风洞试验与数值模拟
- 格式:doc
- 大小:28.50 KB
- 文档页数:5
基于风洞试验和数值模拟的超临界机翼雷诺数修正方法研究张彦军;段卓毅;魏剑龙;雷武涛;赵轲【摘要】结合风洞试验方法和数值模拟,对采用超临界机翼的大型飞机进行雷诺数影响规律研究.对比分析了不同雷诺数下的试验结果和数值模拟结果,在此基础上研究了基于数值模拟结果的雷诺数修正方法,将低雷诺数试验结果向高雷诺数进行修正.修正结果与相应雷诺数试验结果相比,阻力系数相差不超过0.0004,升阻比最大误差约为0.2.针对于力矩系数修正误差问题进行了修正方法改进,改进后的修正误差从0.01降为0.001,表明了修正结果在飞行雷诺数下的适用性.【期刊名称】《空气动力学学报》【年(卷),期】2018(036)006【总页数】7页(P934-940)【关键词】超临界机翼;雷诺数影响;风洞试验;气动力修正;数值模拟【作者】张彦军;段卓毅;魏剑龙;雷武涛;赵轲【作者单位】航空工业第一飞机设计研究院,陕西西安 710089;航空工业第一飞机设计研究院,陕西西安 710089;航空工业第一飞机设计研究院,陕西西安 710089;航空工业第一飞机设计研究院,陕西西安 710089;航空工业第一飞机设计研究院,陕西西安 710089【正文语种】中文【中图分类】V2240 引言长期以来,由于风洞尺寸和试验条件的限制,风洞试验雷诺数远低于飞行雷诺数,对于大型飞机研制工作而言,试验雷诺数不足的问题更加突出。
雷诺数的不同将对边界层流动产生显著影响,同时改变激波位置,造成不同雷诺数下飞机气动特性的明显差异[1-3] 。
与常规翼型相比,超临界翼型的上翼面平坦、下翼面后部内凹,这也就决定了超临界翼型典型的压力分布对雷诺数的影响较为敏感。
雷诺数的差异对流动产生影响,导致风洞试验结果与飞行试验结果之间产生较大的差别[4] 。
因此,对风洞试验数据必须进行雷诺数影响的修正。
然而,与采用薄翼的战斗机仅需对风洞试验数据的阻力系数和最大升力系数进行修正不同,雷诺数变化对中等厚度和大厚度超临界机翼气动特性的影响十分复杂,影响阻力大小和最大升力系数的同时,也影响升力曲线斜率和俯仰力矩随迎角的变化规律[5] ,造成使用变雷诺数试验方法把试验数据外插到飞行值非常困难。
第1篇一、实验背景与目的随着现代工业和航空技术的发展,对空气动力学特性的研究日益重要。
风洞实验作为一种重要的空气动力学研究方法,能够有效地模拟真实飞行器或其他物体在空气中的运动状态。
本实验旨在通过小型风洞实验,研究特定模型在不同风速和攻角下的空气动力学特性,为后续设计优化提供数据支持。
二、实验原理与设备1. 实验原理:风洞实验基于流动相似原理,通过模拟实际飞行器或其他物体在空气中的运动状态,研究其空气动力学特性。
实验过程中,通过控制风速、攻角等参数,观察模型在不同工况下的运动状态,分析其空气动力学特性。
2. 实验设备:- 小型风洞:用于产生均匀气流,模拟实际飞行器或其他物体在空气中的运动状态。
- 模型:根据实验需求设计,用于模拟真实飞行器或其他物体。
- 数据采集系统:用于实时采集实验数据,包括风速、攻角、模型姿态等。
- 计算机软件:用于数据处理和分析。
三、实验过程1. 实验准备:根据实验需求,设计模型并加工制作。
安装数据采集系统,调试风洞设备。
2. 实验步骤:- 调整风洞风速,使模型处于预定攻角。
- 记录风速、攻角、模型姿态等数据。
- 改变攻角,重复上述步骤。
- 分析实验数据,得出结论。
3. 实验数据:实验过程中,记录了风速、攻角、模型姿态等数据,并对数据进行整理和分析。
四、实验结果与分析1. 实验结果:通过实验,得到了模型在不同风速和攻角下的空气动力学特性数据。
2. 数据分析:- 随着风速的增加,模型的升力系数和阻力系数逐渐增大。
- 随着攻角的增加,模型的升力系数逐渐增大,阻力系数逐渐减小。
- 在特定风速和攻角下,模型具有最佳空气动力学特性。
五、结论与讨论1. 结论:通过小型风洞实验,研究了特定模型在不同风速和攻角下的空气动力学特性,为后续设计优化提供了数据支持。
2. 讨论:- 实验结果表明,模型在特定风速和攻角下具有最佳空气动力学特性,有利于提高飞行器的性能。
- 实验过程中,风速和攻角对模型的空气动力学特性有显著影响。
结构设计中的抗风性能评估在建筑和工程领域,结构设计的合理性和安全性至关重要。
其中,抗风性能评估是一个不可或缺的重要环节。
风,作为一种自然力量,可能对建筑物和结构造成巨大的破坏。
因此,在设计阶段就充分考虑并准确评估结构的抗风性能,对于保障结构的稳定性和安全性具有极其重要的意义。
风对结构的作用是复杂多样的。
首先,风会产生直接的压力和吸力,作用在结构的表面。
这种压力和吸力的大小和分布取决于风速、风向、结构的形状和尺寸等因素。
例如,高层建筑的迎风面通常会受到较大的正压力,而在背风面和侧面则可能出现负压力(吸力)。
其次,风还可能引起结构的振动。
当风速达到一定程度时,风的脉动特性会激发结构的共振,导致结构的振幅增大,从而加剧结构的疲劳和损伤。
此外,风还可能与结构周围的环境相互作用,产生漩涡脱落等现象,进一步增加了风对结构的影响。
为了评估结构的抗风性能,工程师们需要进行详细的风荷载计算。
风荷载的计算通常基于风洞试验或数值模拟的结果,并结合相关的规范和标准。
风洞试验是一种通过在风洞中模拟实际风场来测量结构风荷载的方法。
在风洞中,可以精确地控制风速、风向和湍流特性,从而获得较为准确的风荷载数据。
然而,风洞试验成本较高,且对于复杂的结构和环境,试验难度较大。
数值模拟则是利用计算机软件对风场和结构进行建模和计算。
随着计算技术的不断发展,数值模拟在风荷载计算中的应用越来越广泛。
但数值模拟的准确性往往取决于模型的合理性和参数的选取。
在结构设计中,合理的外形设计可以显著提高结构的抗风性能。
例如,流线型的外形可以减少风的阻力和漩涡脱落,从而降低风荷载。
对于高层建筑,采用逐渐收进的体型可以减小风对上部结构的作用。
此外,在结构的边缘和角落处进行倒角处理,也可以改善风的流动特性,减少局部的风压力。
结构的刚度和强度对于抗风性能也有着重要的影响。
足够的刚度可以保证结构在风荷载作用下的变形在允许范围内,避免过大的位移导致结构的损坏或使用功能的丧失。
风洞试验在建筑结构设计中的应用研究引言:随着现代建筑的日益发展和人们对建筑结构安全性要求的提高,风洞试验作为一种重要的工具得到了广泛的应用。
风洞试验可以模拟真实的风场环境,通过对建筑结构受风性能的研究,为建筑结构设计和工程实施提供了有力的支撑。
本文将探讨风洞试验在建筑结构设计中的应用研究。
一、风洞试验的概念与原理风洞试验是一种通过模拟风场环境的实验方法,用于评估建筑在风荷载作用下的受力性能。
风洞试验利用实验设备产生与真实环境相似的风场,通过对建筑模型进行放大或缩小,以及调整实验条件,获得建筑结构在不同风荷载下的受力情况。
风洞试验主要基于气动力学原理,包括风速、风压、风流等参数的测量。
二、风洞试验在建筑结构设计中的应用1. 控制结构稳定性在建筑结构设计过程中,结构的稳定性是至关重要的。
风洞试验可以通过测试风速在不同设计情况下对结构的稳定性影响,控制结构的风致动力稳定性。
通过分析风洞试验数据,可以确定结构的临界风速,调整结构的形状以及采取相应的增强措施,确保结构在风荷载下的安全性。
2. 评估风荷载风荷载是建筑结构设计的重要参数之一。
风洞试验可以通过模拟真实风场环境,准确测量风速、风荷载分布、风力矩等参数,提供评估建筑结构所受风荷载的准确数据。
这对于建筑的结构设计、构件尺寸的确定,以及建筑材料的选择至关重要。
3. 验证设计计算风洞试验可以用来验证建筑结构设计计算结果的准确性和可靠性。
通过与数值模拟结果进行对比,风洞试验可以验证设计计算方法的合理性。
这对于提高建筑结构设计的精确性和可靠性具有重要意义。
4. 优化设计风洞试验还可以用于优化建筑结构设计。
通过观察结构在风荷载下的响应,可以发现结构存在的问题并采取相应的优化措施。
例如,通过调整结构的形状和尺寸,可以减小结构对风荷载的响应,提高结构的安全性和抗风能力。
三、风洞试验的发展与挑战1. 技术发展随着科学技术的发展,风洞试验的设备和测量方法得到了不断改进。
混凝土结构构件抗风性能检测标准一、前言混凝土结构构件在受到风力作用时,可能会发生不同程度的破坏,因此需要进行抗风性能检测,以保证其安全可靠的使用。
本文将详细介绍混凝土结构构件抗风性能检测标准。
二、检测对象混凝土结构构件抗风性能检测的对象包括但不限于以下几种构件:1. 建筑外墙2. 钢筋混凝土框架结构3. 钢筋混凝土梁、柱等构件4. 预制混凝土构件等三、检测方法混凝土结构构件抗风性能检测的方法包括但不限于以下几种:1. 风洞试验2. 数值模拟3. 现场检测四、风洞试验风洞试验是混凝土结构构件抗风性能检测的一种重要方法。
其具体步骤如下:1. 确定试验目的和试验方案。
2. 制作模型。
模型应与实际构件相似,比例一般为1:50或1:100。
3. 进行风洞试验。
在风洞中对模型施加不同的风速和风向,观察模型在风力作用下的响应情况。
4. 分析数据。
根据试验数据分析模型的抗风性能。
五、数值模拟数值模拟是混凝土结构构件抗风性能检测的另一种重要方法。
其具体步骤如下:1. 确定模拟目的和模拟方案。
2. 建立数值模型。
数值模型应包括构件的几何形状、材料参数和加载条件等。
3. 进行数值模拟。
在数值模拟中,通过施加不同的风速和风向来模拟实际风力作用下的构件响应情况。
4. 分析模拟结果。
根据模拟结果分析构件的抗风性能。
六、现场检测现场检测是混凝土结构构件抗风性能检测的一种直接有效的方法。
其具体步骤如下:1. 确定检测目的和检测方案。
2. 对构件进行实测。
实测内容包括构件的几何形状、材料参数和加载条件等。
3. 施加风力作用。
在实际风力作用下,观察构件的响应情况。
4. 分析数据。
根据实测数据分析构件的抗风性能。
七、检测标准混凝土结构构件抗风性能检测的标准包括但不限于以下几种:1. GB 50009-2012《建筑结构荷载规范》2. GB/T 50798-2012《风洞试验建筑物抗风性能检测规范》3. GB 50797-2012《建筑物抗风设计规范》八、结论混凝土结构构件抗风性能检测是保证建筑物安全可靠使用的重要环节。
三维建筑风环境及风压分布的数值模拟和实验研究西安建筑科技大学硕士学位论文三维建筑风环境及风压分布的数值模拟和实验研究姓名:***申请学位级别:硕士专业:供热、供燃气、通风与空调工程指导教师:***20060301嚣安建筑科技大学硕士论文三维建筑风环境及风压分布的数值模拟和实验研究’专业:供热、供燃气、通风与空调工程硕士生:李忠强指导教鄹:张鸿雁教授摘要建筑风环境日益成为人们关注的焦点,对整个城市或小区内建筑风环境的研究势在必行,然而建筑风环境研究主要依靠风洞实验,周期长、成本高且成果有限,健藏本文对建筑燕环境数值鬟羧方法静研究。
予垂之行,始于是下,本文麸菜三维复杂外形结构建筑物出发,剥用数馕模拟方法势结合贼漏实验,砖其鼹强境进行涤入分析。
同时,对非定常的来流条件下建筑风环境及建筑表面风联分布进行了分析研究建筑甥袭嚣鼹压分枣与髑藿最繇凌密甥稳荚,本文考虑了薅个主要因素豹影响:来流平均风速的变化和来流风向角度的变化。
来流风速采用寇常型来流和正弦型波动来流两种形式,分别改变定常来流的平均风速、正弦裂来流的周期及振幅以形残不同戆来流条传:擞舞建筑耪瀚蹲称往,取0。
、30。
、45。
、60。
和90。
考虑来流风向角度的影响。
本文以腿力系数 1p的形式给出蹩个建筑物表面的风压分布,同时给出整个计算区域的流场数舔以及难力场数据。
在风洞中复现建筑物所处自然环境的风场,为数僮模拟挺供基本的迭赛条l孛,著霹建筑貔表瑟奔疆数量戆测压熹菇压餐进亍实验测量。
结果龆示,定常来流,建筑物表面压力系数不随来流平均风速改变;正弦型来流便压力系数产生波动,程度受藏弦周期、振幅影响;数值模拟结果与风洞实验结果掰预溪瓣建筑裙表瓣压力系数分布窃含;数值模藏能够复现建筑物蠲围复杂的风环壤弗作为其流场和滕力场分板的有力手段。
关键词:数值模拟;风环境:压力系数;风涧实验论文类型:疲鼹鍪鼹$国家“十玉科技攻关”重大项嚣 2004BA901A21I秀安建筑琴萼按大学硪±论文NumericalSimulationandf争铴dTunnel?鼢tResearchonWiIldEnvironmentandPressureDistributionoftheThree-dimensionalBuildingandSpecialty:Heating,VentilationAir-conditioningEngineeringGraduate:LiZhi―qiangInstructor:.Prof.ZhangHong-yanAbstractWind becomes onenvironmentthefocusofwindpeople’attention.Studyenvironmentofthe orresidentialareamustbedonecityimmediately.Incontras'%thein iswindtunneltestthatcost andbutwithmethod muchoftimefewofonly past moneythereisthisthesis toresearchwindenvironmentwithaccomplishment.So attemptbe fromthemustdone thesisnumeri搓simulation,However,everythingbeginning。
中国科学D辑:地球科学2007年第37卷第11期: 1536~1546收稿日期: 2007-04-30; 接受日期: 2007-07-16国家自然科学基金(批准号: 40575069)和浙江省气象科技开放研究专项(编号: KF2006002)资助* 联系人, E-mail: huizhil@ 《中国科学》杂志社SCIENCE IN CHINA PRESS建筑物表面风压以及风场的数值模拟与风洞实验研究姜瑜君①刘辉志②*张伯寅③朱凤荣③梁彬③桑建国④(①浙江省气象科学研究所, 杭州310017; ②中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室, 北京 100029; ③北京大学湍流与复杂系统国家重点实验室, 北京100871; ④北京大学物理学院大气科学系, 北京100871)摘要利用自主开发的模拟建筑物周围风环境数值模式“北京大学大气环境模式”(Peking University Model of Atmospheric Environment, PUMA), 通过求解非静力动力学方程, 模拟了一个特殊塔型结构建筑物周围的空间流场以及建筑物表面风压系数的分布特征, 同时与风洞实验的数据进行了对比, 对该拟建项目可能导致的风环境问题以及建筑表面风荷载进行了评估. 模拟结果与实验数据的比较显示, 两者在速度场与建筑表面风压系数具有较好的吻合度, 体现了该模式在风场以及压力场计算方面的良好性能. 但通过与实验结果的对比不难发现, 模式的结果在某些情况下与试验存在较大的误差. 造成这种偏差的原因, 一方面是模式现有的分辨率为水平方向 2 m, 垂直方向3 m, 难以将塔型结构建筑物表面的气压变化完全精确的展现出来; 另一方面, 固壁面上格点的气压和周边空间气压分布之间关系的参数化方案, 仍需要进一步改进. 从整体来看, 该模式模拟结果与风洞实验基本吻合, 可以较好计算特殊形状钝体结构建筑物导致的风场以及风压分布情况. 研究表明该数值模式可用以评估建筑物的表面风压及周围的风环境, 在建筑物的风工程项目中具有良好的应用前景.关键词塔型结构建筑物风荷载风压系数非静力数值模式风是建筑物设计以及城市规划中需要慎重考虑的气象因子之一. 大型高层建筑的修建, 既需要建筑技术与结构材料的保障, 同时也应该具有足够的抗风强度, 因而设计者需要考虑风对结构体的动态载重效应. 建筑物在外界强风来流的作用下可能导致的摆动、震动等结构安全方面的问题, 一直都是计算风工程领域的重要研究课题之一[1,2]. 随着科技水平的提高和人们生活的不断改善, 建筑物所导致的行人风环境问题, 也开始逐渐得到大家的重视[3,4].建筑物周围的流场结构受到诸多因素的影响, 如背景风场的特性、建筑物本身的几何形状以及邻近的建筑群的影响等[5,6]. 由于钝体绕流的阻塞作用而导致的下冲、涡旋、角隅流以及尾流、穿堂风等效应, 建筑物附近的流场就会变得相当的复杂. 上述诸多因素的存在, 往往会导致在高层建筑物附近产生过高的局地风速, 从而给在其周围活动的行人造成不舒适, 甚至可能存在行人被强风刮倒致伤的安全隐患[7]. 建筑物导致的不良行人风环境会有损于建筑物的使用舒适度和住居环境, 因此设计师们都希望能够在设计阶段就对建筑物周围的风环境问题进行评第11期姜瑜君等: 建筑物表面风压以及风场的数值模拟与风洞实验研究1537估, 以作适当修改或采取一些可行的措施, 从而提供更加舒适、安全的生活环境. 如今, 大部分先进国家都已开始立法要求对高大建筑物或结构体周围的风场作环境影响评价. 即在项目兴建前的概念、规划与设计阶段, 要预先评估建筑物的风荷载以及周边的风场特征, 对其建成后可能导致的风环境问题作出科学的评价[8,9].建筑物风环境的研究方法一般包括现场观测、物理模拟实验如风洞、水槽和水洞实验等以及数值模拟计算[10~13]. 随着计算机硬件条件的飞速发展, 应用计算流体力学方法对城市边界层内建筑结构周围流场的模拟, 在最近十几年中取得了很大的进展[14,15],尤其是在计算风工程领域取得了显著的进步, 同时也促进了计算流体力学(Computational Fluid Dynamics, 简称CFD)软件的发展.CFD软件主要被用于解决工程中的流体和传热问题, 由于具有丰富的物理模型、先进的数值方法以及强大的前后处理功能, 目前被广泛应用到计算风工程领域中, 如对于高层建筑物单体或者建筑群的周边流场的数值模拟以及相应的风压、风荷载的研究. 由于它可以精确的对建筑群或者结构体所致的流场进行数值模拟[16], 其模拟结果被广泛利用作为行人风环境的评估参考[6]. 此外CFD软件还可以计算人体表面及其附近空间微尺度的风环境以及热力环境特征 [17]以及各种尺度的流场分析[18], 也可以对建筑物内部污染物扩散进行合理的计算模拟[19], 甚至对大型火灾造成的影响也能进行有效的模拟[20], 研究表明, CFD软件在目前的城市环境问题研究当中有着广泛的应用前景.目前的CFD软件功能已经十分强大, 但并不能很好的解决大气科学领域的某些特殊问题, 如太阳辐射所致的局地热力差异对建筑物周围风环境的影响, 局地大气以及地表热力环境的昼夜变化所导致的温度层结等. 因此国内外研究城市气候的学者们发展了能够用于研究建筑物风环境和热力环境的大气边界层模式, 如蒋维楣、张宁、徐敏等[21~24]利用大涡模拟技术(LES)对小尺度建筑物结构体所致流场以及相应的污染物扩散进行了有效的数值模拟. 苗世光等[25]则在此基础上, 建立了一个针对城市小区的气象以及污染扩散的数值模式, 并用于小区大气环境的评估, 结合观测结果为小区的规划建设提供科学合理的参考意见. 这一类自主开发的模式, 由于可以灵活地结合能量平衡、污染物输送等模式, 在大气科学研究领域存在较好的发展空间.除了LES方法以外, RANS(Reynolds-averaged Navier-stokes equation)方法也被广泛应用到城市边界层的数值模拟当中. 桑建国利用该方法建立一个大气环境模式PUMA, 并用以计算小尺度的街谷热力环境和流场结构[26], 王宝民等[27,28]、姜瑜君等[29]、刘辉志等[30]利用该模式, 对高层建筑的周边流场进行了模拟, 并结合风洞实验的结果对一些拟建的高层建筑进行了合理的风环境评估.对正在拟建的项目而言, 进行事先的观测是不可能的, 一个比较可行的方案就是对规划区域的模型进行一些合理的物理实验, 如风洞、水槽、水洞实验等. 将物理模拟实验数据与数值模拟相结合, 对其结果进行相互对比分析, 从而对拟建的项目风环境进行评价, 这是目前比较理想而且切实可行的研究手段之一. 本文拟采用自主开发的数值模式PUMA, 对一个特殊造型的建筑物周边流场结构以及建筑各表面风荷载进行数值计算, 并结合风洞实验数据进行对比分析, 为该建筑的设计方案提供风荷载以及风环境的科学评估.1风洞实验与数值模式1.1风洞实验实验模拟的目标建筑物为法门寺当时拟建的合十舍利塔, 法门寺位于陕西省宝鸡地区扶风县城以北10 km处的法门镇, 东距西安市110 km, 西至宝鸡市90 km, 是我国古代著名的佛教寺院. 1987年法门寺地宫发掘, 使法门寺成为佛教界及学术界的瞩目之地. 正在拟建的法门寺文化区, 南北长2165 m, 东西宽952 m, 总占地面积3092亩1), 其中法门寺合十舍利塔, 总高147 m, 宽50 m, 呈合十双手的特殊造型, 居于该文化区的中央. 图1给出了法门寺合十舍利塔设计效果图.风洞模拟实验是在北京大学环境学院大气环境模拟国家重点实验室的环境风洞中进行. 该环境风洞为直流、吸式, 实验段长32.0 m, 其风洞实验截面积为2 m×3 m, 流速范围为1.0 ~21 m/s. 缩尺比例为1:200的刚性模型被安置在风洞试验段的转盘上, 在试验中通过转盘的旋转以变更来流风向, 来流风的1)1公亩=102 m21538中国科学 D 辑 地球科学第37卷图1 法门寺合十舍利塔设计效果图特征则依据建筑物所在地的地形地貌条件而定. 风洞试验过程中, 我们采用了毕托管、微压计、热线风速仪等测量仪器, 测量了模型周围速度的空间分布以及模型表面的压力分布特性.1.2 数值模式由北京大学开发的“北京大学大气环境模式”(Peking University Model of Atmospheric Envi-ronment, PUMA)可以对中尺度、小尺度和微尺度的大气环境进行模拟, 并在多项研究课题中得到应用. 此次风环境评价采用该数值模式中的城市边界层模式, 对流场的空间结构进行模拟, 并和风洞实验结果进行比较验证. 由于一般风工程所涉及的问题大都发生在较强的来流风速下, 且在近地表上数百米高度的大气边界层范围之内;在风速较大的情况下, 大气机械湍流作用通常超过热力作用, 所以本模拟暂不考虑热力作用.在大气边界层中, 大气运动的平均Navier-Stokes 方程为0,iiu x ∂=∂ (1) 1(),i i j ij j i ju u pu R t x x x ρ∂∂∂∂+=−−∂∂∂∂ (2) 其中i u 为在i x 方向上的平均速度分量(i = 1,2,3), p 为扰动气压, ρ为空气密度, Reynolds 应力ij i j R u u =是作用于空气块上的应力项. 应力ij R 按湍流闭合假定, 可表示成为22,3ij ij ij R k KS δ=− (3) 其中ij S 为平均流场的应变率, 1.2ji ij j iu u S x x ⎛⎞∂∂=+⎜⎟⎜⎟∂∂⎝⎠湍流粘性系数K 可用湍流动能k 和湍流动能耗散率ε, 表示成为2,k K C µε= (4)其中C µ为闭合系数.k 和ε分别由下列方程给出,i j ij j j i k i u k k K k u R t x x x x εσ⎛⎞∂∂∂∂∂+=−+−⎜⎟∂∂∂∂∂⎝⎠ (5) 212,i j ij j j i k i u K u c R c t x k x x x kεεεεεεεσ⎛⎞∂∂∂∂∂+=−+−⎜⎟∂∂∂∂∂⎝⎠ (6)其中半经验的系数取值如下[31]:0.09,c µ= 1 1.44,c ε= 2 1.92,c ε=1.0,µσ= 1.3.εσ=在本次计算中, 入流边条件可取为定常的, 设平均风沿x 轴方向, 取10()(/10),u z u z α= (7)其中u 10为10 m 高处风速, 幂指数α为稳定度和粗糙度的函数, 在风工程领域考虑较多的是大风情况, 在这种大气条件下, 稳定度一般为中性, 其数值通常由风洞实验数据校正得到, 在本次实验中α = 0.18.在出流边界, 取自由流边条件第11期姜瑜君等: 建筑物表面风压以及风场的数值模拟与风洞实验研究 15390, 0, 0, 0.u v k x x x xε∂∂∂∂====∂∂∂∂ (8) 在钝体表面如墙面、路面和屋顶, 取非滑动边条件0, 0, 0,ku v n∂===∂ (9)其中n 为固体表面的法线方向.由于计算精度要求和时间的限制, 本文只针对塔基的主体部分进行了模拟, 模拟区域为: 东西方向144 m, 南北方112 m, 垂直方向150 m; 水平网格为2 m, 垂直为3 m, 总格点数为73×57×51. 时间步长为0.04 s, 计算时间为20 s, 此时基于RANS 计算的流场趋于稳定.2 结果分析和讨论图2给出了基于当地30 a(1971~2000)气象资料统计结果所得宝鸡地区以及扶风的风频分布情况, 图中可以看到, 扶风以及整个宝鸡地区, 东、西风发生的频率比较高, 为12%, 其次是东南风10%, 而最大风速出现在北风的情况, 达14 m/s. 由于塔身表面拟采用玻璃帷幕, 因此在大风天气条件下, 塔身表面的风压、风荷载的分布特性对设计安全来说具有重要的参考意义. 鉴于该建筑沿着正北轴线东西对称分布, 本数值模拟对东风以及北风两种来流情况分别进行了计算(两种来流风速大小一样), 并与相应的风洞实验数据进行对比.数值模拟以及风洞实验中, 时均压力系数(平均压力系数)通过下式获得:ref2ref ,12i pi P P V ρ−=其中: i P —测点i 处的时均值, ref P —参考点静压,2ref /2V ρ—参考点处动压(即总压-静压), ρ—来流密度,ref V —参考点风速.2.1 东风由于东风来流风速较大, 且发生频率较高, 塔身东侧外表面的风压分布情况对于结构设计建设就比较重要, 因而本次风洞试验对这种来流情况下的塔身风荷载情况进行了相关的数据采样. 图3是风洞实验得到的塔身各个表面的平均风压系数分布情况(来流速度为9.6 m/s , 参考高度为10 m). 从图上可以看出, 在东风来流情况下, 东侧外表面为迎风面, 由于风攻角较大, 其外表面风压普遍为正值. 其数值在中心最大, 大约1.3~2.3, 外围部分则在0.3~1.3, 边缘的值在 −0.6~0.3, 风压系数分布呈现辐射状递减, 而塔身其他各个表面由于处在背风区, 风压则呈现负值.图4则是东侧迎风面风压分布的数值模拟结果与实验的对比情况. 从模拟的结果来看, 风压系数分布情况、以及相应区域的数值大小, 虽然和测量结果存在一定的差距, 但是其分布的趋势和数值大小还是比较接近的. 由于测量结果图给出的风压分布图分辨率比较低, 高值区为1.3~2.3, 一个标尺的量度在1左右, 因此和数值模拟结果相比存在一定的差距也是情理之中. 不过从计算整体效果看, 风洞实验的数据与数值模拟的结果是比较接近的. 又由于在实际的钝体绕流中, 在高雷诺数情况下, 建筑物边缘以及迎风面、背风面的流场结构是复杂变化的, 各种小尺度的扰动以及之间的相互作用, 使得靠近固壁面范围内的流场结构呈现空间的不均匀性和时间的非定图2 舍利塔建筑设计所在地1971~2000年平均风的玫瑰图1540中国科学D辑地球科学第37卷图3 东风来流, 风洞实验得到的的塔身表面的风压系数分布情况图4 东风来流, 迎风面的表面风压系数分布第11期姜瑜君等: 建筑物表面风压以及风场的数值模拟与风洞实验研究 1541图5 实验测点编号分布A 剖面为迎风面; B, C 剖面为背风面; 模型比例1:200图6(a), (b), (c)为三个剖面上模拟和实验数据的对比图1542中国科学D辑地球科学第37卷常性. 图3显示的是对采样的数据进行一定时间平均的结果, 而用RANS得到的模拟结果, 虽然可以得到一个平均化的准定常流场形态, 但是由于扰动气压随时间变化是持续而又无序的, 加上本次数值实验的网格距较大, 因此空间分辨率比较低, 也会导致模拟和实验的数据存在一定的偏离.2.2北风北风是出现最高风速值的来流情况, 虽然发生频率较低, 由于最大风速达到14 m/s, 因此有可能对塔身建筑造成不安全的因素, 也会在近地面形成局地强风, 对行人活动造成不便. 因此我们风洞实验对这种来流情况进行局部空间点的风速测量, 同时也与数值模拟的结果作了相应的比较分析.图5显示的是, 风洞实验中风场测点的编号情况, 此次实验来流风速为9.6 m/s(参考高度10 m处的风速, 与东风情形一样). 图6是图5中的A, B和C三个剖面上的各个测点的实验数据与相应的模拟结果的对比情况. 从结果来看, 数值模拟的结果还比较理想, 尤其在迎风面A的模拟上, 与风洞实验的数据有着较高的吻合度, 但在迎风面的1, 10和11三个编号位置, 模拟与实测存在一定的误差, 这三点处于建筑基座迎风面底部, 靠近表面, 风场变化较大而且绕流区的气流结构比较复杂, 在网格距较大的情况下, 会存在一定的出入. 在穿越塔身中间的结构以后, 气流变得比较复杂, 加之数值模拟的空间分辨率相对偏低, 故而与试验数据的偏差变大, 如16, 17, 18和21等处于建筑物边缘的测点, 误差较大. 但从A, B和C 3个剖面的整体结果对比来看, 现有的数值模式, 图7 北风来流情况下, 塔身各表面的压力系数分布的风洞实验结果第11期姜瑜君等: 建筑物表面风压以及风场的数值模拟与风洞实验研究1543在流场计算方面, 可以较好的模拟出复杂建筑物造成的空间速度场的分布情况, 具有较高的可信度.图7显示的是北风来流情况下, 风洞实验得到的塔身压力系数分布情况. 从图上可以看出, 塔身正北面与来流形成90o的风攻角, 因而表面的风压系数较高, 其高值区的分布呈现对称钝三角, 最大值在2.3 ~ 3.3之间, 气流对内侧表面的冲击形成的系数较低, 大致在1.3 ~ 2.3之间, 在图8我们也可以明显的发现这个规律. 塔身其他表面由于大部分处于背风区域, 因此压力系数整体呈现为负压, 数值值大概在−1.6~−0.6之间.图9是北风来流情况下, 45 m高处(即设计方案中中间小塔高度)的水平流场示意图. 从图中可以看出, 流场呈东西对称分布, 佛塔结构由于存在对称的水平梯形截面, 北端内表面与北风来流形成大致45o 的风攻角, 因此在西内侧表面和东内侧表面的北端会有正压值存在, 而南端由于气流离开固壁面, 故而形成负压, 这种分布在图7以及图10都可以明显的看到. 而东侧和西侧外表面, 由于气流方向大都与固壁面背离或风攻角小且风速较低, 因此这两个外表面的风压系数整体呈现为负压, 其分布呈现由北向南递减的负压带状分布图案, 这种分布在图7以及图11都可以明显的看出, 实际上这种分布趋势和气流流动与固壁面的背离以及风速值大小的变化是吻合的.3结论从本文的模拟结果来看, 基于不可压缩流体连续方程、Reynolds平均动量方程以及k-ε湍流闭合方案的数值模式PUMA城市气候模式, 可以对塔形建筑物表面风压系数分布进行合理的模拟, 与实验的数据相比显示, 速度场与表面风压系数具有较好的吻合度, 体现了在该模式在风场以及压力场计算方面的良好性能. 但也存在一定的问题, 需要加强和改进.在结果显示方面, 由于分辨率以及相应的图象显示软件的开发缺乏, 自主开发的模式, 在这方面, 功能低于CFD的各种商业软件, 但是, 自主开发的软件, 可移植性程度高, 可以灵活地添加大气辐射、污染物输送等模块, 因此在大气科学研究领域有着比较广泛的应用前景.与实验结果的对比可以看出, 模式的结果在一图8 北风入流, 数值模拟的塔身北侧表面的风压分布情况1544中国科学 D 辑 地球科学第37卷图9 45 m 高度的水平流场示意图图10 数值模拟的东西侧内表面的风压分布结果定的地方, 存在较大的误差, 比如在北风来流情况下, 东西两侧外表面的风压分布, 计算模拟的结果就和实验存在一定的区别. 造成这种偏差, 一方面是模式现有的分辨率为水平2 m 、垂直3 m, 这种网格距, 比较难以将塔型建筑物表面的气压变化精确的展现出来, 当然网格分辨率的提高, 将大大增加计算机计算量, 这也是下一步工作的重点. 另一方面, 固壁面上格点的气压和周边空间气压分布之间关系的参数化第11期姜瑜君等: 建筑物表面风压以及风场的数值模拟与风洞实验研究 1545图11 数值模拟的东西侧外表面的风压分布结果方案, 仍需要进一步改进.在差分格式上, 如果采用高分辨率的有限元网格, 或者在局地采用细网格的方法, 那么比较好的方案是采用隐格式进行差分迭代运算, 但是隐格式所带来的较大耗散, 会对计算结果造成不良的影响, 尤其在大规模的小区流场计算方面, 人为耗散会导致内部流速过低, 与实验数据的偏差较大的结果. 如何选择合适的差分方法, 是该模式以后改进的重点之一.结果表明, 现有的模式PUMA, 在计算流场和风压分布方面, 具有较好的精确度和可信度, 适用于对拟建的建筑物或结构体进行相关的风环境以及风荷载进行数值计算, 并结合相应的实验结果, 对建设方案提出合理的建议与评估.参 考 文 献1 Murakami S, Mochida A, Kondo K, et al. Development of new k −εmodel for flow and pressure fields around bluff body. J Wind Eng Ind Aero, 1997, (67-68): 169—1822 Cermak J E. Progress in physical modeling for wind engineering. JWind Eng Ind Aero, 1995, (54-55): 439—4553 Murakami S, Oka R, Mochida A, et al. CFD analysis of wind cli-mate from human scale to urban scale. J Wind Eng Ind Aero, 1999, 81: 57—814 Plate E J. Methods of investigating urban wind fields-physicalmodels. Atmos Environ, 1999, 33: 3981—39895 Craig K J, de Kock D J, Snyman J A. Minimizing the effect ofautomotive pollution in urban geometry using mathematical opti-mization. Atmos Environ, 2001, 35: 579—5876 He J A, Charles C S Song. Evaluation of pedestrian winds in urbanarea by numerical approach. J Wind Eng Ind Aero, 1999, 81: 295—3097 Richard M. Politics of pedestrian level urban wind controls. BuildEnviron, 1989, 24: 291—2958 White B R. Analysis and wind tunnel simulation of pedes-trian-level winds in San Francisco. J Wind Eng Ind Aero, 1992, 41: 2353—23649 ASCE, Wind tunnel studies of buildings and structures. ASCEManuals and Reports on Engineering Practice, ASCE, Reston, Vir-ginia, 1999, 67. 20710 Cermak J E. Aerodynamics of buildings. Annu Rev Fluid Mech,1976, 8: 75—10611 Hunt J C R, Poulton E C, Mumford. The effects of wind on people:New criteria base on wind tunnel experiments. Build Environ, 1976, 2: 15—2812 Peterka J A. Selection of local peak pressure coefficients forwind-tunnel studies of buildings. J Wind Eng Ind Aero, 1983, 13: 477—48813 Boggs D W, Peterka J A. Aerodynamic model tests of tall buildings.J Eng Mech, 1989, 115: 618—63514 Mochida A, Murakami S, Shoji M, et al. Numerical simulation offlow field around Texas Tech Building by Large Eddy Simula-tion(LES). First Int Symp On Comp Wind Eng, Tokyo, Japan, 19921546中国科学D辑地球科学第37卷15 Nicholls M E, Pielke R A, Eastman J L, et al. Application of theRAMS numerical model to dispersion over urban area. Wind Cli-mate in Cities, 1995. 703—73216 Kato S, Murakami S, Mochida A, et al. Velocity pressure field ofcross ventilation with open windows analyzed by wind tunnel and numerical simulation. J Wind Eng Ind Aerodyn, 1992, (41-44): 2575—258617 Murakami S, Zeng J, Hayashi T. CFD analysis of wind environ-ment around a human body. J Wind Eng Ind Aerodyn, 1999, 83: 393—40818 Mochida A, Murakami S, Ojima T, et al. CFD analysis ofmesoscale climate in the Greater Tokyo area. J Wind Eng Ind Aerodyn, 1997, (67-68): 459—47719 Kato S, Murakami S, Takahashi T, et al. Chained analysis of windtunnel test and CFD on cross ventilation of large-scale market building. J Wind Eng Ind Aerodyn, 1997, (67-68): 573—58720 Shiraishi Y, Kato S, Murakami S, et al. Numerical analysis ofthermal plume caused by large-scale fire in urban area. J Wind Eng Ind Aerodyn, 1999, 81: 261—27121 张宁, 蒋维楣, 胡非. 利用k-ε湍流能量闭合方法对城市街渠内气流结构的模拟. 空气动力学学报. 2001, 19(3): 296—301 22 张宁, 蒋维楣, 王晓云. 城市街区与建筑物对气流特征影响的数值模拟研究. 空气动力学学报, 2002, 20(3): 339—34223 张宁, 蒋维楣. 建筑物对大气污染物扩散影响的大涡模拟. 大气科学, 2006, 30(2): 212—22024 徐敏, 王卫国, 蒋维楣. 建筑物尾流区气流与污染物扩散的数值计算. 环境科学学报, 1999, 19(1): 52—5625 苗世光, 蒋维楣, 王晓云, 等. 城市小区气象与污染扩散数值模式建立的研究. 环境科学学报, 2002, 22(4): 478—48326 桑建国, 刘辉志, 王宝民, 等. 街谷环流和热力结构的数值模拟.应用气象学报, 2002, 13(特刊): 69—8127 Wang B M, Liu H Z, Chen K, et al. Evaluation of pedestrian windsaround tall buildings by numerical approach. Meteorol Atmos Phys, 2004, 87(1-3): 133—14228 王宝民, 刘辉志, 桑建国, 等. 北京商务中心风环境风洞实验研究. 气候与环境研究, 2004, 9(4): 631—64029 姜瑜君, 桑建国, 张伯寅. 高层建筑的风环境评估. 北大大学学报(自然科学版), 2005, 42(1): 69—7630 刘辉志, 姜瑜君, 梁彬, 等. 城市高大建筑群周围风环境研究.中国科学D辑: 地球科学, 2005, 35(增刊Ⅰ): 84—9631 Jones A C, Launder D B. Lectures in mathematical models of tur-bulence. London: Academic Press, 1972. 358。
高层建筑的风洞试验与风力设计近年来,城市化进程加快,高层建筑越来越普遍,而在高耸入云的建筑中,风力设计显得尤为重要。
高层建筑所面临的风压和风荷载问题不容忽视,因此进行风洞试验成为了建筑设计中的重要环节。
本文将探讨高层建筑的风洞试验和风力设计的相关内容。
一、风洞试验的基本原理风洞试验是通过缩小试验对象的比例,模拟真实环境中的风场,对建筑结构在风荷载作用下的响应进行实验研究的方法。
其基本原理是利用气流产生相对于建筑物运动的模拟风场,通过监测建筑物的响应,得到不同风速、风向下的风荷载数据,从而进行风力设计。
二、风洞试验的意义1. 增强结构的安全性:风洞试验能够模拟不同的风速和风向条件,通过监测建筑结构在不同条件下的响应,可以为设计师提供准确的风荷载数据,确保结构的安全性。
2. 优化设计方案:通过风洞试验,可以在建筑结构设计初期发现问题,及时进行调整,优化结构方案,提高抗风能力和减小风载影响。
3. 减少建筑成本:通过风洞试验得到准确的风荷载数据,可以避免结构过度设计,减少不必要的浪费,降低建筑成本。
三、风洞试验的过程1. 模型制备:根据实际建筑物的比例,制作实验模型。
模型制作过程要保证模型的准确性和可靠性,以便能准确模拟实际情况。
2. 场地准备:选择风洞试验场地,确保试验过程中没有干扰和风洞效应。
3. 实验操作:在风洞中放置实验模型,通过激励系统产生风,同时记录模型的响应数据,如位移、应变等。
4. 数据处理:对实验数据进行处理和分析,得到建筑结构在不同风速、风向下的响应结果。
5. 结果评估:根据实验结果评估建筑结构的风荷载承受能力,为风力设计提供依据。
四、风力设计的要点1. 风荷载计算:根据风洞试验结果和相关规范,计算出建筑物在设计风速下的风荷载。
2. 结构设计:根据风荷载计算结果进行结构设计,确定合理的结构截面尺寸和钢筋配筋等。
3. 风振问题:对于高层建筑来说,颤振是一个重要的问题。
设计师需要通过风洞试验确定建筑物的抗颤振措施,如添加阻尼器、加固结构等。
第13卷第3期2000年7月中国公路学报ChinaJournalofHighwayandTransportV01.13NO.3July2000文章螭号:1001—7372(2000)03—011303JT6120型客车气动特性的数值模拟和风洞试验张志沛,欧阳鸿武,秦志斌(长沙交通学院汽车工程系,湖南长沙410076)摘要:为了评价JT6120型客车的空气动力学特性,先后采用数值模拟和风洞试验方法对其外流场进行了研究。
研究结果表明由于在该车的头部产生了气流分离,导致空气阻力系数高速0.6665,说明气动性能存在明显的不足,有必要进行改进。
关键词:客车;数值模拟;风洞试验;气动特性中图分类号:U467.13文献标识码:AThenumericalsimulationandwindtunneltestonJT6120arodynamiccharacteristicZHANGghi—pei,0UYANGHong—WU,QINZhi—bin(DepartmentofAutomobiLeEngineering,ChangshaCommunicationsCollege,Changsha410076,China)Abstract:InordertOestimatetheaerodynamiccharacteristicofJT6120bus,thenumericalsimulationandwindtunneltestareadopted.Theresultsshowthattheairflowseparateatthefrontpartofbus,andinducesthehighdragcoefficientof0.6665.Theaerodynamiccharacteristic0fJT6120needimproving.Keywords:bus;numericalsimulation;windtunneltest;aerodynamicfeature关于JT6120型客车气动特性方面的试验和研究,文献[1]提供了JT6120型客车三种模型的风洞试验情况:模型1的头部正面为带棱角的方正形,两侧面为平面;模型2的头部正面为圆弧形,两侧面稍带弯曲;模型3的头部正面和两侧面更为圆化些。
流场模拟方法流场模拟方法是一种重要的科学技术手段,用于研究和预测流体在各种条件下的运动和相互作用。
它在许多领域中都具有重要应用,如天气预报、风洞试验、环境工程和生物医学研究等。
流体力学是研究流体力学行为的学科,其中流场模拟方法是一个关键的研究领域。
流场模拟方法可以通过数学模型和计算机仿真来预测和分析流体流动的物理特性,从而为各种应用提供有效的解决方案。
流场模拟方法主要包括数值模拟和实验模拟两种。
数值模拟方法是通过建立数学模型和使用计算机算法来模拟流体运动。
这种方法的优点是可以准确预测流场的各种性质,如速度、压力、温度等,并能够在很短的时间内得到结果。
然而,数值模拟方法需要依赖复杂的数学模型和计算机算法,因此对计算资源要求高,而且模拟结果可能受到模型的假设和参数选择的影响。
实验模拟方法是通过设计和进行实验来模拟流体运动。
这种方法的优点是可以直接观测和测量流体的运动和相互作用,对结果的可信度高。
同时,实验模拟方法也能够提供丰富的数据来验证和改进数值模拟方法。
然而,实验模拟方法需要大量的设备和实验操作,并且受到实验条件和测量误差的限制。
在流场模拟方法中,数值模拟方法常用的技术包括有限元法、有限差分法和边界元法等。
这些技术通过对流体运动的偏微分方程进行离散化和求解,从而获得流场的数值解。
有限元法是一种广泛应用的数值模拟方法,它把流场划分为多个小单元,然后通过求解各单元上的方程来获得整个流场的数值解。
有限差分法是另一种常用的数值模拟方法,它将流场划分为网格点,在每个网格点上计算流体的变化量,然后通过迭代求解来获得整个流场的数值解。
边界元法是一种基于边界条件的数值模拟方法,它将流场划分为多个边界元,然后通过求解边界元上的方程来获得整个流场的数值解。
这些数值模拟方法都有各自的优点和适用范围,在具体应用中需要根据问题的复杂程度和计算资源的限制来选择合适的方法。
实验模拟方法中常用的技术包括风洞试验、流体力学实验和粒子图像测速法(PIV)等。
风洞实验技术的使用方法风洞实验技术是现代工程领域中广泛应用的一种研究手段。
它通过模拟空气中的流动,以便对各种物体的气动性能进行实验研究。
本文将从实验室准备、测试对象设计、数据获取与分析等几个方面,探讨风洞实验技术的使用方法。
一、实验室准备在进行风洞实验之前,首先需要确保实验室的环境适宜。
实验室应具备稳定的温度和湿度条件,以确保实验结果的准确性。
此外,实验室内的风洞设备也需要进行定期的维护和校准,包括校准风速传感器、温湿度传感器等,以确保实验的可靠性和重复性。
二、测试对象设计在风洞实验中,测试对象的设计至关重要。
首先,根据具体研究的问题,选择合适的测试对象类型,可以是航空器、汽车、建筑物等。
其次,需要对测试对象进行精确的几何建模和尺寸设计,以确保在风洞中能够真实地模拟出流动场。
在进行几何建模时,通常采用计算机辅助设计(CAD)软件进行三维建模,以便更好地控制测试对象的形状和尺寸。
三、数据获取与分析风洞实验的数据获取与分析是整个实验过程中非常重要的一环。
在进行实验前,需要确定实验参数,例如风速、气压、温湿度等,以便记录和分析实验数据。
通常使用多种传感器来测量所需的参数,如压力传感器、风速传感器等。
获取到的数据可以使用数据采集系统进行实时记录,以方便后续的数据分析和对比。
在数据分析方面,常常采用计算机模拟和数值分析方法,以获得更深入的结果。
利用计算机模拟技术,可以将实验数据与数值模拟数据进行对比,以验证实验结果的准确性。
同时,还可以利用数值分析方法,如流体力学模拟(CFD)等,对风洞实验的结果进行进一步分析和优化。
四、实验结果应用经过风洞实验获取的数据和分析结果可以应用于多个领域。
在航空航天领域,风洞实验结果可以用于优化载具的气动外形和性能,提高飞行器的飞行效率和安全性。
在汽车工程领域,风洞实验可以用于改善汽车的空气动力学性能,减少车辆的阻力和油耗。
在建筑工程领域,风洞实验可以用于设计高层建筑的防风措施,确保建筑物在强风环境中的稳定性。
航空器用永磁直流发电机的风洞试验与验证在现代航空工业中,发电机是非常重要的装备之一。
而针对航空器应用的永磁直流发电机是近年来研究和发展的热点之一。
为了验证其性能和可靠性,进行风洞试验是不可或缺的一步。
本文将探讨航空器用永磁直流发电机的风洞试验与验证的意义、步骤和结果。
一、意义航空器用永磁直流发电机的风洞试验与验证具有重要的意义。
首先,风洞试验可以模拟不同气动参数和飞行状态下的环境,通过对发电机在复杂工况下的性能测试,可以评估其适应性和稳定性。
其次,风洞试验可以验证和改进设计方案,通过对发电机内部结构和系统进行优化和调整,提高其性能和效率。
最后,风洞试验还可以发现和解决潜在的问题和风险,确保发电机在实际使用中安全可靠。
二、步骤1. 风洞试验准备首先,需要选择适当的风洞进行试验。
根据发电机的尺寸和性能需求,选择具备相应风速范围和气动参数调节能力的风洞设备。
然后,准备测试样品,包括设计和制造实验用的航空器用永磁直流发电机,并组装好相关的测量、控制和数据采集系统。
最后,进行系统校准和验收,确保试验设备的正常运行。
2. 风洞试验方案制定根据试验的目的和要求,制定合理的试验方案。
包括确定试验的气动参数范围、风速递增方式、试验时间和测量参数等。
同时,还需要制定安全措施和紧急预案,确保试验过程中的安全和可控。
3. 试验过程首先,将航空器用永磁直流发电机安装在风洞中,并根据试验方案进行风洞内环境参数的设定。
然后,逐步增加风速,将发电机暴露于不同的风速下,并记录相关的性能参数。
在试验过程中,需要关注发电机的输出功率、效率、温度等指标,并观察其运行状态。
4. 数据分析和结果验证根据风洞试验中采集到的数据,进行详细的分析和处理。
可以使用专业的数据处理软件,如MATLAB或Python等,对数据进行曲线拟合和性能参数计算。
然后,将得到的结果和设计要求进行对比和验证,评估发电机在风洞试验中的性能和可靠性。
三、结果通过以上的步骤,可以得到航空器用永磁直流发电机的风洞试验结果。
风洞试验与数值模拟
――北京大学在数值模拟方面的技术进展
一. 科学研究的方法:
人类在认识自然、认识科学的过程中,曾经创造出了两种方
法,即:理论研究和实验研究。理论研究得出的结论,要经过严
格的论证,这是十分必要的,但在工程实践中却难以应用。实验
研究,结论清晰、直观,也就是俗话说的“看得见,摸的着”,但
它的局限性太大,因而应用范围有限。
上世纪四十年代,电子计算机的横空出世,改变了人类的生
活和思想。随着近年来计算机软硬件技术的突飞猛进,以前大量
无法解决的工程实际问题,已经可以用新的计算方法来加以解决
了。因此,第三种科学研究的方法发展出来了,那就是计算科学
的方法(或称为数值模拟、数值计算)。它不仅具有理论研究的
严谨性,又具有实验研究的直观性,更加具备极其广泛的应用范
围。如今,计算科学在科学研究中所占的比重越来越大,并必将
成为今后科学技术发展的主流。
二. 什么是“风洞试验”:
风洞,从外观上看酷似一座洞,它是通过产生出可人工控
制的气流,对试验模型周围的气体的流动进行模拟,并可量度气
流对物体的作用,以及观察流动现象的一种管道状试验设备。
而风洞试验,是实验研究工程问题的一种方法。它是依据
运动的相对性原理,将试验原型同比缩小的模型固定在风洞中,
人为制造气流流过,获取各测试点的试验数据,并以此寻找出工
程问题的解决方案。
风洞试验主要针对相似模型进行测力试验、测压试验和布
局选型试验。
三. 风洞试验在“挡风抑尘墙”工程实践中的局限性:
“挡风抑尘墙”的作用就是降低露天堆场上方的风速,以达
到抑尘效果。这是属于流体力学范畴的一类问题。流体力学是物
理学的一个分支,是主要研究流体(包括气体和液体)与其中的
物体相互作用的一门科学。
研究流体力学的方法同样有理论研究和实验研究。
在理论研究中,以理论流体力学的基本控制方程组和基本定
律为出发点,采用适当的前提假设(如空气的不可压缩性假定),
经过严格的数学推导,求解出方程中的未知量(如压力,速度等)。
鉴于理论流体动力学的基本控制方程组及其边界条件的强烈的非
线性特性,只能在几种简单的情况下得到方程组的解析解,在复
杂的情况下(如三维流场,复杂外形等)就无法获得解析解,这就
决定了理论研究方法在“挡风抑尘墙” 研究中具有很多的局限
性,工程实践中很难采用这种方法。
同理论研究一样,实验研究方法,即风洞试验,也存在着很
多的局限性。
首先,由于风洞的试验段不可能很大,导致挡风抑尘墙模型的
尺寸相对实际尺寸很小,根据流体力学的相似律理论可知,风洞
试验很难与实际情况具有相同的无量纲参数,这就意味着风洞实
验很难模拟真实的空气流场。
比如:在试验中,堆料场与挡风抑尘墙的模型都要同比缩小,
一个200米长的堆料场在模型中要缩小为2米,缩小100倍;而
挡风抑尘墙厚度只有2-3毫米,同样缩小100倍后,只有0.02
-0.03毫米,如此小的尺度,在试验中是无法实现的,如用原尺
度代替,则试验误差之大可想而知。
又如:对于孔隙率的研究也有局限性,几十毫米的开孔,缩
小100倍后,直径只有零点几毫米,在风洞试验中已经相当于没
有开孔了。
其次,风洞试验很难获得一些极为重要的局部流场的信息,
而且为获得这些流场信息而安装的诸如压力传感器等设备将干扰
真实的流场,导致测量的误差。
第三,风洞试验周期长,价格高。
四. 数值模拟和北京大学的优势:
计算流体力学和数值模拟技术是上世纪五十年代出现的一
个以理论流体力学和计算数学为基础,以大型计算机为工具,来