锅炉烟气脱氮脱硫处理计算
- 格式:xls
- 大小:29.50 KB
- 文档页数:8
烟气脱硫设计计算1130t/h 循环流化床锅炉烟气脱硫方案主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h引风机量 1台,压力满足 FGD 系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口 SO2含量200mg/Nm 3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2→ MgSO3 + H2OMgSO3 + SO2 + H2O→ Mg(HSO3)2Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。
这个阶段化学反应如下:MgSO3 + 1/2O2→ MgSO4Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3H2SO3 + Mg(OH)2→ MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。
当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至 pH 达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。
1项目污染物分析主要污染物为燃煤尘和S O2酸性气体,粉尘粒径小、比重轻,属可吸入颗粒物,威胁居民生命健康;烟气中的SO2,会造成酸雨污染排放大气造成环境污染。
2工况参数注:以上参数以相类似锅炉为例,作为技术方案参考依据。
3方案编制依据与执行环保标准(1)HJ462-2009《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(2)环保局《关于规范我市中小型燃煤锅炉烟气脱硫工程建设的通知》(3)环发(1997)634#《酸雨控制区与二氧化硫控制区划分方案》;(4)国函(1998)5#号《国务院关于酸雨控制区与二氧化硫控制区有关批复》;(5)GB13271-2001《锅炉大气污染物排放标准》;(6)国务院令字(2003)第369#《排污费征收使用管理条例》;(7)中华人民共和国国家发展委员会、财政部、国家环境保护总局、国家经贸委(2003)31#令《排污费征收标准管理条理》。
(8)《建筑防振设计规范》GB50016-2006(9)《低压配电装置规范》(GBJ54-83)(10)《电气装置安装施工及验收规范》GB50254-96(11)《电力建筑施工及验收技规范》(12)《花岗石类湿式烟气脱硫除尘装置》(HCRJ040-1999)(13)《建筑施工高处作业安全技术规范》(JGJ80-91)(14)《固定式工业钢平台》(GB4053.4-83)(15)《固定式工业防护栏杆》(GB4053.3-93)(16)《固定式钢直梯》(GB4053.1-93)(17)《压缩机风机泵安装工程施工及验收规范》(GB50275-98) 4设计原则及技术参数4.1设计原则根据提供的工况参数,现初步制定以下设计原则:(1)保证锅炉正常运行,污染物达标排放;(2)并将原有水膜除尘器拆除,新建脱硫塔,并利用原有除尘循环池,新建设备及配套系统布置合理;新建完成后,脱硫塔脱硫效率大于90%,排放烟气中的烟尘及S O2,浓度小于地方环保局规定的排放标准,净化后烟气林格曼黑度小于1级;(3)锅炉排放粉尘和S O2按照地方环保局标准达标排放,并有提高技术指标的空间,适应国家对环保治理不断严格的要求和削减量;(4)系统运行可靠,脱硫除尘设施维护可与锅炉检修同步统一安排,不影响锅炉的正常运行;(5)用特种雾化喷头,保证使塔内壁及旋硫板上形成均匀连续的液雾,提高脱硫除尘效率;(6)通过脱硫后,脱硫效率大于90%,使高浓度的S O2烟气达到排放要求小于300mg/Nm³;(7)经过脱硫塔烟尘排放<80mg/Nm³。
烟气脱硫系统烟气量及成份特性计算烟气脱硫系统是一种用于减少燃煤工业锅炉排放的硫化物的技术。
烟气脱硫系统的主要工作原理是通过将烟气传导过一种吸收剂,使得烟气中的二氧化硫(SO2)被吸收并转化为石膏(CaSO4·2H2O),从而减少对环境的污染。
在设计烟气脱硫系统之前,需要进行烟气量及成份特性的计算。
烟气量的计算需要考虑工业锅炉的操作条件、燃料的种类和燃烧效率等因素。
下面是一种烟气量计算的简单方法:1.计算燃煤工业锅炉的额定蒸发量。
额定蒸发量是指燃煤工业锅炉在设计工况下产生的最大蒸汽量。
2.根据工况,计算燃煤工业锅炉的蒸汽产量。
蒸汽产量可以通过燃料的热值、燃烧效率和蒸汽锅炉的热效率来计算。
3.根据燃烧过程中煤炭中的硫含量和排放因子,计算燃煤工业锅炉的SO2排放量。
硫含量可以通过煤炭质量分析来确定,排放因子一般可以在烟气排放规范中找到。
4.通过测量或估算的SO2浓度来计算烟气中SO2的质量流量。
SO2浓度可以通过连续排放监测系统进行测量,或者通过计算和模型来估算。
除了烟气量的计算,还需要对烟气的成份特性进行考虑。
烟气的成份特性包括SO2浓度、煤炭的灰分、粉尘、氮氧化物(NOx)等。
这些特性对烟气脱硫工艺的选择和系统设计有重要影响。
在烟气脱硫系统中,常用的吸收剂有石灰石、石膏和氨水等。
不同的吸收剂对烟气中的SO2有不同的吸收效果和反应特性。
根据烟气的成份特性和工艺要求,可以选择合适的吸收剂和适当的脱硫工艺。
总的来说,烟气脱硫系统的烟气量及成份特性计算是设计和选择适当的脱硫工艺的基础。
通过合理的计算和分析,可以确定脱硫系统的设计参数和操作条件,以达到减少SO2排放和保护环境的目的。
锅炉烟气脱硫物料衡算一、物料衡算1.烟气量入口烟气量两台75 t/h锅炉烟气量:150716 m3/h×2单台130 t/h锅炉烟气量:298253 m3/h出口烟气量两台75 t/h锅炉烟气量:117000 m3/h×2单台130 t/h锅炉烟气量:231601 m3/h2. SO2含量:75 t/h锅炉SO2:5109 mg/m3130 t/h锅炉SO2:4694 mg/m32×75 t/h锅炉SO2量:150716 m3/h×5109 mg/m3×2=1540Kg/h1×130 t/h锅炉SO2量: 298253 m3/h×4694 mg/m3=1400Kg/hSO2总量: 1540Kg/h+1400Kg/h=2940 Kg/h设计脱硫塔出口SO2量:≤200 mg/m3,若三台炉全开,年运行时间按8000h计算每小时脱除SO22850Kg,每年脱除SO2量22800吨。
脱硫效率达到92%就能达到国家对新上锅炉的环保要求。
3.氨消耗量液氨消耗:1514Kg/h、12112t/a折氨水(10%)消耗:15140 Kg/h、16.82 m3/h(氨水密度0.9)134577 m3 /a4.硫铵产量未考虑干燥(水份含量5%):5587.3 Kg/h、44698.4t/a 5.氧化空气量理论空气用量: V里空=2592.5N m3/h空气过剩系数:α=3实际空气用量: V 实空= V 里空×α=7777.5Nm 3/h=129.6N m 3/min二、脱硫塔计算按两套脱硫系统设计,空塔气速取4 m/s 。
两台75吨锅炉对应脱硫塔规格为: D=4785.036002150716⨯⨯⨯=5.16m ,圆整后取塔径:φ5200一台130吨锅炉对应脱硫塔规格为: D=4785.03600298253⨯⨯=5.13m ,圆整后取塔径:φ5200脱硫塔规格为:1#φ5200×32000×122#φ5200×32000×12三、冷却塔计算:空塔气速:4.8m/s D1=8.4785.036002150716⨯⨯⨯=4.714m,圆整为:φ4800mm D2=8.4785.03600298253⨯⨯=4.689m,圆整为:φ4800mm冷却塔规格为:1#φ4800×16000×122#φ4800×16000×12四、循环泵选用脱硫塔适宜的液气比为1.5L/molL/G=1.5L/201714=1.5,可知L=302m 3/h1#脱硫塔:选用350 m 3/h 泵两台,扬程50米,开一备一。
烟气脱硫工艺吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。
4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H 0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
烟气脱硫工艺吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。
4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H 0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%);V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); α-过剩空气系数,α=αα∆+0。
1、理论空气需求量y V -烟气总量,m 3/h 或m 3/a ;B -燃料耗量,kg/h 、m 3/h 、kg/a 、m 3/a 。
3、SO 2的计算:式中:2SO M -二氧化硫的产生量(t/h );B -燃料消耗量(t/h );C -含硫燃料燃烧后生产的SO 2份额,一般取0.8; ar S -燃料收到基含硫量(%); 64-SO 2相对分子质量; 32-S 相对分子质量。
SO 2的产生浓度(mg/m 3):4、烟尘的计算式中:烧一吨柴油,排放2000×S %千克SO2,1.2万立米废气;排放1千克烟尘。
烧一吨重油,排放2000×S %千克SO2,1.6万立米废气;排放2千克烟尘。
大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。
普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克;砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。
规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。
乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。
物料衡算公式:1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。
若1,柴油?按燃用民用型煤和原煤分别采用不同的系数计算:民用型煤:每吨型煤排放1~2公斤烟尘原煤:每吨原煤排放8~10公斤烟尘一、工业废气排放总量计算1.实测法当废气排放量有实测值时,采用下式计算:Q年=Q时×B年/B时/10000式中:Q年——全年废气排放量,万标m3/y;Q时——废气小时排放量,标m3/h;B年——全年燃料耗量(或熟料产量),kg/y;B时2.1)/kg] 当当b.c.当式中:V0—燃料燃烧所需理论空气量,m3(标)/kg或m3/m3;QL—燃料应用基低位发热值,kJ/kg或kJ/(标)m3。
脱硫各项计算公式脱硫是指通过化学或物理方法去除燃煤、燃油等燃料中的硫化物,以减少大气中的二氧化硫排放,保护环境。
在脱硫工程中,需要进行各项计算来确定设备的尺寸、操作参数等。
下面将介绍脱硫各项计算公式及其应用。
1. 脱硫效率计算公式。
脱硫效率是衡量脱硫设备去除硫化物的能力的重要指标。
脱硫效率的计算公式如下:脱硫效率 = (进口SO2浓度出口SO2浓度) / 进口SO2浓度× 100%。
其中,进口SO2浓度和出口SO2浓度分别表示进入脱硫设备的烟气中的二氧化硫浓度和离开脱硫设备后的二氧化硫浓度。
通过这个公式可以计算出脱硫设备的去除效果,为后续工艺设计和操作提供重要参考。
2. 石灰用量计算公式。
在石灰-石膏法脱硫工艺中,需要计算石灰的用量来保证脱硫效果。
石灰用量的计算公式如下:石灰用量 = (SO2排放浓度×烟气流量× 3600) / (100 × CaO含量×石灰利用系数)。
其中,SO2排放浓度表示烟气中的二氧化硫浓度,烟气流量表示单位时间内烟气的流量,CaO含量表示石灰中氧化钙的含量,石灰利用系数表示石灰的利用率。
通过这个公式可以计算出石灰的用量,为脱硫设备的运行提供指导。
3. 石膏产量计算公式。
在石灰-石膏法脱硫工艺中,石膏是脱硫产生的主要副产品,需要计算石膏的产量来合理处理。
石膏产量的计算公式如下:石膏产量 = SO2排放浓度×烟气流量× 3600 / 100。
通过这个公式可以计算出单位时间内产生的石膏量,为后续的石膏处理提供依据。
4. 脱硫塔液气比计算公式。
在湿法脱硫工艺中,需要计算脱硫塔的液气比来保证脱硫效果。
脱硫塔液气比的计算公式如下:液气比 = (进口SO2浓度×烟气流量) / (脱硫液循环速率× 3600)。
其中,进口SO2浓度和烟气流量表示进入脱硫塔的烟气中的二氧化硫浓度和烟气流量,脱硫液循环速率表示单位时间内脱硫液的循环速率。
一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料));daf V -干燥无灰基挥发分(%);V Y -烟气量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); α-过剩空气系数, α=αα∆+0。
1、理论空气需求量daf V >15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V <15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅<12560kJ/kg :455.04145Q arnet 0+=⋅V 液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅<10468kJ/Nm 3:1000Q 209.0arnet 0⋅⨯=V 气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V 2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅<12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅>14655kJ/Nm 3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数α表烟气总量:y V B V ⨯=V -烟气总量,m 3/h 或m 3/a ;B -燃料耗量,kg/h 、m 3/h 、kg/a 、m 3/a 。
燃煤燃气、锅炉废气so2/nox/烟尘、废水COD/BOD/SS/氨氮等污染物排放计算公式一、序号项目平均浓度(毫克/升)备注CODcr油类1宾馆及带客房的饭店6001502不带客房的饭店1000200 3小面饭店8000250 4美容、理发店8005浴室2006商场240不包含餐饮餐饮业及商场年废水排放量可按年用新鲜水量的80%计;美容、理发店和浴室等行业年废水排放量可按年用新鲜水量的85%计。
二、废气部分1、年废气排放量Q=P•BQ—某一锅炉、茶炉、大灶或工业窑炉年废气排放量(万标立方米/年)B——该锅炉、茶炉、大灶或工业窑炉年燃料消耗量(吨/年)P——该锅炉、茶炉、大灶或工业窑炉废气排放量的排放系数。
各种燃料废气排污系数炉型P 燃料茶炉、大灶(含炮台炉)小于 4 吨锅炉备注手烧型链条等煤粉炉沸腾炉无烟煤1.0730.8400.7810.7370.650链条、振动、往复炉排具有相同的排污系数烟煤 1.0960.8030.8050.7610.673褐煤 1.2050.9590.8980.8510.750燃料油1.028燃料气1.393指液化气2、年烟尘排放量G=B·K·(1-η)G——某一锅炉、茶炉、大灶或工业窑炉年烟尘排放量(吨年)。
B——该锅炉、茶炉、大灶或工业窑炉年燃料消耗量。
煤(吨/年);燃料油(立方米/年);燃料气(百万立方米/年)。
K——该锅炉、茶炉、大灶或工业窑炉年烟尘排放量的污染系数。
η——该锅炉、茶炉、大灶或工业窑炉除尘系统的除尘效率(%)。
其中旋风除尘器除尘效率为80%左右,水膜除尘器除尘效率为90%左右。
燃煤烟尘污染系数炉型k 燃料茶炉、大灶(含炮台炉)手浇、链条炉、往复炉振动炉化铁炉抛煤机炉沸腾炉煤粉炉型煤0.0030.0710.1070.1160.1560.199煤球0.004散煤0.005燃料油、燃料气烟尘排污系数燃料种类K炉型燃料油燃料气备注电厂锅炉0.00120.2385工业锅炉0.002730.2862采暖炉0.0009520.302注:1、燃料油比重为0.92~0.98吨/立方米。
燃料消耗量(kg/h):1490额定蒸汽温度℃194
密度kg/m3
总重燃煤锅炉排烟量及烟尘和二氧化硫、二氧化氮过剩空气以1kg煤来计算
氮气
百分比质量物质的量
需氧量 mol 烟气量mol
C 55.23%552.346.02546.02546.025H 9.71%97.197.124.27548.55O 3.88%38.8 2.425-1.2125S 1.80%180.56250.56250.5625N 1%100.7142857140.710.71
W 6.40% 3.560.197530864A 28.38%V 44.61%合计70.3642857195.85178571标准状态下的理论需氧量:
mol/kg m3/kg
70.36428571 1.57616
标准状态下氮气量:
265.977 5.9578848
标准状态下的理论空气量:
mol/kg m3/kg 336.34128577.5340448
理论烟气量:361.82878578.1049648
标准状态下实际烟气量:
空气过剩系数α: 1.4
11.11858272
标准状态下烟气流量(m3/h):16566.68825设排烟中飞灰占煤中不可燃成分的质量分数为:16%
烟气含尘浓度:kg/m3mg/m3
0.0040839744083.973753
标准状态下烟气中二氧化硫浓度的计算:
0.0032378233237.822743
标准状态下烟气中二氧化氮浓度的计算:
0.0016703051670.305383
燃煤锅炉三类区的排放标准为(mg/m3)
烟尘SO 2氮气80400400脱硝设计
0V 0
a V
脱硝效率0.760522834
流经催化剂表面速度m/s5
催化剂截面积m2 1.952464544
反应器截面积比催化剂大15%
反应器截面积m2为 2.245334225
催化剂活性系数 1.1
催化剂比表面积m2/m35000
催化剂估算体积m3 4.305222042
取体积m3为 4.5
每层催化剂高 米 1.5
催化剂层数 1.53651958
取层数为2
支撑催化剂高度m0.5
整流层和安装高度m0.5
反应器高度m 6.5
除尘器设计
除尘效率η0.980411236
工作状况下(非标况)烟气流量m3/h:m3/s
35144.361789.762322718
脱硫吸收塔的设计
标况下理论空气量m3/kg:mol/kg m3/kg
336.34128577.5340448
实际烟气量m3/kg11.11858272
标况实际烟气流量m3/h m3/s
16566.68825 4.601857848
其中二氧化硫体积为m3/kg煤:0.0126
烟气中二氧化硫浓度为mg/m3:3237.822743
则脱硫率至少为0.876460192
取88%
设钙硫比 1.2石灰石纯度90%
则一小时内石灰石的消耗量kg:98.3363157
烟气流速m/s:3-4.5
取烟气流速u(m/s)为3
喷淋塔高度计算
设塔内平均温度℃80
压力KPa120
进塔前漏气系数0.08
塔内烟气流量m3/h16636.56974= 4.621269372m3/s 喷淋塔径计算
截面积m2 1.540423124
塔径m 1.400829201
喷淋塔高度
反应时间s3
吸收区高度m9
除雾区高度m 3.5
气液比L/m318
浆液停留时间min5
浆池容积m324.85003238
取浆池直径m3
浆池高度m 3.517343578 3.6取浆池液面到进气口高度m1
烟气进口流速m/s20
喷淋塔烟气进口高度m0.47967999出口与进口相同取高度为m0.5
填料塔高度m17.1
烟囱高度m45
烟囱出口烟气流速m/s5
烟囱出口内经m 5.459983127
取内径为m 5.5
烟囱锥度0.02
烟囱底部直径m7.3
外界空气温度℃10
烟囱内部温度℃80
当地大气压Pa102811
烟囱的抽力Pa110.8702693
烟囱高度校核
排放烟气中二氧化硫浓度mg/m3388.5387292
二氧化硫排放速率g/s 1.788
σz31.81980515
查得
σy47
落地浓度mg/m30.044017603符合二级标准管道系统设计
工况下烟气流量m3/s9.762322718
管道内烟气流速m/s:18
管径m0.831199932
取管径为m0.9
实际烟气流速m/s15.35318506
管道长度m30
实际烟气密度kg/m3 1.412042857
摩擦阻力系数0.02圆钢管
摩擦压力损失Pa110.9490512
局部压力损失
名称Qξv密度压降Pa
45°减缩管9.7623227180.2315.353185060.8254554622.37630918风机风量26321.94546
备用系数 1.1
1.412042857 13.78481806 3.901558914
6.915402质量kg
2.0251
0.8739
0.036 0.032857143
C
ηK0
0.02400.915.353185060.8254554686.47848958。