当前位置:文档之家› 31000DWT散货船结构强度设计

31000DWT散货船结构强度设计

31000DWT散货船结构强度设计
31000DWT散货船结构强度设计

本科毕业论文

(20届)

31000DWT散货船结构强度设计

专业:船舶与海洋工程

目录

中英摘要............................................................................................................ II 前言 ....................................................................................................................... II 第一章绪论 . (1)

1.1散货船概述及现状 (1)

1.2散货船船结构强度分析及设计 (2)

1.3小结 (4)

第二章总体部分 (5)

2.1任务书与母型船资料分析 (5)

2.2设计船型值确定及型线图绘制 (5)

2.3设计船总布臵设计及总布臵图绘制 (15)

第三章结构部分 (19)

3.1设计船船型资料 (19)

3.2设计船结构规范设计 (19)

第四章强度部分 (56)

4.1主要构件汇总 (56)

4.2中横剖面模数计算 (61)

4.3 强度校核 (64)

第五章图纸绘制 (65)

5.1典型横剖面图 (65)

5.2 基本结构图 (65)

第六章设计总结和展望 (66)

参考文献 (67)

致谢词 (68)

外文翻译 (69)

31000DW T散货船结构强度设计

摘要

按照《2006钢制海船入级建造规范》对一艘31000D W T散货船进行结构强度设计。首先,对任务书和母型船资料进行了分析,利用母型改造法确定出设计船的主尺度和型值表,并且绘制了设计船的型线图和总布臵草图。其次,根据《2006钢制海船入级建造规范》对设计船进行了结构设计,确定了设计船各构件的规格尺寸,进行了总纵强度校核。根据结构设计结果,绘制了典型横剖面图和基本结构图。最后,对设计过程当中存在的问题和不足进行了讨论,并提出了结构改进方案。

结论:设计船主尺度满足设计任务书的要求,船体结构规范设计计算和总纵强度校核满足《2006钢质海船入级与建造规范》要求。

[关键词] 散货船;结构规范;结构设计;强度校核

T h e s t r u c t u r a l s t r e n g t h d e s i g n o f t h e 3 1 0 0 0

DWTbulk carrier

[Abstract]The s t ru cturestre ng th de s ig nof31000D WTbulkca rri er i ss t udie d in thisarticle.It involvesthreeparts-theoveralldesignpart,structuredesignpart,summary and discussion design part. Firstly, the design of the overall part:analysisthemissionstatementandtheinformationoftheparentship, andusing pare nt typ e tra n sfo r mati on meth od to decide the ma i n dimensions designed shipand the offsets table, then drawing ship lines plan and the general arrangement plan of the new ship. Secondly, the design of the structure part: according to the“Rules forclassficationofsea-

goingsteel ships(2006)”,carryoutthestructure designandselectthestructuralmaterialsreaso nably,calculateandverifythe longit udi nalstrengt h,thena na lys i s t heresult s ofthe de s i gn,l a s t l y,drawthebasic structureplanandtypicalcrosssectionplan.Thirdly,thesummaryanddiscussi onpart:summarizingtheexperienceandanalyzingthedeficienciesofthedesign processand , some reasonable and effective measures to strengthen thestructureand the scheme of structural optimization areproposed.

Conclusion: the m a in dimensions of de s i g ned ship m e et s the requirements of theassignment.Thecalculationandverificationofshipstructurestandarddesignandthegen eralstrengthoflongitudinal

satisfiesthestrengthrequirementsofthe“Rules forclassficationofsea-goingsteelshipsin2006”.

[Key Wor ds] bulk carrier; structure norm; structure design; strengthcheck

前言

如今的散货船的结构型式在全世界独领风骚了30余年,充分显示了它的优越性,也比较彻底地暴露了它的弱点。海上散货运输业正企盼着散货船的结构型式能及早得到改进,或者开发出具有更多优点并能保证规定寿命期内安全营运的全新结构型式。目前世界散货船队中在航船舶的货舱结构大多为单壳体,然而近年来单壳体散货船频繁发生的海难事故越来越引起国际海事组织(IMO)和各船级社的关注。据统计,1978年——2003年全世界散货船海难事故共丧生船员1232人,90%以上是因船体结构破损所致。因此,国际海事界要求提高散货船建造标准,采用双壳体的呼声日益高涨。IMO 和IACS也采取了相应的措施。

当前我国正在使用的散货船按建造年代基本上可分为80年代和90年代及以后的建造的船舶。80年代建造船舶目前已属老龄船,并逐渐步入超老龄船行列。这部分船舶结构上的缺陷体现在船体和某些主要受力构件的变形、疲劳、腐蚀渐达极限以及以往损伤事故的后遗症等。据统计,船龄为11-30年的船舶,占因结构损坏引发的海难事故总数的88.9%。这说明随着船龄的增长,结构老化、结构强度不足是造成海难事故的主因。而且,吨位在3万吨及以下船舶,占因结构损坏引起的难事故总数的72.2%,这说明船舶的吨位越小,船舶的结构强度就越弱。这些船舶在船体结构上同样存在着令人不可忽视的问题,那就是越来越多的大比例高强度钢的应用。

通观散货船的发展历史及对现状的分析,散货船的发展趋势主要体现在双壳化、大型化、快速性、多用途化、使同年限增长、环保和自动化程度提高等几个方面。这些法则这些发展趋势中都包含有结构设计的内容,例如在大型化方面,对船体进行优良的结构,不仅能保证结构强度,延长使用年限,而且能适当减轻船体重量,从而降低建造成本。因此,结构强度设计在船舶建造中有着举足轻重的地位。

第一章绪论

我国正在使用的散货船按建造年代基本上可分为80年代和90年代及以后的建造的船舶。80年代建造船舶目前已属老龄船,并逐渐步入超老龄船行列。这部分船舶结构上的缺陷体现在船体和某些主要受力构件的变形、疲劳、腐蚀渐达极限以及以往损伤事故的后遗症等。

1. 1散货船概述及现状

散货船是散装货船简称,是专门用来运输不加包扎的货物,如煤炭、矿石、木材、牲畜、谷物等。散装运输谷物、煤、矿砂、盐、水泥等大宗干散货物的船舶,都可以称为干散货船,或简称散货船。因为干散货船的货种单一,不需要包装成捆、成包、成箱的装载运输,不怕挤压,便于装卸,所以都是单甲板船。

现有典型散货船的结构型式在全世界独领风骚了30余年,充分显示了它的优越性,也比较彻底地暴露了它的弱点。海上散货运输业正企盼着散货船的结构型式能及早得到改进,或者开发出具有更多优点并能保证规定寿命期内安全营运的全新结构型式。目前世界散货船队中在航船舶的货舱结构大多为单壳体,然而近年来单壳体散货船频繁发生的海难事故越来越引起国际海事组织(IM O)和各船级社的关注。据统计,1978年——2003年全世界散货船海难事故共丧生船员1232人,90%以上是因船体结构破损所致。因此,国际海事界要求提高散货船建造标准,采用双壳体的呼声日益高涨。IM O 和IACS也采取了相应的措施。

我国正在使用的散货船按建造年代基本上可分为80年代和90年代及以后的建造的船舶。80年代建造船舶目前已属老龄船,并逐渐步入超老龄船行列。这部分船舶结构上的缺陷体现在船体和某些主要受力构件的变形、疲劳、腐蚀渐达极限以及以往损伤事故的后遗症等。据统计,船龄为11-30年的船舶,占因结构损坏引发的海难事故总数的88.9%。这说明随着船龄的增长,结构老化、结构强度不足是造成海难事故的主因。而且,吨位在3万吨及以下船舶,占因结构损坏引起的难事故总数的72.2%,这说明船舶的吨位越小,船舶的结构强度就越弱。这些船舶在船体结构上同样存在着令人不可忽视的问题,那就是越来越多的大比例高强度钢的应用。选用材料的不适当,结构强度设计的缺陷会使船舶的使用年限减少。因此,散货船的结构强度设计在船舶建造中有着举足轻重的作用。

1. 2 散货船船结构强度分析及设计

按规范进行结构设计的一般流程是:首先,根据对母型船的调查研究和所设计船的特殊要求,

分析所设计船的船体强度要求,选择合适的建造规范。然后,根据型线图和总布臵图,绘制中剖面图、基本结构图和肋骨线型图等草图,并进行结构构件的初步布臵。最后,按规范计算船体主要构

件的尺寸,边计算、边绘图、边完善初始的结构布臵方案。其中,我们运用有限元方法对构件、结

构进行强度分析,从而确定其构件尺寸及结构形式。以下就是几个有关散货船的结构强度设计的例子:

王国强等在文献[1]中主要介绍了45000D W T散货船在结构设计中的设计特点、强度计算,并作了简要分析。该船具有同等吨位散货船的共性,但是由于宽深比和航线的影响,又使得它具有比较明

显的个性。在结构设计上注意经济性的把握,同时在结构强度上又能满足要求。作者通过总纵强度

和有限元计算得到了以下结论:散货船装载工况多而且比较复杂,在总纵强度计算上尤其是屈曲强度

计算上,需要按照规范要求进行有限元分析,这时候的屈曲校核成为双向屈曲的校核,并且在评估标

准上有所不同。另外,顶边舱强框按照规范计算以后需要及时作有限元计算进行应力分析,在强框角

隅的地方容易出现应力集中,部分区域甚至会有局部屈曲的问题出现,所以强框架结构的设计仅仅依

靠规范公式的要求是不够的,这是需要慎重考虑。

詹明珠等在文献[3]中介绍了利用M S CPatran/Nastr an和英国劳氏船级社(LR)的ShipRight SDA 软件对30000 D W T散货船进行货舱段结构强度直接计算,使其满足散货船共同结构规范强度分析的要求。具体方法是利用整体舱段的粗网格模型计算结果,建立子模型划分精细网格进行结构疲劳评估。按照CSR规范对30000 D W T散货船的有限元计算,作者得出了以下结论:1) 结构重量将普遍增加;2) 有限元计算已经不是构件计算的参考,而是确定构件尺寸不可缺少的部分;3) 执行CSR 规范使得船舶设计工作量增加,设计周期延长。直接计算工况多达几十种,必须要依靠船级社的有限元软件才能完成,还增加了细化、疲劳的工作,使设计工作量进一步加大。

刘文华在文献[4]中介绍了依据散货船结构共同规范,采用M SCPatran/Nastran、CCS 船级社开发

的CSR 计算软件 CCS- Tool s 和 LR 船级社的Shi pRi g ht S DA 2007 ,对30000t级散货船进行了货

舱结构的整体有限元分析、高应力区域细化网格有限元分析和疲劳敏感区域精细网格有限元分析,并

就所遇问题进行探讨。根据CSR要求,船长150 m及以上的船舶,应基于三维有限元方法进行主要

支撑构件的直接强度评估。其中包括

整体舱段有限元强度分析(有限元分析第一步),用于评估货舱结构主要支撑构件的整体强度;详细应力评估(有限元分析第二步),用细化网格评估高应力区域;热点应力分析(有限元分析第三步),用精细网格计算应力集中点的热点应力,以进行疲劳强度评估。并且简要介绍了CSR 给散货船直接强度计算带来的影响。

谢东维等在文献[7]中主要介绍了82000 D W T巴拿马型散货船货舱区结构有限元分析的过程。该船的有限元分析是基于IACS的散货船共同结构规范(CSR)的要求,利用DNV船级社的有限元分析软件进行的。基于CSR的82000 D W T散货船货舱区结构的有限元分析,是一项工作量较大耗时较长的工作。在这个过程中由于使用的是D NV船级社的专业软件,也因此减少了一些工作量,比如软件自动扣除腐蚀余量,自动加载等。这也从一个侧面反映了基于CSR的结构有限元分析必须在专业软件的辅助下才能完成,其周期的长短受到该软件功能的制约。

任淑霞等在文献[10]中全面叙述了满足散货船共同结构规范的57000D W T单壳散货船的结构设计,并且与满足原BV船级社散货船规范相似船型的结构设计进行了比较。而且展示了根据有限元计算结果对货舱区结构做的相应的加强,在描述散货船共同结构规范对结构设计的影响的同时与满足原BV 散货船规范的相似船型的结构设计进行了比较。作者指出,由于散货船共同结构规范还在不断完善修订中,对于设计较早的57000D W T单壳散货船来说,其结构设计还有许多需要优化的地方。

肖锋等在文献[11]中介绍了基于CSR共同规范提出的逐步破坏分析法,自编船体梁极限强度计算软件,对多艘各种类型结构船舶进行计算,得到与多位学者相近的结果。与用有限元程序Patr an建模、M S C/M a r c计算优选散货船得出结果也有很好的近似。计算结果表明,CSR的方法有较高的精确度。作者通过对三种船型的极限强度计算,并与其他学者计算值比较后发现,根据CSR中的逐步破坏分析方法编制的软件精确性较好;对一艘优选散货船的计算和有限元计算后发现两个结果值有较好的拟合,证明CSR 中逐步破坏方法的精度较高、使用方便。

杨永祥等在文献[13]中介绍了就审查散货船船体结构图纸时应注意的几个结构设计的问题,按船舶结构设计的过程实际上是一个科学的研究、论证、优化的过程。在满足强度的前提下,优化结构设计,尽可能地减少船体自重,提高载重能力。在选用船体构件材料规格时,主要考虑经济性;在保证船体强度和使用要求下尽量减少船体结构重量, 以提高船舶的载重量。绝对不能盲目地追求超载状态的所谓“船舶强度”,导致船体自

重增加,船舶建造成本的提高,船舶航速降低,营运收入减少,实际船体结构也未达到加强的目的。因此,货船设计在满足规范的前提下,应以尽可能多的载货为设计出发点,直接提高营运效益。

任淑霞等在文献[16]中主要论述了满足共同规范的散货船的结构设计特点。根据设计经验,文章对散货船共同规范提出了三点建议:1、建议增加对顶推区域(船舶进港的码头拖轮对船舶顶推的作业区域)的规定(GL规范对此有规定);2、建议增加对起居甲板甲板载荷的规定(各船级社规范均有规定);3、有限元计算中,校核标准中仅仅只有合成应力的许用标准,建议增加剪切应力的许用标准(各船级社规范均有规定)。 JBP还在不断完善中,相信将来新版本出来会更加全面、更加合理。新规范的出现对设计院所提出了更高的技术要求,我们必须按照CSR新规范设计和开发散货船,研发新线型,在满足现有规范的基础上开发设计出更合理的船型。

1. 3 小结

船体结构强度设计就是为了保证船体强度,必须分析清楚作用于船体或各个构件上的载荷大小,再根据《对钢质海船乳剂建造规范》对船体结构的要求来确定船体结构的最佳尺寸,并对所设计的结构进行校核。在上述例子中,我们多次提到了有限元分析法。应用有限元分析方法,可将船体结构离散为能精确模拟其承载模式和变形情况的有限单元,可详尽地表述船体结构的微观细节,真实地表达出各个构件间的协调关系与变化,可以求出各个关心构件或区域的实际变形与应力。这种方法是目前船体强度分析最准确、最完善的方法,也是在理性结构设计中,最能精确预报结构对载荷响应的结构分析方法。因此,运用有效的分析方法,选择最适宜的材料和结构尺寸,这是船舶结构强度设计的责任。

本科毕业论文正文

第二章总体部分

2.1任务书分析

2.1.1设计船参数

船名:31000DWT散货船航

区:近海航区

船型:本船为双底、双舷侧散货船。

用途:本船系一艘以装运粮食、煤炭、袋装及散装谷物和其他一般散货,也可装运建材、铁矿石以及其它杂货的经济型散货船。

主尺度:总长L

169 .69m

OA

设计水线长L WL 164 .67m

垂线间长L PP 161 .60m

型宽B 27.60m

设计吃水d 9 .80m

型深D 13.80m

载重量DW 31000.00t

船级与船籍:CCS 中国

船体结构(材料\结构形式等):钢质焊接、纵骨架结构形式设备要求:

按法规和规范要求配臵

2. 1. 2母型船参数

主尺度:总长L OA 179.99m

设计水线长L

175.80m

WL

171.60m

垂线间长L

PP

型宽B 28.60m

设计吃水d 10.50m

型深D 14.30m

2.2 设计船型值确定及型线图绘制

2.2.1母型船型值

母型船型值如表2-1,表2-2,表2-3,表2-4所示

第一章散货船定义及船体结构特点

第一章散货船定义及船体结构特点 第一节散货船定义 散装运输谷物、煤、矿砂、盐、水泥等大宗干散货物的船舶,都可以称为干散货船,或简称散货船。SOLAS(2009)公约定义散货船指主要用于运输散装干货的船舶,包括诸如矿砂船和兼装船等船型。因为散货船的货种单一,不需要包装成捆、成包、成箱的装载运输,不怕挤压,便于装卸,所以大多数散货船都是单甲板船。总载重量在50000吨以上的,一般不装起货设备。由于谷物、煤和矿砂等的积载因数(每吨货物所占的体积)相差很大,所要求的货舱容积的大小、船体的结构、布置和设备等许多方面都有所不同。因此,一般习惯上仅把装载粮食、煤等货物积载因数相近的船舶,称为散装货船,而装载积载因数较小的矿砂等货物的船舶,称为矿砂船。 1.散货船定义的演变 散货船各项新要求的频繁推出,很大程度上促进了海上安全,然而,由于各项要求的出发点不同,过快的修订和引用使散货船定义产生了分歧。尤其在2006年7月1日SOLAS 修正案MSC.170(79)生效并修订了XII章散货船的定义之后,SOLAS各章中关于散货船的定义出现了较大分歧。 2006年7月1日前以结构型式和运输散货作为识别散货船的条件的定义的SOLAS第IX章(船舶安全营运管理)第1.6条定义:“散货船系指在货物处所具有单甲板、顶边舱和底边舱,且主要用于运输散装干货的船舶,包括诸如矿砂船和兼装船等船型。”同时,SOLAS 公约的各章也都指向这一定义。(注:在SOLAS2004修正案之前,SOLAS第XII章1.1散货船定义也是引用该定义)。 2006年7月1日后以主要运输散货作为识别散货船的条件的散货船定义SLOAS第XII 章(SOLAS2004修正案)第1.1条定义:“散货船系指主要用于运输散装干货的船舶,包

船舶强度与结构设计_授课教案_第四章应力集中模块

第四章应力集中模块 一、应力集中及应力集中系数 在船体结构中,构件的间断往往是不可避免的。间断构件在其剖面形状与尺寸突变处的应力,在局部范围内会产生急剧增大的现象,这种现象称为应力集中。 由于船体在波浪上的总纵弯曲具有交弯的特性,应力集中又具有三向应力特性,严重的应力集中更易于引起局部裂纹和促进裂纹的逐渐扩展。第二次世界大战中和大战后,由于结构开口引起应力集中从而产生裂缝导致船体折断的事故占整个船体结构海损事故总数中的极大部分。因此,在第二次世界大战后,关于船体结构的应力集中问题,曾引起了造船界的普遍重视,开展了大量的研究工作。现在,对这个问题已经有了比较清楚地了解。 由于应力集中是导致结构损坏的一个重要原因,结构设计工作者在设计中必须始终注意这个问题。再进一步对船体结构中比较突出的几个应力集中问题及该区域的结构设计作一些介绍。 通常,用应力集中系数来表示应力集中的程度。应力集中区的最大应力m ax σ或m ax τ分别与所选基准应务0σ或0τ之比值,即 0max 0max ττσσ==k k 或 (1)

称为应力集中系数。基准应力不同,应力集中系数也不同。所以,给定应力集中系数时,应指明基准应力的取法。 间断构件的应力变化规律以及应力集中系数的大小很大程度上决定于这些构件的形状。目前,已经能够确定各种形状的间断构件的应力集中系数。 二、开口的应力集中及降低角隅处应力集中的措施 在大型船舶上,强力甲板上的货舱口、机舱口等大开口,都严重地破坏了船体结构的连续性。当船舶总纵弯曲时,在甲板开口角隅外的应力梯度急剧升高,引起严重的应力集中,造成船体结构的薄弱环节。关于舱口角隅处应力集中的确定,导致去除方角而采用圆弧形角隅,并在角隅处采用加复板或厚板进行加强,同时要采用IV 级或V 级的材料。 1.开口的应力集中 关于孔边的应力集中,可用具有小椭圆开孔的无限宽板受位抻的情况来说明(见下图)。应用弹性理论可求得A 、B 两点的应力分别为: ?????-=+=σσσσB A p a )21( (2) 式中σ为无限远处的拉伸应力; a b /2=ρ为椭圆孔在A 点的曲率半径;

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

散货船双层底结构设计船体

毕业论文(设计)57000T散货船双层底结构设计

摘要 船底位于船体的最下部,是保证船体总纵强度和局部强度的重要构件。作用在船底上的力主要有: (1)总纵弯曲引起的压伸应力和压缩应力。 (2)局部横向载荷:船底板架承受底部水压力,液舱内液体的压力,货物和机器设备的重力及船舶进坞时龙骨墩的反支 力。 (3)偶然载荷:船舶搁浅或航行于浅水时,船底可能与河床摩擦。 而双层底除了船底板外,还有一层内底板,当船底在触礁和搁浅等意外情况下遭到破损时,双层底能保证船舶的安全。 双层底结构有利于提高船舶抗沉性,确保航行安全。 本文阐述的主要内容是57000T散货船双层底结构从设计到现场施工的具体施工工艺。 关键词:船舶双层底

目录 实习单位简介 (4) 第一章船舶的主要参数 (7) 第二章双层底结构的设计原则 (8) 1 船底骨架形式的选择原则 (8) 2 双底骨架设计 (9) (1)中桁材和旁桁材 (9) (2)箱形中底桁 (10) (3)纵骨 (10) (4)实肋板 (11) (5)水密肋板 (12) (6)开孔 (12) 第三章双层底胎架的制作 (13) 1画胎架格线 (13) 2 在平台上竖立模板 (13) 3模板画线 (14) 4切割模板 (14) 5 安装纵向角钢和边缘角钢 (14) 第四章双层底的装焊 (15) 1 双层底分段正造法 (15) 2 外底板的拼接 (15)

3 内底板的拼接 (16) 4 在底板上画纵横构架线 (16) 5 纵横构件的安装 (16) 6 内底纵骨的装焊 (16) 7 焊接 (16) 8 内底板的装焊 (17) 9 分段完工画线 (17) 10 分段翻身 (17) 11 检验 (18) 12 涂装 (18) 致谢 (18) 参考文献 (20)

《船舶强度与结构设计》课程教学大纲.

《船舶强度与结构设计》课程教学大纲 (适用于船舶制造技术专业) 一、课程任务 本课程是船舶制造专业的一门主干课,本课程包括“船体强度”和“结构设计”两部分 内容,主要讲述船舶总纵强度的计算与校核,船体型材剖面的设计,船体结构的规范设计等 内容。 本课程的任务:学生通过本课程的学习,了解船体结构计算的方法,掌握强度计算和校 核的基本方法和用规范设计船体结构。 本课程的基本要求: 1. 基本掌握船体结构中常见的分析与计算方法; 2. 掌握船体总纵强度的计算和校核方法; 3. 能根据规范对货船中横剖面结构进行设计 二课题和课时分配表 (一)理论教学 三、课程内容 课题一绪论 1. 本课程程的任务、内容、要求; 2.强度计算的常用方法; 3.结构设计的基本原理和 常用方法; 重点:强度校核常用的许用应力法;结构设计的规范设计 课题二船体总纵弯曲剪力和弯矩计算

1. 船体梁受力与变形; 2. 重量曲线; 3. 静水浮力曲线的计算方法过程; 4. 静水载荷曲线;剪力曲线;弯矩曲线的计算方法和过程,。 4. 静置于波浪上的剪力和弯矩计算:坦谷波要素,船舶平衡位置的确定,附加剪力和弯矩计算 重点:重量曲线;静水浮力曲线的计算;静水剪力和弯矩的计算 课题三船体总纵强度校核 1. 船体总纵弯曲应力的第一近似计算等值梁的概念,构件计入等值梁的条件,等值梁剖 面要素计算弯曲就力计算。 2. 总纵弯曲应力的逐次近似计算:折减计算的概念和方法,等值梁折减计算,折减后的弯曲正应力。 3. 总合应力与强度校核:强力构件应力合成计算的方法,许用应力的确定方法,强度校核方法。 5. 极限弯矩计算:过载能力的概念,极限弯矩的定义和计算方法。 重点:船体总纵弯曲应力的第一近似计算;总纵弯曲应力的逐次近似计算;总合应力与强度校核。 课题四船体型材剖面设计 1. 型材种类和特点; 2. 型材剖面要素计算; 3. 型材剖面要素的力学特性; 4. 型材剖面的优化设计:优化设计的数学表示方法,求解法,设计步骤和方法。重点:型材剖面要素 计算;型材剖面要素的力学特性; 课题五船体结构规范设计 1. 船体结构规范通则:我国规范对主尺度和结构名称的规定,我国规范适用范围。 2. 规范对总纵强度的要求:规定中横剖面模数的要求值,计算公式和要求。 3. 外板和甲板设计:规范规定的设计标准,计算和选取方法。 4. 双层底设计:双层底的结构特点,受力情况,设计标准和计算方法。 5. 舷侧骨架的结构和受力特点,设计标准和计算方法。 6. 甲板骨架的结构和受力特点,设计标准和计算方法。重点:规范对总纵强度的要求;外板和甲板 设计;双层底设计;底部骨架设计;舷侧骨架设计;甲板骨架设计 四、教学建议及说明 1. 本课程的系统性,理论性强需有较宽广、坚实的数学基础,除与其它专业相同的数学基础要求外, 还特别要求要级数,线性代数方面有较好的基础。 2. 有必要介绍有关船舶结构力学和材料力学的有关内容,因此,在教学过程中,应注意温故知新,注 意知识的系统和连贯,并应注意,理论与实践的联系。课程设计为规范设计典型货船中横剖面 结构,时间为2 周。 3.

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。 难点:应力的计算,强度与应力的关系,结构设计需要在容许应力围之。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略:

本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)力:外力使构件发生变形的同时,构件的部分子之间随之产生一种抵抗变形的抵抗力,称为力。 (2)应力:作用在单位面积上的力。 【学生活动一】 (3)拓展:探讨强度和应力的关系 示例:粗绳和细绳,两种相比粗绳更结实,牢固,换句话说是抗拉强度更大。绳子所受拉力一定,即构件受到的外力一定,而粗的横截面积大,所以应力小,此时变形小,而抗变形的能力大,即强度大。 结论:应力小,强度大应力大,强度小 【学生活动二】 (4)结合课本分小组探究影响结构强度的因素,同时完成26页问题,答在学案上。 结构的强度,一般取决于它对力和压力两方面的反应能力,具体取决于以下因素: 形状、材料(不同的材料有承受不同应力极限的能力) 材料的连接方式(不同的连接方式,受力传递方式和效果不一样) 师生探讨:如何改进物体结构的强度?

31000DWT散货船结构强度设计【开题报告】

开题报告 船舶与海洋工程 31000DWT散货船结构强度设计 一、综述本课题国内外研究动态,说明选题的依据和意义 如今的散货船的结构型式在全世界独领风骚了30余年,充分显示了它的优越性,也比较彻底地暴露了它的弱点。海上散货运输业正企盼着散货船的结构型式能及早得到改进,或者开发出具有更多优点并能保证规定寿命期内安全营运的全新结构型式。目前世界散货船队中在航船舶的货舱结构大多为单壳体,然而近年来单壳体散货船频繁发生的海难事故越来越引起国际海事组织(IMO)和各船级社的关注。据统计,1978年——2003年全世界散货船海难事故共丧生船员1232人,90%以上是因船体结构破损所致。因此,国际海事界要求提高散货船建造标准,采用双壳体的呼声日益高涨。IMO和IACS也采取了相应的措施。 当前我国正在使用的散货船按建造年代基本上可分为80年代和90年代及以后的建造的船舶。80年代建造船舶目前已属老龄船,并逐渐步入超老龄船行列。这部分船舶结构上的缺陷体现在船体和某些主要受力构件的变形、疲劳、腐蚀渐达极限以及以往损伤事故的后遗症等。据统计,船龄为11-30年的船舶,占因结构损坏引发的海难事故总数的88.9%。这说明随着船龄的增长,结构老化、结构强度不足是造成海难事故的主因。而且,吨位在3万吨及以下船舶,占因结构损坏引起的难事故总数的72.2%,这说明船舶的吨位越小,船舶的结构强度就越弱。这些船舶在船体结构上同样存在着令人不可忽视的问题,那就是越来越多的大比例高强度钢的应用。 通观散货船的发展历史及对现状的分析,散货船的发展趋势主要体现在双壳化、大型化、快速性、多用途化、使同年限增长、环保和自动化程度提高等几个方面。这些法则这些发展趋势中都包含有结构设计的内容,例如在大型化方面,对船体进行优良的结构,不仅能保证结构强度,延长使用年限,而且能适当减轻船体重量,从而降低建造成本。因此,结构强度设计在船舶建造中有着举足轻重的地位。 本人此次即选择了《31000DWT散货船结构强度设计》课题,通过本次31000DWT 散货船结构强度设计,提高自己对散货船结构强度设计、收集资料等能力,从中了

54000散货船结构强度设计【开题报告】

开题报告 船舶与海洋工程 54000散货船结构强度设计 一、综述本课题国内外研究动态,说明选题的依据和意义: 自上世纪七八十年代以来,干散货船得到了迅猛发展,据Drewry 统计,目前干散货船队规模已达到4.5 亿载重吨左右[1]。虽然近几年国际航运市场低迷,船队运力闲置情况较严重,但据辛浦森航运咨询有限公司(SSY)研究中心主管John Kearsey 预测,依靠中国和印度等新兴市场的贸易大幅增加和发达国家经济的缓慢复苏,干散货海运贸易仍将呈现超过年8%的增幅。全球干散货船队运力规模呈现持续上升的趋势,而受益于干散货行情和铁矿石定价谈判的落实,干散货渐次走出了低迷行情。在干散货行情重新高涨的背景下,航运企业新建干散货船的热情再起[2-3]。 干散货船兴盛的背后,也让我们看到了一些不谐现象:在2000年3月23日一艘满载50000吨盐、PRS级的Panamamax散货船LeaderL(1977年日本建造)在距加拿大海岸500海里的水域,在未遭遇恶劣天气的情况下,船体突然开裂,该轮在不到一分钟的时间内便折断沉没,造成了32名船员中有19人失踪。而在LeaderL沉没三个月后,满载矿石的BV船级Capsize散货船Treasure(1983年日本建造)在南非好望角,第四货舱右舷船壳板在海况并非十分恶劣的情况下被撕开长度约14米、高约10米的口子,造成海水大量涌入货舱,在坚持数小时后因该轮实际承受的弯距远远超过允许极限值,逐渐沉入海底。2000年7月6日挪威海事当局向IACS提交了1997年2月8日在距挪威海岸仅30海里的水域,满载的RAIN级Handysize散货船Leros Strength(1976年日本建造)沉船的事故调查报告。此起沉船是在船长向海上救助中心报告发现船头己被海水淹没的3分钟后,便失去与救助中心的联系沉入海底,20名船员无一生还[4]。 海损事故的不断发生,让我们不得不深思干散货船的安全问题。根据劳氏海事信息服务(LMIS)海事数据库显示,对于载重量大于2万吨的散货船(指装载干货的散货船),自1978至1998年共发生3058起海难事故,普遍认为在许多

《结构的强度和稳定性》教学设计电子教案

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质出版社”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解内力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。

难点:应力的计算,强度与应力的关系,结构设计需要在容许应力范围之内。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和内容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略: 本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)内力:外力使构件发生变形的同时,构件的内部分子之间随之产生一种抵抗变形的抵抗力,称为内力。

散货船现状与其发展趋势

1 散货船现状及其发展趋势 散货船自 20 世纪 50 年代中期出现以来,总体上保持着强劲的增长势头。在国际航运业中,散货船运输占 货物运输的 30%以上。由于货运量大,货源充足,航线固定,装卸效率高等因素,散货船运输能获得良好 的经济效益,散货船已成为运输船舶的主力军。随着世界经济的发展,散货船运输仍将保持较高的增长势头。 1.散货船发展历史 20 世纪 50 年代以前没有专用散货船,都是用普通杂货船运输散货。粮食、水泥等散货的流动性比液体小, 都有一定的休止角,因而装这些散货时在舱口围扳内装满后,舱口四周的甲板下仍留有一个棋形空档。船在 海上发生横摇后,散货流向空档,形成横贯整个船宽的自由表面。出现较大横摇时散货将流向一舷,船 随即横倾,在风浪中很容易发生倾覆事故[1]。据统计, 20 世纪 50 年代全世界有150 余艘运送散货的船 发生海损事故。为了解决这个安全问题,才逐步形成了现在广泛应用的典型专用散货船结构型式:两舷布置 底边舱加高舱口围板以保证满舱,两舷布置底边舱便于清舱,也能增加抗沉性;双层底和四个边舱区采用纵 骨架式结构以保证船体总纵强度,两舷边舱之间水线附近的总纵弯曲应力很小,采用结构比较简单的横骨架 式结构:两个货舱口之间的甲板不参与保证总纵强度,这里的甲板板明显地比舱口线以外的甲板板薄,骨架 也减弱。典型专用散货船的出现,较好地解决了散货流动问题,改善了散货运输的安全性,使海 上散货船运输进入一个新的发展阶段。在随后的几十年里散货船得到了迅速发展,1960 年只有 1/4 的散货 由单甲板承运,而自1980 年以来,几乎所有的散货都由专用的散货船承运。20 世纪 80 年代中期以后,散 货船船体损伤引起的沉船事故逐渐增多,散货船的安全问题再度受到世人关注,目前已经出现了双壳体结 构散货船,虽然双壳体散货船的空船重量和建造成本有所增加,但其安全、经济和运营优势越来越得到航 运界的认同,散货船的双壳化己是大势所趋。 2. 散货船分类 广义的散货船包括液体散货船和干散货船;狭义的散货船是指干散货船(本文提及的散货船均指干散货船)。散货船(干散货船)的分类方法大概有2种。 1)按载重量分 这是一种造船界最常用的分类方法。按载重量大小可将散货船分为五种代表船型即 2 万~3.5 万吨小灵便型、3.5 万~5 万吨大灵便型、 6 万~8 万吨巴拿马型、 10 万~18 万吨好望角型和 20 万吨以上超大型散货船。 灵便型散货船 (handy bulker) 原指载重量为 2 万 ~4 万吨的较小型散货船,此型船吃水浅,能进出世界众多港 口,具有灵便、通用的特点随着航运和造船业的发展,灵便型散货船也得到了进一步的发展,演变出载重 量更大的 3.5 万载重吨以上大灵便型散货船(handymax bulker) ,而把 3.5 万载重吨以下称之为小灵便型散货 船(small handy bulker or handy size bulk) [2];由于受到河道的限制, 6万~8 万吨巴拿马型( Panamax bu1ker)最大船长 294m ,宽 32.2m,吃水 12m;10 万~18 万吨好望角型散货船(capesize bulk carrier) 在 20 世纪 60年代中后期问世,是通过好望角连接大西洋和太平洋的典型船型,主要承担海上长航线的煤炭和铁矿石运输 任务,其代表船型吨位逐步由10 万~12 万吨发展到 14 万~15 万吨,近期又发展到17 万~20 万吨[ 3]。2)按所载货物比重分

船体强度与结构设计 复习精选.

绪论 一.填空 1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。 2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。 二.概念题: 1. 静变载荷等等 三.简答题: 1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。3.为什么要对作用在船体结构上的载荷进行分类? 4.结构设计的基本任务和内容是什么? 第一章: 一、填空题 1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。 2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。 3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。 5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。 二、概念题: 1. 船体梁 2. 总纵弯曲 3. 总纵弯曲强度 4. 重量曲线 5. 浮力曲线 6. 荷载曲线 7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩 12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正 二、简答题: 1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么? 2. 在船体总纵弯曲计算中重量的分类及分布原则是什么? 3. 试推导在两个及三个站距内如何分布局部重量。 4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。 5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)? 6. 波浪浮力曲线需要史密斯修正吗?为什么? 第二章: 一、填空题 1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。 2. 构成船体梁上冀板的最上层连续甲板通常称为强力甲板。 3. 在确定板的临界应力时,通常不考虑材料不服从虎克定律对稳定性的影响。 4. 在船体构件的稳定性检验和总纵弯曲应力的第二次近似计算中,需要对失稳的船体板进行剖面面积折减,折减时首先需要将纵向强力构件分为刚性构件和柔性构件两类。 5. 外板同时承受总纵弯曲、板架弯曲、纵骨弯曲及板的弯曲的纵向强力构件称为第四类构件。 6. 船体总纵弯曲时的挠度,可分为弯曲挠度和剪切挠度两部分来计算。 7. 为了按极限弯矩检验船体强度,须将所得的极限弯矩Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M≥n,n称为强度储备系数。

结构设计及强度校核

专业综合训练任务书: 49.9米150吨冷藏船结构设计及总纵强度计算 一、综合训练目的 1、通过综合训练,进一步巩固所学基础知识,培养学生分析解决实际工程问题的能力,掌握静水力曲线的计算与绘制方法。 2、通过综合训练,培养学生耐心细致的工作作风和重视实践的思想。 3、为后续课程的学习和走上工作岗位打下良好的基础。 二、综合训练任务 1.150吨冷藏船结构设计,提供主要构件的计算书。 2.参考该船图纸和相关静水力资料、邦戎曲线图,按照《钢质内河船舶建造规范》的要求进行总纵 强度计算,提供总纵强度计算书。 3.参考资料: 1)中国船级社. 钢质海船入级与建造规范 2009 2)王杰德等. 船体强度与结构设计北京:国防工业出版社,1995 3)聂武等. 船舶计算结构力学哈尔滨:哈尔滨工程大学出版社,2000 三、要求: 1、专业综合训练学分重,应予以足够重视; 2、计算书格式要符合要求; 如船体结构设计计算书应包括:(a)对设计船特征(船型、主尺度、结构形式等)的概述,设计所根据的规范版本的说明等;(b)应按船底、船侧、甲板的次序,分别写出确定每一构件尺寸的具体过程,并明确标出所选用的尺寸。(c)计算书应简明、清晰、便于检查。 3、强度计算: a)按第一、二章的要求和相关表格做,如静水平衡计算,静水弯矩计算等; b)波浪弯矩等可按规范估算; c)相关表格用计算器计算,表格绘制于“课程设计”本上 注意:请班长到教材室领取课程设计的本子和资料袋(档案袋),各位同学认真填写资料袋封面。 4、专业综合训练总结:300~500字。 四、组织方式和辅导计划: 1、参考资料: a)船体强度与结构设计教材 b)某船的构件设计书 c)某船的总纵强度计算书 d)《钢质内河船舶建造规范》,最好2009版 2、辅导答疑地点:等学校安排。 五、考核方式和成绩评定: 1、平时考核成绩:参考个人进度。 2、须经老师验收合格,故应提前一周交资料,不合格的则需回去修改。 3、第18周星期三下午4:00前必须交资料,资料目录见第2页。 4、一旦发现打印、复印、数据格式完全相同等抄袭现象,均按规定以不及格计。 5、成绩由指导教师根据学生完成质量以及学生的工作态度与表现综合评定,分为优、良、中、及格、 不及格五个等级。 六、设计进度安排: 1、有详细辅导计划,但具体进度可根据个人情况可以自己定。 附录:档案袋内资料前2页如下

船舶结构强度复习思考题

复习思考题 1.船体强度计算的主要内容是什么?船舶结构 的主要特点是什么?船舶结构主要的骨架型式有哪些?它们的主要优缺点?一般的应用原则是什么? 2.船舶结构主要的纵向强力构件、横向构件有 哪些?它们的主要作用是什么? 3.作用在船舶结构上的主要载荷类型有哪些? 每种类型载荷的典型例子是什么? 4.船舶结构的主要失效形式有哪些?每种失效 形式的主要影响因素有哪些? 5.船舶结构设计的一般过程或步骤是什么? 6.船体梁中剪力和弯矩产生的原因是什么?剪 力和弯矩沿船长分布的特点?典型载荷曲线、剪力曲线、弯矩曲线的绘制。 7.传统静波浪剪力和弯矩标准计算的要点是什 么?中拱、中垂的含义? 8.熟练掌握典型重力、浮力分布情况下,船体 梁中剪力、弯矩的计算方法。 9.总纵强度校核计算时通常选取哪些计算剖面 进行总纵强度校核?

10.船体总纵弯曲应力沿剖面高度分布的规律是 什么?剖面中最大总纵弯曲拉伸、压缩正应力发生的位置?剖面中最大剪应力发生的位置? 11.剖面折减、折减系数的概念?为什么要进行 总纵弯曲应力的多次迭代计算? 12.船体构件多重作用的定性分析,船底构件应 力合成计算剖面的选取分析。 13.船体极限弯矩的基本含义是什么? 14.熟练掌握简化船体剖面中总纵弯曲正应力、 剪应力的计算。 15.船舶开口剖面剪力中心的位置?船体在哪些 情况下受到扭矩作用?典型扭矩曲线的绘制。 16.翘曲的含义?为提高大开口船舶抗扭刚度采 取什么结构措施比较有效? 17.典型构件如甲板纵骨、船底纵骨强度、稳定 性计算模型是什么?船底板、甲板板强度、稳定性计算模型是什么?典型板架强度计算模型是什么? 18.船体骨架附连带板的概念,剪切滞后和带板 宽度?

31000DWT散货船结构强度设计

本科毕业论文 (20届) 31000DWT散货船结构强度设计 专业:船舶与海洋工程

目录 中英摘要............................................................................................................ II 前言 ....................................................................................................................... II 第一章绪论 . (1) 1.1散货船概述及现状 (1) 1.2散货船船结构强度分析及设计 (2) 1.3小结 (4) 第二章总体部分 (5) 2.1任务书与母型船资料分析 (5) 2.2设计船型值确定及型线图绘制 (5) 2.3设计船总布臵设计及总布臵图绘制 (15) 第三章结构部分 (19) 3.1设计船船型资料 (19) 3.2设计船结构规范设计 (19) 第四章强度部分 (56) 4.1主要构件汇总 (56) 4.2中横剖面模数计算 (61) 4.3 强度校核 (64) 第五章图纸绘制 (65) 5.1典型横剖面图 (65) 5.2 基本结构图 (65) 第六章设计总结和展望 (66) 参考文献 (67) 致谢词 (68) 外文翻译 (69)

31000DW T散货船结构强度设计 摘要 按照《2006钢制海船入级建造规范》对一艘31000D W T散货船进行结构强度设计。首先,对任务书和母型船资料进行了分析,利用母型改造法确定出设计船的主尺度和型值表,并且绘制了设计船的型线图和总布臵草图。其次,根据《2006钢制海船入级建造规范》对设计船进行了结构设计,确定了设计船各构件的规格尺寸,进行了总纵强度校核。根据结构设计结果,绘制了典型横剖面图和基本结构图。最后,对设计过程当中存在的问题和不足进行了讨论,并提出了结构改进方案。 结论:设计船主尺度满足设计任务书的要求,船体结构规范设计计算和总纵强度校核满足《2006钢质海船入级与建造规范》要求。 [关键词] 散货船;结构规范;结构设计;强度校核

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位臵时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位臵。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

船体强度与结构设计 课程标准

武汉船舶职业技术学院 课程标准 课程编号:030045 课程名称:船体强度与结构设计课程性质:专业课程 适用专业:船舶工程技术 课程负责人:刘建全 制订时间:2014.12 专业负责人审核: 教学系部审核: 教务处审核: 审批时间:

课程名称:船体强度与结构设计课程标准 适用专业:船舶工程技术专业 1.课程的性质 船体强度与结构设计是船舶工程技术专业的一门专业课程,也是学生基本职业岗位专业能力的拓展课程。其功能与教学目的是使学生对船体强度计算及船体结构设计有深的认识与理解,使学生具备参与船舶设计的专业技能,它要以高等数学、机械工程基础、船体识图与制图、船舶性能计算、船舶总体设计等课程的学习为基础。 2.课程的设计思路 1、本课程是以“船舶工程技术专业工作任务与职业能力分析表”中的“船舶质量管理及生产组织、现场管理”工作项目设置的。 其总体设计思路是,根据对船舶工程技术专业所对应的岗位群进行任务和职业能力分析,以船舶设计工作过程所需要的岗位职业能力为依据,以船舶结构设计实际工作过程为导向,以船体强度计算与结构设计的专业知识学习领域工作任务为课程主线进行课程设计。 教学内容以应用为目标、以能力为中心来设计。根据学生的认知规律与技能特点,打破以知识传授为主要特征的传统学科课程模式,转变为以工作任务为中心组织课程内容,采用典型案例来展现教学内容,通过学习领域、知识点、技能点典型案例分析与讲解等工作项目来组织教学,让学生在完成具体项目过程中学会完成相应工作任务,并构建相关理论知识,发展职业能力。课程内容设计则突出对学生职业能力的训练,理论知识的选取紧紧围绕工作任务完成的需要来进行,同时又充分考虑了高等职业教育对理论知识学习的需要,坚持以能力为中心、以学生为主体的原则来设计课堂教学,将能力培养贯穿于课程教学之中。 课程建设坚持以专业知识学习领域工作任务为主线,坚持实践为重、理论够用的原则;课程教学中首先坚持理论来自于实践的原则,教学实例来自工程实践,实例项目设计以实际的船体强度计算与结构设计任务为载体来进行,以增强知识点的实践性,激发学生的学习兴趣。教学过程中充分开发学习资源,给学生提供丰富的实践机会。 工作任务确定如下:

散货船船体结构设计中应注意的几个问题

散货船船体结构设计中应注意的几个问题 发表时间:2018-08-20T17:09:28.273Z 来源:《红地产》2017年8月作者:邓哲[导读] 目前世界上有三种主要的新型船型,其中就包括散货船,它在世界的海航船业中占据不可或缺的地位,发展的势头猛劲。散货船在世界上的应用很广泛,它的结构设计也影响着它的性能好坏,优化它的结构,提高散货船的应用性能及安全度,是当前设计者要考虑的问题。新的规定中采用了在科学技术前列的技术、材料、理念。在船舶的受压度和强度方面做出了评估,和传统的评估准则相比较,目前的评估标准还是扩展了很多,有了很大的进步。这些先进的技术理念应用到结构设计上来,将会极大的提高散货船的性能。本 文将讨论在散货船的船体结构设计上应该注意哪些问题,以及如何优化改良。一.散货船的货舱的截面形状散货船是专门用来运送不进行包裹的货物,这些货物的重量一般较大,普通的小船只难以运输,像谷子粮食,煤块,矿石,水泥,牲畜等等。散货船的体积较大,易于集装。散货船有多种类型,有单甲板的,单机的,单桨的,还有主机舱位于船尾的船。为了加快货物的装卸速度,散货船的舱口一般安装的比较大;由于装置的货物重量大,在设计时要保证船体承受重量的程度,散货船要装两层船底。而且还在货舱顶部和底部的两侧边角处安装舱。散货船装运的货物比较杂乱,运行的路线也不相同,所以散货船的构型和货物舱的断面形状也会有所不同。目前货物舱的截面形状大体上有三种,常见的是单个壳体的散货船舱,有两层底层,底边和顶部四角都有船舱,船舱的两侧是单层的。还有一种是两个壳体的散货船舱,它不仅有两层底层,底边和顶部的四角都有船舱,而且它的船舱的外壳是两层的。第三种则是散货船的典型船只矿砂船的货舱截面形状,由于它主要是用来装集矿砂的,矿砂的颗粒小,为了防止矿砂泄露,矿砂船的货舱结构的设计一般更为紧密,结实,要求上也更为严格,与普通的散货船有所不同,它的货舱截面形状与单壳的货舱较为相似,但是更为紧密,舱的容量更小一些。二.散货船船体结构设计的要旨船体结构设计的实质是在符合船只整体设计的前提下,进而考虑船体的结构设计,构造船体部件的尺寸大小以及研究各个部件之间是怎样连接的。以达到最终最佳的结构,使船体承受重量的能力足够大,优化造船的经济预算,最大化的实现船只带来的经济效益和技术改造。 1.对散货船船长的要求。在国际上和我国的近几年的规定中,对散货船船体结构的船长进行了要求,要求海洋散货船船长要小于 90米,材料应该为钢质的,而且在国际上航行的公海和可以供给海船航行的水域航行的船只的船长要大于等于 90 米,小于等于350 米,它的规格要符合关于散货船的结构设计的规定。在有限的航区航行,而且船的两侧是双层结构的散货船,它的船长应该大于等于 90 米,应该符合双层舱的散货船的船体结构规定。 2.对船体承受压力和强度的估测。在进行船体的结构设计时,还要对船体承受压力和强度进行估测。当船长大于等于150米时,这是船体的体积较大,为了满足它的承受能力,货舱一般设计成单层壳或者双层壳的散货船,并且船只两侧的板层和它的内层板层在垂直方向上的距离要大于等于 1000 毫米,船只的货舱部分在横纵方向的零件要逐一对它们的强度、承受能力进行计算,查验结果是否符合散货船结构的强度规格要求,然后交送给 CCS 进行审查,经过批准才能进入生产阶段。 3. 对船体疲劳度的评估。散货船是有一定的使用寿命的,使用时间过长,它的内部零件会有细微的磨损,为了保证船只航行的安全性,降低船只航行的风险,要对船体进行疲劳度的评估,看看船体的疲劳承受程度,以备对船只航行的时间有所把握,保证航行安全。散货船的船长如果大于等于 150 米,它的货舱结构要符合对船体结构的疲劳度的规定,才能确保散货船疲劳度合乎规定,评测的最终结果要提交给 CCS 进行审查,经过批准才能投入使用。三.在船体结构设计的过程中注意的问题在船体结构的设计过程中要注意的问题有以下几点,下面将一一说明。 1. 纵向和横向方向构件的布置。在对钢质海船的规定中,提到船只的构件的布置。船只构件时,要保证构件在结构上是连续的,消除截面或者高度上的起伏现象。液舱的内部构造要结实紧密结实,而且最好建成一个环形的框架,这是船体的支撑力量。在对环形框架进行接合时,最好做成一定半径的圆角。国际上也规定了构件的纵向布置要在船体强度确保的基础上进行,纵向的构件主要是支撑船体梁纵向强度的力量,它要向船舶的端部延伸一定距离。两层壳体结构的船体,要在壳体两侧布置强肋骨,以便加强稳定性。确保船体的总纵强度,要在散货船的顶边和底边的舱内建造成三角形的结构,外加坚实的双层底层和坚硬的甲板结构。在设计单层壳体的散货船货舱的双层层底厚度时,不仅要符合船体船体的总布置,还要符合货船的规格。散货船的双层层底的结构一般是纵向骨架形式的。在机舱附近,大概每隔一个肋骨位子上就会装有一个肋板,不过在主机位,锅炉位,推动力轴承部位处,每一个肋骨位子都会装有一个肋板。在垂线 0.2 倍距离的区域内是每隔一位肋骨位子装一个肋板,剩下的位置是每隔 3 个或者 4个肋骨位子装一个肋板。CCS 规定肋板之间最大间距 3.6 米。船体双层底中线面内要有纵向竖板,不过在现代技术的发展下,大多用箱型竖板代替了纵向竖板。竖板的两边要有旁桁材,而且规定相邻的竖板之间要隔开大于等于 4.6 米的距离,或者是船底扶强材的距离的 5 倍,取其中较小的数值。如果船只装有隔舱时,还要每隔 3 个肋骨板设一个旁桁材。除此之外,纵向竖板、旁桁材和管道隧道的侧面板上要装有纵向的钢筋,提高船体的稳定和坚固性。 2. 底边舱的构造。散货船的底边舱包括斜顶板、旁桁材,船底和船侧间的弯曲部分的外板。斜顶板和向上倾斜的内侧底部边板类似,规格要求和内侧底部边板相同。为了提高船只的防水性能,会把旁桁材做成防水的,相当于在双层层底的底部做了一个防水墙。双层层底的底板和斜顶板可以以焊接形式和圆弧状形式进行接合。如果采取直接焊接的方式,桁材要和斜顶的板子相对齐整,这样焊接起来更加方便快捷。对不齐整会使得底边舱的框架突出,不方便安装整齐,焊接牢固,使节点与节点之间的连接不牢靠。内底板延展出的部位要做成圆弧状的,焊接时要接的牢固,桁材与内底板和斜向顶板相接部分的间隔距离要为大约 50 毫米。 3. 顶边舱的构造。散货船的顶边舱包括甲底板、斜底板。舱口处的纵向竖板和船舱外侧的外板。顶边舱的结构一般为纵向的骨架形式,横向装有环形的框架形式支撑着纵向骨架,更加结实。横向的环形框架的间隔距离要小于等于 6 个肋骨距离,框架的整体高度大于纵向骨架高度的 2 倍。横向的框架也可以用开了孔的板优化代替。顶边舱的侧边和顶角都装有纵向骨架和肋骨板。使得连接处更加结实牢固。 四.结束语

相关主题
文本预览
相关文档 最新文档