程两边同乘以因子
λ= ±2221
C B A ++ 有
λAx+λBy+λCz+λD=0
再据λD ≦0选取λ的符号即可。
例:略。