初中数学九年级概率的意义人教版教案
- 格式:doc
- 大小:56.50 KB
- 文档页数:5
概率的意义第一课时教学目标:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.教学重点:在具体情境中了解概率意义.教学难点:对频率与概率关系的初步理解【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验。
《概率的意义教案》PPT课件一、教学目标1. 让学生理解概率的概念,知道概率是反映事件发生可能性大小的量。
2. 让学生掌握概率的计算方法,能计算简单事件的概率。
3. 培养学生运用概率解决实际问题的能力。
二、教学重点与难点1. 教学重点:概率的概念,概率的计算方法。
2. 教学难点:概率的计算方法,如何运用概率解决实际问题。
三、教学方法1. 采用讲授法,讲解概率的概念和计算方法。
2. 采用案例分析法,分析实际问题,引导学生运用概率解决实际问题。
3. 采用小组讨论法,让学生分组讨论,培养学生的合作意识。
四、教学准备1. PPT课件:包括概率的定义、概率的计算方法、实际案例等。
2. 教学素材:包括概率题目、实际问题等。
3. 笔记本电脑、投影仪等教学设备。
五、教学过程1. 导入新课:通过一个简单的概率问题,引导学生思考概率的概念。
2. 讲解概率的定义:讲解概率是反映事件发生可能性大小的量,让学生理解概率的本质。
3. 讲解概率的计算方法:介绍两种常用的概率计算方法:古典概型和条件概率。
并通过具体例子讲解这两种方法的计算过程。
4. 案例分析:分析实际问题,引导学生运用概率解决实际问题。
如:抛硬币、抽奖、骰子等。
5. 小组讨论:让学生分组讨论,运用概率解决实际问题。
教师巡回指导,解答学生的疑问。
6. 课堂小结:回顾本节课的内容,强调概率的概念和计算方法。
7. 布置作业:布置一些简单的概率题目,巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,分析学生的学习情况,为下一节课的教学做好准备。
六、教学内容与流程1. 教学内容:概率的基本性质,如何运用概率解释随机现象。
2. 教学流程:a. 通过具体案例,讲解概率的基本性质,如:事件的独立性、互斥事件等。
b. 分析实际问题,引导学生运用概率解释随机现象。
c. 小组讨论,让学生运用概率解决实际问题。
七、教学策略1. 采用问题驱动法,引导学生主动思考概率的基本性质。
人教版数学九年级上册25.1.2《概率的意义》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率的意义》是概率统计部分的重要内容。
本节主要介绍概率的定义、表示方法及其在实际问题中的应用。
通过本节课的学习,学生能够理解概率的基本概念,会用概率表示事件发生的可能性,并能运用概率解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。
但是,对于概率这一抽象的概念,学生可能存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率的概念,并通过大量的例子让学生加深对概率的理解。
三. 教学目标1.理解概率的定义,掌握概率的表示方法。
2.能够运用概率解决一些实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.概率的定义和表示方法。
2.运用概率解决实际问题。
五. 教学方法1.讲授法:讲解概率的基本概念和表示方法。
2.案例分析法:通过具体的例子让学生理解概率的应用。
3.小组讨论法:让学生在小组内讨论概率问题,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和实际问题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个简单的游戏引出概率的概念,让学生感受到概率在日常生活中的应用。
2.呈现(10分钟)讲解概率的定义和表示方法,让学生明确概率的基本概念。
3.操练(10分钟)让学生通过计算一些简单的概率问题,加深对概率的理解。
4.巩固(10分钟)让学生解决一些实际的概率问题,巩固所学知识。
5.拓展(10分钟)让学生讨论一些与概率相关的实际问题,培养学生的解决问题的能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识。
7.家庭作业(5分钟)布置一些有关的练习题,让学生巩固所学知识。
8.板书(5分钟)对本节课的主要内容进行板书,方便学生复习。
通过本节课的教学,学生应该能够理解概率的基本概念和表示方法,并能够运用概率解决一些实际问题。
人教版数学九年级上册25.1.2《概率的意义》说课稿一. 教材分析《概率的意义》是人教版数学九年级上册第25章第1节的一部分,本节课的主要内容是让学生理解概率的定义,掌握概率的基本性质和运算方法。
教材通过具体的例子让学生体会概率在实际生活中的应用,培养学生的数学应用意识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对数学概念和运算方法有一定的了解。
但是,对于概率这一概念,学生可能比较陌生,难以理解其本质和应用。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,培养学生的抽象思维能力。
三. 说教学目标1.知识与技能目标:让学生理解概率的定义,掌握概率的基本性质和运算方法,能解决一些简单的实际问题。
2.过程与方法目标:通过具体的例子,让学生体会概率在实际生活中的应用,培养学生的数学应用意识。
3.情感态度与价值观目标:激发学生对概率学习的兴趣,培养学生积极思考、合作交流的良好学习习惯。
四. 说教学重难点1.教学重点:概率的定义,概率的基本性质和运算方法。
2.教学难点:概率的本质理解,如何从实际问题中抽象出概率模型。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过具体的例子引导学生理解概率的概念,运用概率的知识解决实际问题。
2.教学手段:利用多媒体课件,展示具体的例子和概率运算过程,帮助学生形象地理解概率的概念。
六. 说教学过程1.导入新课:通过一个简单的摸球游戏,引导学生思考概率的概念。
2.讲解概率的定义:解释概率的概念,让学生理解概率的本质。
3.讲解概率的基本性质:介绍概率的基本性质,让学生掌握概率的运算方法。
4.应用举例:通过具体的例子,让学生运用概率的知识解决实际问题。
5.课堂练习:布置一些简单的练习题,巩固学生对概率知识的掌握。
6.总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的收获和不足。
七. 说板书设计板书设计如下:1.概率的定义:反映事件A发生的可能性。
人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。
本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。
因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。
三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。
2.学会使用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和事件的相互独立性。
2.概率公式的运用和计算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。
2.通过实例分析,让学生理解概率的概念和事件的相互独立性。
3.运用小组讨论的方式,培养学生的团队合作能力。
六. 教学准备1.教学PPT或黑板。
2.与概率相关的实例和习题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。
提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。
通过PPT或黑板,展示概率的定义和符号表示。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。
提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。
提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。
7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和重点知识点。
初中概率的意义教案教学目标:1. 理解概率的定义和意义;2. 学会计算简单事件的概率;3. 能够运用概率解决实际问题。
教学重点:1. 概率的定义和计算方法;2. 运用概率解决实际问题。
教学难点:1. 概率的计算方法;2. 理解概率的意义和应用。
教学准备:1. 教学课件或黑板;2. 教学卡片或练习题。
教学过程:一、导入(5分钟)1. 引入概率的概念,让学生思考在日常生活中遇到的一些不确定事件,如抛硬币、抽奖等;2. 提问:什么是概率?为什么学习概率?二、新课讲解(15分钟)1. 讲解概率的定义:概率是指一个事件在所有可能事件中发生的可能性;2. 讲解概率的计算方法:用一个数(0到1之间)表示概率,数值越大,事件发生的可能性越大;3. 举例说明如何计算简单事件的概率,如抛硬币、掷骰子等;4. 让学生通过练习题实际计算一些简单事件的概率。
三、课堂练习(15分钟)1. 分发练习题,让学生独立完成;2. 讲解练习题的答案,让学生理解概率的计算方法和意义;3. 让学生分享自己在日常生活中运用概率的经历。
四、应用拓展(15分钟)1. 讲解如何运用概率解决实际问题,如天气预报、保险等;2. 让学生通过小组讨论,探讨概率在实际生活中的应用;3. 让学生展示自己的成果,并进行评价。
五、总结(5分钟)1. 让学生总结本节课的学习内容,回答问题:什么是概率?如何计算概率?概率的意义和应用是什么?;2. 教师进行点评,强调概率在实际生活中的重要性。
教学反思:本节课通过讲解概率的定义和计算方法,让学生理解概率的意义和应用。
在教学过程中,注意引导学生思考日常生活中的不确定事件,让学生通过实际计算和讨论,加深对概率的理解。
同时,通过练习题和小组讨论,培养学生的动手能力和合作精神。
在今后的教学中,可以结合更多实际例子,让学生更好地理解和运用概率。
“概率的意义”(第1课时)教学设计教学任务分析教学流程安排教学过程设计[活动3]给出事件A的概率的定义.问题(1)频率与概率有什么区别与联系?(2)当A是必然发生的事件时,P(A)是多少?当A是不可能发生的事件时,P(A)是多少?当A是随机事件时,P(A)是多少教师给出事件A的概率定义.教师提出问题(1).学生思考,讨论,相互交流.教师应帮助学生理解:(1)一般地,频率是随着试验者,试验次数的改变而变化的.(2)概率是一个客观常数,(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.教师应指出:随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下,进行大量重复试验时,却又呈现出一种规律性.教师提出问题(2).学生独立思考,回答.教师应帮助学生理解:任何事件的发生都可以用概率来描述.其中必然事件的概率为1,不可能事件的概率为,随机事件的概率大于0而小于1.概率对于学生是一个较难理解的概念.教师应帮助学生从不同方面,不同角度,不同层次去理解概率的意义.例如:通过比较频率与概率的区别与联系.学生通过充分交流,讨论,探究,深化了对事件A的概率定义的理解,发展了学生的数学能力.事件和不可能事件可以看作是随机事件的两种极端情形.[活动4]问题(1)天气预报说下星期一降水概率是90%,下星期三降水教师提出问题.学生思考回答.对于问题(1),教师应指出:预报的降水概率是根据大量统计记录得出的,是符合大多数问题(1)比较具体,直观.从不同方面,不同视角进一步加深对。
25.1.2 概率的意义(一)教学目标知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义过程与方法让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.(二)教学重难点重点:在具体情境中了解概率意义.难点:对频率与概率关系的初步理解(三)学情分析(四)方法应用:预习铺垫、自主先行、合作提高、导师点拨、检测升华(五)教学用具:壹元硬币数枚、图钉数枚、多媒体课件(六)教学过程1、展示目标(学习目标)1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义2、预习检测教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.3、自主学习合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P 140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律? 注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下n 图25.1-1波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.4、展示交流问题 1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出: 1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.5、教师点拨教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.6、检测验收1.书上练习.1. 巩固用频率估计概率的方法.2.书上练习.2 巩固对概率意义的理解.(七)课堂小结教师:通过今天的学习,同学们有什么收获?学生自由发言,教师小结。