特殊的三角形之等腰三角形-讲义
- 格式:doc
- 大小:249.00 KB
- 文档页数:4
等腰三角形性质【基础知识精讲】等腰三角形是一种特殊的三角形,是我们重点研究的几种三角形之一.它具有一些特殊性质:1.两个底角相等(简写为“等边对等角”)2.底边的中线、高及顶角平分线三线合一.3.等边三角形各内角都等于60°.利用这些性质,可以解决有关三角形的边、角的证明及计算问题,也可以利用性质来进行有关线段、角的证明及计算问题.【重难点解析】本节重难点均在对等腰三角形性质的掌握与灵活应用上,利用性质,结合三角形有关知识及全等三角形判定及性质解决相关问题是本节研究的重点.例1 求证:等腰三角形两腰的中线相等.已知△ABC 中AB=AC ,BD 、CE 为中线,求证BD=CE.分析 要证BD=CE ,可考虑证△ABD ≌△ACE ,而∠A 为公共角,AB=AC ,所以只需证明AD=AE 即能达到证明目的.证 ∵AB=AC, AE=EB, AD=DC∴AE=AD.在△ABD 和△ACE 中,AB=AC ,∠A=∠A AD=AE∴△ABD ≌△ACE ∴BD=CE.例2 等腰三角形一个外角为100°,求三内角度数.分析 本题利用三角形内角和及等腰三角形性质等边对等角,但要注意本题中外角是顶角的外角,还是底角的外角,在两种不同位置时,求得的结果不一样,本题有两解. 解 ∵等腰三角形∴两底角相等,设顶角为x ,底角为y ,则x+2y=180°(1)当顶角的外角为100°时,顶角的外角等于两底角之和∴2y=100°求得⎩⎨⎧︒=︒=5080y x (2)当底角的外角为100°时,底角y=180°-100°=80°求得⎩⎨⎧︒=︒=8020y x∴三内角为80°,50°,50°或20°,80°,80°* 例3△ABC中,AC>AB.求证:∠B>∠C.证∵AC>AB ∴在AC上取AD=AB,连BD,∵∠ADB>∠C.且∠ABD=∠ADB又∵∠ABC>∠ABD∴∠ABC>∠C.注意:本例是三角形中边角之间不等关系的一个重要结论:三角形中,若边不相等,则较大的边所对的角也较大,(简写为“大边对大角”)这一结论可帮助我们利用边的不等关系,证明角的不等关系.例4 △ABC中,∠B=2∠C,AD为角平分线.求证 AB+BD=AC.分析对于要证的结论,可采用补短法来完成,即延长AB至E,使BD=BE下只需证AE=AC即可.∴AB+BD=AB+BE=AE.证一延长AB至E,使BE=BD∴AB+BD=AE. ∵BE=BD∴∠E=∠EBD ∠ABC=∠E+∠BDE=2∠E=2∠C.∴∠E=∠C,在△ABE的△ACD中,∠EAD=∠CAD. ∠E=∠C AD=AD∴△AED≌△ACD ∴AE=AC ∴AB+BD=AC.证二分析:本题也可用“截长”的方法来证明∵∠B=2∠C>∠C.∴可在AC上取AF=AB,下面只需证FC=BD即可,再利用DF作桥梁,证明BD=DF=FC.证∵∠B=2∠C>∠C ∴AC>AB,在AC上取AF=AB.又∵∠1=∠2.AD=AD∴△ABD≌△AFD. ∴BD=FD. ∠AFD=∠B=2∠C.∴∠FDC=∠C. ∴AB+BD=AF+FC=AC.【难题点拨】例1 D为等边三角形△ABC内一点,DA=DB,∠DBP=∠DBC.BP=BC,求∠P的度数.分析 正三角形内角为60°,可考虑将∠P 与三角形内角进行联系,借用内角60°以达解题目的,连DC 后易得△PBD ≌△CBD ,从而将求∠P 转化为求∠DCB.解 连DC ∵BP=BC ∠PBD=∠CBD BD=BD∴△PBD ≌△CBD.∴∠P=∠DCB. 又BD=AD CD=CD AC=BC∴△BCD ≌△ACD∴∠BCD=∠ACD=21∠ACB=21×60°=30° ∴ ∠P=30°* 例2 △ABC 中AB=AC ,P 为形内一点,且PB >PC.如图,求证∠APC >∠APB.分析 这一类在等腰三角形、等边三角形等图形中出现的与形内一点相关的问题.常利用适当的旋转.使等边重合.将该点与三顶点的连线段相对集中到一个三角形内,再设法利用已知来解决问题.证 ∵AB=AC ∴将△ABP 绕A 点逆时针旋转,使AB 与AC 重合得△AP ′C ,连PP ′由作图△ABP ≌△ACP ′∴AP=AP ′,BP=CP ′∴∠1=∠2 ∠APB=∠AP ′C ,P ′C=BP >PC.在△PP ′C 中,P ′C >PC∴∠3>∠4 ∠1+∠3>∠4+∠2.∴∠APC >∠AP ′C ∴∠APC >∠APB.本题利用了“大边对大角”这一结论。
13.3等腰三角形-13.4最短路径1.等腰三角形的性质性质1:等腰三角形的两个底角__________(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互__________(简写成“三线合一”).等腰三角形的其他性质:(1)等腰三角形两腰上的中线、高分别相等.(2)等腰三角形两底角的平分线相等.(3)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.(4)当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定判定等腰三角形的方法:(1)定义法:有两边__________的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对__________”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).【注意】(1)“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.(2)“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.3.等边三角形及其性质等边三角形的概念:三边都相等的三角形是__________三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.【注意】(1)等边三角形是轴对称图形,它有三条对称轴;K—重点分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.【例1】如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形60︒【例2】已知等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的顶角是30︒60︒A.B.150︒30︒150︒C.D.或【例3】如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.二、等边三角形的性质和判定判定等边三角形时常用的选择方法:若已知三边关系,一般选用(1);若已知三角关系,一般选用(2);若已知该三角形是等腰三角形,一般选用(3).【例4】下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【例5】如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.三、含30°角的直角三角形的性质含30°角的直角三角形的性质是求线段长度和证明线段倍分关系的重要依据.【例6】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm四、最短路径问题通常利用轴对称变换将不在一条直线上的两条或多条线段转化到一条直线上,从而作出最短路径的选择.【例7】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.801.等腰三角形的一个内角是,则它顶角的度数是A .B .或C .或D .80︒80︒20︒80︒50︒20︒2.一个等边三角形的对称轴共有A .1条B .2条C .3条D .6条3.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于A .30°B .40°C .45°D .36°4.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 长为A .6B .9C .3D .85.如图,△ABC 是等边三角形,P 为BC 上一点,在AC 上取一点D ,使AD =AP ,且∠APD =70°,则∠PAB 的度数是A .10°B .15°C .20°D .25°6.如图,在中,为的中点,,则__________.ABC △AB AC D =,BC 35BAD ∠=︒C ∠=7.等腰三角形的一腰的中线把三角形的周长分成16 cm 和12 cm ,则等腰三角形的底边长为______.分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,在△ABC 中,D 在边AC 上,如果AB =BD =DC ,且∠C =40°,那么∠A =__________°.9.如图,已知在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC ,试说明:AO ⊥BC .10.如图,在△ABC 中,,是边上的中线,于,试说AB AC =AD BC BE AE ⊥E 明.CBE BAD ∠=∠11.已知在△ABC 中,AB =5,BC =2,且AC 的长为奇数.(1)求△ABC 的周长;(2)判断△ABC 的形状.12.如图,在△ABC 中,AB =AC ,∠BAC =40°,分别以AB ,AC 为边作两个等腰三角形ABD 和ACE ,且AB =AD ,AC =AE ,∠BAD =∠CAE =90°.。
2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。
第二部分等腰三角形题型练题型一等腰三角形的性质例1.如图,在ABC 中,,AB AC D =为BC 的中点,25BAD ∠=︒,则BAC ∠的度数为()A .25︒B .35︒C .45︒D .50︒【分析】在△ABC 中,AB =AC ,点D 为BC 的中点,根据等边对等角与三线合一的性质,即可求得答案.【详解】解:∵AB =AC ,点D 为BC 的中点,∴∠BAD =∠CAD =25°,∴∠BAC =50°,故选:D .【点睛】此题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.变式11.如图,ABC 中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②AEF AFE ∠=∠;③EBC C ∠=∠;④AG EF ⊥.正确结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【详解】解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选:C.【点睛】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.题型二等腰三角形的判定例2.如图,在ABC 中,ABC ∠和ACB ∠的角平分线交于点E ,过点E 作//MN BC 交AB 于点M ,交AC 于点N .若2BM =,3CN =,则MN 的长为()A .10B .5.5C .6D .5【分析】由平行线的性质,得出∠MEB =∠CBE ,∠NEC =∠BCE ,再由角平分线定义得出∠MBE =∠EBC ,∠NCE =∠BCE ,证出ME =MB ,NE =NC ,即可求得MN 的长.【详解】解:∵MN ∥BC ,∴∠MEB =∠CBE ,∠NEC =∠BCE ,∵在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,∴∠MBE =∠EBC ,∠NCE =∠BCE ,∴∠MEB =∠MBE ,∠NEC =∠NCE ,∴ME =MB ,NE =NC ,∴MN =ME +NE =BM +CN =2+3=5,故选:D .【点睛】本题考查了平行线的性质以及等腰三角形的判定等知识;熟练掌握等腰三角形的判定是解题的关键.变式22.如图,在ABC 中,25,100B A ∠=︒∠=︒,点P 在ABC 的三边上运动,当PAC △成为等腰三角形时,其顶角的度数是__________.【答案】100°或55°或70°【解析】【分析】作出图形,然后分点P 在AB 上与BC 上两种情况讨论求解.【详解】解:①如图1,点P 在AB 上时,AP=AC ,顶角为∠A=100°,②∵∠ABC=25°,∠BAC=100°,∴∠ACB=180°-25°-100°=55°,如图2,点P 在BC 上时,若AC=PC ,顶角为∠ACB=55°,如图3,若AC=AP ,则顶角为∠CAP=180°-2∠ACB=180°-2×55°=70°,综上所述,顶角为105°或55°或70°.故答案为:100°或55°或70°.【点睛】本题考查了等腰三角形的判定,难点在于要分情况讨论求解,作出图形更形象直观.题型三等边三角形的性质∠+∠的度例3.如图所示,一个等边三角形纸片剪去一个角后变成一个四边形,则图中12数为()A.180︒B.220︒C.240︒D.300︒C【分析】由等边三角形的性质及四边形的内角和为360°可求得∠1+∠2=240°.【详解】解:如图,由等边三角形可知:∴∠1+∠2=360°-(∠A+∠B)=360°-120°=240°.故选:C.【点睛】本题考查等边三角形的性质,关键是利用了:1、四边形内角和为360°;2、等边三角形的内角均为60°.变式33.如图,点D 在等边三角形ABC 内部,AD =AE ,若△DAB ≌△EAC ,则需添加一个条件:_______.【答案】DAB EAC ∠=∠或60EAD ︒∠=或CAB EAD =∠∠或BD CE =等【解析】【分析】根据等边三角形三边相等,三个内角都为60°,及全等三角形的判定定理解题即可.【详解】解:在等边三角形ABC 中,AB =ACAD =AE需添加∠DAB =∠EAC ,可得到△DAB ≌△EAC ;或添加∠EAD =60°,可得∠DAB =∠EAC ,可得到△DAB ≌△EAC ;或添加∠CAB =∠EAD ,可得∠DAB =∠EAC ,可得到△DAB ≌△EAC ;或DB =CE ,可得到△DAB ≌△EAC ;故答案为:DAB EAC ∠=∠或60EAD ︒∠=或CAB EAD =∠∠或BD CE =等.【点睛】本题考查全等三角形的判定、等边三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.题型四等边三角形的判定例4.下列条件中,不能得到等边三角形的是()A .有两个内角是60︒的三角形B .有两边相等且是轴对称图形的三角形C .三边都相等的三角形D .有一个角是60︒且是轴对称图形的三角形B【分析】根据等边三角形的判定解题.【详解】解:A 、两个内角为60︒,根据三角形的内角和为180︒,可知另一个内角也为60︒,所以该三角形为等边三角形.故不符合题意;B 、两边相等说明是等腰三角形或等边三角形,而这两种三角形都满足“轴对称”的条件,所以不能确定该三角形是等边三角形.故符合题意;C 、三边都相等的三角形当然是等边三角形.故不符合题意;D 、“轴对称”说明该三角形有两边相等,且有一个角是60︒,有两边相等且一角为60︒的三角形是等边三角形.故不符合题意;故选:B .【点睛】本题考查等边三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.变式44.如图,在ABC 中,AB AC =,点E 在CA 延长线上,EP BC ⊥于点P ,交AB 于点F ,若10CE =,3AF =,则BF 的长度为______.【答案】4【解析】【分析】根据等边对等角得出∠B =∠C ,再根据EP ⊥BC ,得出∠C +∠E =90°,∠B +∠BFP =90°,从而得出∠E =∠BFP ,再根据对顶角相等得出∠E =∠AFE ,最后根据等角对等边即可得出答案.【详解】证明:在△ABC 中,∵AB =AC ,∴∠B =∠C ,∵EP ⊥BC ,∴∠C +∠E =90°,∠B +∠BFP =90°,∴∠E =∠BFP ,又∵∠BFP =∠AFE ,∴∠E =∠AFE ,∴AF =AE =3,∴△AEF 是等腰三角形.又∵CE =10,∴CA =AB =7,∴BF =AB -AF =7-3=4,故答案为:4.【点睛】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E =∠AFE ,注意等边对等角,以及等角对等边的使用.题型五含30°角的直角三角形1.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.2.在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°例5.如图,在ABC ∆中,AB =BC ,∠ABC =120°,过点B 作BD BC ⊥,若1AD =,CD 的长度为()A .1B .2.5C .2D .3C【分析】由BD ⊥BC ,推出∠CBD =90°,所以∠ABD =∠ABC -∠CBD =120°-90°=30°,由AB =BC ,∠ABC =120°,推出∠A =∠C =30°,所以∠A =∠ABD ,DB =AD =1,在Rt △CBD中,由30°角所对的直角边等于斜边的一半,进而得出CD=2BD=2.【详解】解:∵BD⊥BC,∴∠CBD=90°,∴∠ABD=∠ABC-∠CBD=120°-90°=30°,∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30°,∴CD=2BD=2故选:C.【点睛】本题考查了等腰三角形的判定和性质,以及含30度角直角三角形的性质,正确理解在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.变式55.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B=150°,这种草皮每平方米售价2a元,则购买这种草皮需()元.A.75aB.50aC.2252a D.150a【答案】A【解析】【分析】作BA边的高CD,设与AB的延长线交于点D,则∠DBC=30°,由BC=15米,即可求出CD=7.5米,然后根据三角形的面积公式即可推出△ABC的面积,最后根据每平方米的售价即可推出结果.【详解】解:如图,作BA 边的高CD ,设与AB 的延长线交于点D ,∵∠ABC =150°,∴∠DBC =30°,∵CD ⊥BD ,BC =15米,∴CD =7.5米,∵AB =10米,∴S △ABC =12AB ×CD =12×10×7.5=37.5(平方米),∵每平方米售价2a 元,∴购买这种草皮至少为37.5×2a =75a (元),故选:A .【点睛】本题主要考查三角形的面积公式,含30度角的直角三角形的性质,解题关键在于做出AB 边上的高,并利用含30度角的直角三角形的性质求出高CD 的长度.题型六角平分线的性质定义:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.性质定理:角平分线上的点到这个角的两边的距离相等.例6.如图,在ABC 中,90,ACB BD ∠=︒平分ABC ∠,且9,6,2AB BC CD ===,则ABC 的面积是()A .9B .12C .15D .18C【分析】作DE ⊥AB ,根据角平分线的性质得到DE =CD =2,再根据三角形的面积公式即可求解.【详解】如图,作DE ⊥AB ,∵90,ACB BD ∠=︒平分ABC ∠,∴DE =CD =2∴S △ABC =S △ABD +S △DBC =12AB ×DE +12BC ×CD =12×9×2+12×6×2=15故选C .【点睛】此题主要考查三角形的面积求解,解题的关键是熟知角平分线的性质.变式66.如图,已知在ABC 中,BD 是AC 边上的高线,CE 平分ACB ∠,交BD 于点E ,5BC =,2DE =,则BCE 的面积等于()A.10B.7C.5D.3【答案】C【解析】【分析】作EF BC ⊥于F ,根据角平分线的性质定理得到2EF DE ==,根据三角形面积公式计算即可.【详解】解:作EF BC ⊥于F ,CE 平分ACB ∠,EF BC ⊥,ED AC ⊥,2EF DE ∴==,BCE ∴∆的面积152BC EF =⨯⨯=.故选:C .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.题型七角平分线的判定判定定理:角的内部到角的两边距离相等的点,都在这个角的平分线上角的平分线可以看作是到角的两边距离相等的所有点的集合例7.在ABC 中,AB BC =,两个完全一样的三角尺按如图所示摆放.它们一组较短的直角边分别在AB ,BC 上,另一组较长的对应边的顶点重合于点P ,BP 交边AC 于点D ,则下列结论错误的是()A .BP 平分ABC ∠B .AD DC =C .BD 垂直平分ACD .2AB AD=D【分析】先根据角平分线的判定定理得到BP平分∠ABC,再根据等腰三角形三线合一的性质得到AD =DC,BD垂直平分AC,进而即可求解.【详解】解:如图.由题意得,PE⊥AB,PF⊥BC,PE=PF,∴BP平分∠ABC,∵AB=BC,∴AD=DC,BD垂直平分AC,故选项A、B、C正确,不符合题意;只有当△ABC是等边三角形时,才能得出AB=2AD,故选项D错误,符合题意.故选:D.【点睛】本题考查的是角平分线的判定,掌握到角的两边距离相等的点在角的平分线上是解题的关键.也考查了等腰三角形的性质.变式77.如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中错误的是()A.△ABE≌△ACFB.△BDF≌△CDEC.点D是BE的中点D.点D在∠BAC的平分线上【答案】C【解析】【分析】根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【详解】解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF (AAS),正确;B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;C、无法判定,错误;D、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE 故点D在∠BAC的平分线上,正确;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.题型八垂直平分线的性质例8.如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AC 的值是()=2,则S△ABEA.4B.5C.6D.8A【分析】由垂直平分线的性质,得AE =BE ,然后求出∠AEC =30°,则求出AE =4,由三角形的面积公式,即可求出答案.【详解】解:根据题意,∵DE 垂直平分AB ,∴AE =BE ,∴∠EAD =∠B =15°,∴∠AEC =15°+15°=30°,∵在△ACE 中,∠ACE =90°,∴AE =2AC =2×2=4,∴BE =4,∴S △ABE =1142422BE AC ⋅=⨯⨯=;故选:A .【点睛】本题考查了垂直平分线的性质,30度直角三角形的性质,三角形的外角性质,解题的关键是熟练所学的知识,正确的进行解题.变式88.如图,在 ABC 中,AC 的垂直平分线分别交AC 、BC 于E ,D 两点,EC=3, ABC 的周长为21,则 ABD 的周长为()A.14B.15C.16D.17【答案】B【解析】【分析】根据垂直平分线的性质计算即可;【详解】∵DE 是线段AC 的垂直平分线,∴AD CD =,AE EC =,∴6AC =,∵△ABC 的周长为21,∴21AB AC BC ++=,∴15AB BC +=,∴ ABD 的周长15AB BD AD AB BC =++=+=,故答案选B .【点睛】本题主要考查了垂直平分线的性质,准确计算是解题的关键.题型九垂直平分线的判定例9.如图,ABC 中,边AB BC ,的垂直平分线交于点P .(1)求证:PA PB PC ==.(2)点P 是否也在边AC 的垂直平分线上?请说明理由.(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,PA =PB ,PB =PC ,则PA =PB =PC .(2)根据线段的垂直平分线的性质的逆定理,可得点P 在边AC 的垂直平分线上.【详解】解:(1)证明:∵边AB 、BC 的垂直平分线交于点P ,∴PA =PB ,PB =PC .∴PA =PB =PC .(2)∵PA =PC ,∴点P 在边AC 的垂直平分线上.此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.变式99.已知:如图,点P 在线段AB 外,且PA PB =,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则下列作法正确的是________.①作APB ∠的平分线PC 交AB 于点C②过点P 作PC AB ⊥于点C 且AC BC=③取AB 中点C ,连接PC④过点P 作PC AB ⊥,垂足为C【答案】①③④【解析】【分析】利用判断三角形全等的方法判断四个选项是否成立即可.【详解】解:①、利用SAS 判断出△PCA ≌△PCB ,∴CA =CB ,∠PCA =∠PCB =90°,∴点P 在线段AB 的垂直平分线上,故正确;②、过线段外一点作已知线段的垂线,不能保证也平分此条线段,故错误;③、利用SSS 判断出△PCA ≌△PCB ,∴∠PCA =∠PCB =90°,∴点P 在线段AB 的垂直平分线上,故正确;④、利用HL 判断出△PCA ≌△PCB ,∴CA =CB ,∴点P 在线段AB 的垂直平分线上,故正确;故答案为:①③④.【点睛】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.10.已知等腰ABC的一个角是40 ,则这个三角形的其余两个角为________.【答案】70°,70°或40°,100°【解析】【分析】分40°角是顶角与底角两种情况讨论求解即可.【详解】解:①40°角是顶角时,底角=12(180°-40°)=12×140°=70°,另两个角为70°,70°;②40°角是底角时,顶角为180°-40°×2=100°,另两个角为40°,100°,所以,另两个角度数为70°,70°或40°,100°.故答案为:70°,70°或40°,100°.【点睛】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图,在△ABC中,∠A=30°,AB=AC=6,则△ABC的面积为()A.2B.3C.4D.9【答案】D【解析】【分析】作CD⊥AB于D,根据直角三角形的性质求出CD,根据三角形的面积公式计算即可.【详解】解:作CD⊥AB于D,AC=AB=4,在Rt△ACD中,∠A=30°,∴CD=12AC=3,∴△ABC 的面积=12AB CD ⋅⋅=12×3×6=9,故选D .【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.12.如图,A ,D ,C ,B 在同一条直线上,DF 交EC 于点M ,AC BD =,A B ∠=∠,AF BE =.(1)求证:ADF BCE ≌.(2)若32B =︒∠,28F ∠=︒,试判断CDM V 的形状,并说明理由.【答案】(1)见解析;(2)CDM V 是等边三角形,见解析【解析】【详解】解:(1)证明:∵AC BD =,∴AD BC =.在ADF 和BCE 中,,,,AF BE A B AD BC =⎧⎪∠=∠⎨⎪=⎩∴ADF BCE ≌.(2)CDM V 是等边三角形,理由如下:∵ADF BCE ≌,32B =︒∠,28F ∠=︒,∴28E F ∠=∠=︒,32A B ∠=∠=︒,∴322860MCD B E ∠=∠+∠=︒+︒=︒,322860MDC A F ∠=∠+∠=︒+︒=︒,MCD MDC ∴∠=∠,MD MC∴=∴CDM V 是等边三角形.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定,正确找出判定全等三角形的条件是解题的关键.13.如图,在ABC 中,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,且BE CF =,o =30BDE ∠,求证:ABC 是等边三角形.【答案】证明见解析【解析】【分析】用HL 证△BED ≌△CFD ,得出∠B =∠C ,再证∠B =60°即可.【详解】证明:∵DE AB ⊥,DF AC ⊥,∴∠BED =∠CFD =90°,在Rt △BED 和Rt △CFD 中,DB CD BE CF =⎧⎨=⎩,∴Rt △BED ≌Rt △CFD ,∴∠B =∠C ,∴AB =AC ,∵o =30BDE ∠,∴∠B =60°,ABC 是等边三角形.【点睛】本题考查了等边三角形的判定和全等三角形的判定与性质,解题关键是熟练运用直角三角形的全等判定定理证明等腰,再依据等边三角形的判定进行证明.14.如图,在△ABC 中∠ACB =90°,AC=BC =4,△ACD 是等边三角形,连接BD ,则△BCD 的面积是___【答案】4【解析】【分析】求得△BCD的边BC上的高,用面积公式求解.【详解】如下图所示:过D作AC的垂线,垂足为E,∵∠ACB=90°∴△BCD的边BC上的高等于CE;∵△ACD是等边三角形∴AD=CD又DE⊥AC,AC=4∴114222EC AC==⨯=;又BC=4∴1142422BCDS BC EC=⋅=⨯⨯=△.答案为:4.【点睛】此题考查了正三角形、等腰三角形的性质及三角形面积计算等知识,本题中发现△BCD 的边BC 上的高等于AC 的一半是关键.15.如图,在Rt ABC 中,90ACB ∠=︒,3BC =,5AB =,角平分线CD 交AB 于点D ,则点D 到AC 的距离是()A.127 B.2 C.157 D.3【答案】A【解析】【分析】作DE ⊥AC 于E ,作DF ⊥BC 于F ,根据勾股定理可求AC ,根据角平分线的性质可得DE =DF ,再根据三角形面积公式即可求解.【详解】解:作DE ⊥AC 于E ,作DF ⊥BC 于F ,在Rt △ACB 中,4AC ===,∵CD 是角平分线,∴DE =DF ,∴111222AC DE BC DF AC BC ⋅+⋅=⋅,即1114343222DE DE ⨯⨯+⨯⨯=⨯⨯,解得DE =127.故点D 到AC 的距离是127.故选:A .【点睛】本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等.16.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【答案】D【解析】【分析】根据角平分线上的点到角的两边的距离相等,分点P在三条公路相交的三角形地带和地带之外作出图形即可得解.【详解】解:如图,作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P2、P3、P4,内角平分线相交于点P1,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选:D.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.17.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有()A.①②B.①③④C.①③D.②③④【答案】B【解析】【分析】证明△BDF ≌△ADC ,可判断①;求出∠FCD =45°,∠DAC <45°,延长CF 交AB 于H ,证明∠AHC =∠ABC +∠FCD =90°,可判断③;根据①可以得到E 是AC 的中点,然后可以推出EF 是AC 的垂直平分线,最后由线段垂直平分线的性质可判断④.【详解】解:∵△ABC 中,AD ,BE 分别为B C 、AC 边上的高,∠ABC =45°,∴AD =BD ,∠DAC 和∠FBD 都是∠ACD 的余角,而∠ADB =∠ADC =90°,∴△BDF ≌△ADC (ASA ),∴BF =AC ,FD =CD ,故①正确,∵∠FDC =90°,∴∠DFC =∠FCD =45°,∵∠DAC =∠DBF <∠ABC=45°,∴∠FCD ≠∠DAC ,故②错误;延长CF 交AB 于H ,∵∠ABC =45°,∠FCD =45°,∴∠AHC =∠ABC +∠FCD =90°,∴CH ⊥AB ,即CF ⊥AB ,故③正确;∵BF =2EC ,BF =AC ,∴AC =2EC ,∴AE =EC =12AC ,∵BE ⊥AC ,∴BE 垂直平分AC ,∴AF =CF ,BA =BC ,∴△FDC 的周长=FD +FC +DC=FD +AF +DC=AD +DC=BD +DC=BC=AB ,即△FDC 的周长等于AB ,故④正确,综上:①③④正确,故选B .【点睛】本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<18.如图,在ABC 中,,ABC ACB ∠∠的平分线相交于点E ,,AB BC 边的垂直平分线相交于点D .若120∠=︒BEC ,则BDC ∠的度数为()A.150︒B.130︒C.127︒D.120︒【答案】D【解析】【分析】由120∠=︒BEC ,可求∠EBC +∠ECB =60︒,由BE ,CE 分别,ABC ACB ∠∠,可得2,2ABC EBC ACB ECB∠=∠∠=∠,可求()2120ABC ACB EBC ECB ∠+∠=∠+∠=︒,可得()18060BAC ABC ACB ∠=︒-∠+∠=︒,由,AB BC 边的垂直平分线相交于点D .可得AD =BD =CD ,可得,ABD BAD DAC DCA ∠=∠∠=∠,可求1802ADB DAB ∠=︒-∠,1802ADC DAC ∠=︒-∠,可得240ADB ADC ∠+∠=︒,可求()360120BDC ADB ADC ∠=-∠+∠=︒.【详解】解:∵120∠=︒BEC ∴∠EBC +∠ECB =180°-18012060BEC ∠=︒-︒=︒,∵BE ,CE 分别,ABC ACB ∠∠,∴2,2ABC EBC ACB ECB∠=∠∠=∠()2260120ABC ACB EBC ECB ∴∠+∠=∠+∠=⨯︒=︒∴()18060BAC ABC ACB ∠=︒-∠+∠=︒∵,AB BC 边的垂直平分线相交于点D .∴AD =BD =CD ,∴,ABD BAD DAC DCA ∠=∠∠=∠,∴1801802ADB ABD BAD DAB ∠=︒-∠-∠=︒-∠,1801802ADC DAC ACD DAC ∠=︒-∠-∠=︒-∠,∴()180218023602360120240ADB ADC DAB DAC DAB DAC ∠+∠=︒-∠+︒-∠=︒-∠+=︒-︒=︒,∴()360360240120BDC ADB ADC ∠=-∠+∠=︒-︒=︒,故选择:D .【点睛】本题考查三角形内角和,角平分线,线段垂直平分线,周角,掌握三角形内角和,角平分线,线段垂直平分线,周角是解题关键.19.在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)尺规作图:作边AB 的垂直平分线EF ,分别与线段AB 、AC ,AD 交于点E 、F ,G ,(不写作法,保留作图痕迹)(2)连接BG 、CG ,若AG =1,∠BAC =45°,求 BGC 的面积.【答案】(1)作图见详解;(2)S △BGC =12.【解析】【分析】(1)以A 、B 两点为圆心,大于12AB 为半径画弧,两弧交于两点,过两弧的交点作直线EF ,交AB 于E ,交AC 于F ,交AD 于G ,则直线EF 为AB 的垂直平分线;(2)由AB =AC ,AD ⊥BC 于点D ,可得AD 为BC 的垂直平分线,由EF 为AB 的垂直平分线,可得点G 为△ABC 的外接圆的圆心,作以点G 为圆心,AG 为半径作辅助圆,可得AG=BG=CG=1,由∠BAC =45°,圆周角定理得∠BGC =2∠BAC =2×45°=90°,可求S △BGC =11111222BG CG ⨯=⨯⨯=.【详解】解:(1)以A 、B 两点为圆心,大于12AB 为半径画弧,两弧交于两点,过两弧的交点作直线EF ,交AB 于E ,交AC 于F ,交AD 于G ,则直线EF 为AB 的垂直平分线;(2)∵AB=AC,AD⊥BC于点D,∴AD为BC的垂直平分线,又∵EF为AB的垂直平分线,∴点G为△ABC的外接圆的圆心,以点G为圆心,AG为半径作辅助圆,∴AG=BG=CG=1,∵∠BAC=45°,∴∠BGC=2∠BAC=2×45°=90°,∴△BGC为等腰直角三角形,S△BGC =11111222BG CG⨯=⨯⨯=.【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质,三角形外接圆,圆周角定理,等腰直角三角形的判定与面积,掌握等腰三角形的性质,线段垂直平分线的性质,三角形外接圆,圆周角定理,等腰直角三角形的判定与面积是解题关键.培优练20.如图1,已知△ABC 为正三角形,以AC 为腰作等腰三角形ACD ,使AC =AD .(1)若∠CAD =30°,则∠BDC 的度数为;(2)若∠CAD 的大小在0°~90°范围内之间任意改变,∠BDC 的度数是否随之改变?请说明理由;(3)E 是DC 延长线上一点,且EB =ED ,连接AE ,如图2,试探究EA ,EB ,EC 之间的关系.【答案】(1)30°;(2)不会改变,理由见解析;(3)AE =BE +CE【解析】【分析】(1)由△ABC 为正三角形,可得∠BAC=∠ABC=60°,AB=AC ,由∠CAD =30°,可求∠BAD =90°,由AC =AD ,可求∠ACD=∠ADC=75︒,∠ABD=∠ADB=45︒,由∠BDC =∠ADC-∠ADB=30°即可;(2)不会改变.理由如下:设∠CAD =2α°.由AC =AD ,可得∠ADC =∠ACD =90°-α°.由△ABC 为正三角形,可得∠CAB =60°,AC =AB =BC ,AB =AD ,可求∠ADB =∠ABD =90°-(30°+α°),∠BDC =∠ADC -∠ADB =30°;(3)在AE 上取点F ,使EF =EB ,可证△BEF 为正三角形,可求∠ABF =∠CBE ,可证△ABF ≌△CBE (SAS ),可得AF =CE 即可.【详解】解:(1)∵△ABC 为正三角形,∴∠BAC=∠ABC=60°,AB=AC ,∵∠CAD =30°,∴∠BAD=∠BAC+∠CAD =90°,∵AC =AD ,∴∠ACD=∠ADC=()()11180180307522CAD ︒-∠=︒-︒=︒,∴∠ABD=∠ADB=()()11180180904522BAD ︒-∠=︒-︒=︒,∴∠BDC =∠ADC-∠ADB=75°-45°=30°,故答案为:30°;(2)不会改变.理由如下:设∠CAD =2α°.∵AC =AD ,∴∠ADC =∠ACD =90°-α°,∵△ABC 为正三角形,∴∠CAD =60°,AC =AB =BC ,∴AB =AD ,∴∠ADB =∠ABD =90°-(30°+α°),∴∠BDC =∠ADC -∠ADB =30°;(3)在AE 上取点F ,使EF =EB ,∵EB =ED ,∴∠EBD =∠EDB =30°,∴∠BED =120°.∵AB =AD ,EB =ED ,∴AE 垂直平分BD ,∴∠BED =60°,∴△BEF 为正三角形,∴BE =BF ,∴∠EBF =∠CBA =60°,∴∠ABC-∠CBF=∠FBE-∠CBF ,∴∠ABF =∠CBE ,在△ABF 和△CBE 中,AB CB ABF CBE BE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CBE (SAS ),∴AF =CE ,∴AE =AF +EF =BE +CE .【点睛】本题考查等边三角形性质与判定,等腰三角形性质,角的和差计算,三角形全等判定与性质,线段垂直平分线的判定与性质,线段的和差计算,掌握等边三角形性质与判定,等腰三角形性质,角的和差计算,三角形全等判定与性质,线段垂直平分线的判定与性质,线段的和差计算,关键是引辅助线构造三角形全等.。
第6讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。
我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。
因此,我们有必要把这部分内容学得更扎实。
知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”) AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】在△ABC中,AB=AC,∠A﹣∠B=15°,则∠C的度数为()A.50°B.55°C.60°D.70°【答案】B【解析】根据已知可得到该三角形的为等腰三角形,根据等腰三角形两底角相等及三角形内角和公式即可求得∠C的度数.解:∵AB=AC,∠A﹣∠B=15°∴∠B=∠C,∠A=∠B+15°∵∠B+∠C+∠A=180°∴∠C=55°.故选:B.讲解用时:3分钟解题思路:此题考查了三角形内角和等腰三角形的性质;进行角的等量代换是解答本题的关键.教学建议:熟记等腰三角形中等边对等角,利用三角形内角和做题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】3.如图,在△ABC中,AB=AC,点D是AC上一点,BC=BD=AD,求∠A的大小?【答案】【解析】由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x,在△ABC中,用内角和定理列方程求解.解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又∵AB=AC可知,∴△ABC为等腰三角形,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.教学建议:熟记等腰三角形中等边对等角,利用三角形内角和做题.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题2】在△ABC中,AB=AC,那么在这个三角形中,三线重合的线段是()A.∠A的平分线,AB边上的中线,AB边上的高B.∠A的平分线,BC边上的中线,BC边上的高C.∠B的平分线,AC边上的中线,AC边上的高D.∠C的平分线,AB边上的中线,AB边上的高【答案】B【解析】等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.解:∵在△ABC中,AB=AC,∴∠A是顶角,∴∠A的平分线,BC边上的中线,BC边上的高相互重合.故选:B.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质.利用等腰三角形“三线合一”的性质时,首先要找到顶角.教学建议:熟悉等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】如图,在△ABC中,AB=AC,点D为BC的中点,则下列结论中错误的是()A.∠BAD=∠CAD B.AD⊥BC C.∠B=∠C D.∠BAC=∠B【答案】D【解析】由在△ABC中,AB=AC,点D为BC的中点,根据等边对等角与三线合一的性质,即可求得答案.解:∵AB=AC,点D为BC的中点,∴∠BAD=∠CAD,AD⊥BC,∠B=∠C.故A、B、C正确,D错误.故选:D.讲解用时:3分钟解题思路:此题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.教学建议:熟悉等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A.△ABD≌△ACD B.∠B=∠CC.AD是△ABC的中线D.△ABC是等边三角形【答案】D【解析】根据等腰三角形三线合一的性质,即可作出判断.解:∵在△ABC中,AB=AC,AD平分∠BAC,∴∠B=∠C,AD是△ABC的中线,高线,∴BD=DC,∠ADB=∠ADC=90°,∵在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(SAS),故A、B、C都成立,只有D不一定成立.故选:D.讲解用时:3分钟解题思路:考查了等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.[三线合一]教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC,AB=AC,BC=6cm,AD平分∠BAC,则BD= cm.【答案】3【解析】根据等腰三角形三线合一的性质可得BD=BC.解:∵AB=AC,AD平分∠BAC,∴BD=BC=×6=3cm.故答案为:3.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质,熟记等腰三角形三线合一是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质并应用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习3.2】如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD= .【答案】2【解析】根据△ABC是等边三角形可知AB=AC,再由BD⊥AC可知AD=AC,由此即可得出结论.解:∵△ABC是等边三角形,AB=4,∴AB=AC=4,∵BD⊥AC,∴AD=AC=×4=2.故答案为:2讲解用时:3分钟解题思路:本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质并应用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图,在△ABC中,AB=AC,D是BC边上的中点,且DE⊥AB,DF⊥AC.求证:∠1=∠2.【答案】∠1=∠2【解析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF,再根据等边对等角即可求解.证明:连接AD.∵点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE⊥AB,DF⊥AC.∴DE=DF(角平分线上的点到角两边的距离相等),∴∠1=∠2(等边对等角).讲解用时:4分钟解题思路:本题考查了等腰三角形的性质,利用等腰三角形三线合一的性质是解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质并应用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】如图,在△ABC中,AB=AC,DB=DC.求证:(1)∠BAD=∠CAD.(2)AD⊥BC.【答案】(1)∠BAD=∠CAD;(2)AD⊥BC.【解析】(1)利用“边边边”证明△ABD和△ACD全等,根据全等三角形对应角相等证明即可;(2)根据全等三角形对应角相等可得∠BAD=∠CAD,然后根据等腰三角形三线合一证明即可.证明:(1)在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD;(2)∵△ABD≌△ACD,∴∠BAD=∠CAD,又∵AB=AC,∴AD⊥BC.讲解用时:3分钟解题思路:本题考查了等腰三角形三线合一的性质,全等三角形的判定与性质,求出两个三角形全等是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质并应用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】△ABC中,AB=AC,中线BD将△ABC周长分成12和9两部分.求△ABC三边.【答案】8,8,5或6,6,9【解析】设AB=AC=2x,BC=y,则AD=BD=x,则有两种情况,根据等腰三角形的性质以及三角形三边关系解答.解:设AB=AC=2x,BC=y,则AD=BD=x,∵AC上的中线BD将这个三角形的周长分成12和9两部分,∴有两种情况:1、当3x=12,且x+y=9,解得x=4,y=5,∴三边长分别为8,8,5;2、当x+y=12且3x=9时,解得x=3,y=9,此时腰为6,三边长分别为6,6,9,综上,三角形的三边长为8,8,5或6,6,9.讲解用时:3分钟解题思路:本题考查了等腰三角形和三角形三边关系求解,注意要分两种情况讨论是正确解答本题的关键.教学建议:学会分情况讨论及掌握三角形的三边关系.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】有一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么底边长是多少?(2)能围成一边长为5cm的等腰三角形吗?说明理由.【答案】(1)3cm;(2)底边是5cm,腰长是8cm的等腰三角形【解析】(1)设底边长为xcm,表示出腰长,然后根据周长列出方程求解即可;(2)分5是底边和腰长两种情况讨论求解.解:(1)设底边长为xcm,则腰长为3xcm,根据题意得,x+3x+3x=21,解得x=3cm;(2)若5cm为底时,腰长=(21﹣5)=8cm,三角形的三边分别为5cm、8cm、8cm,能围成三角形,若5cm为腰时,底边=21﹣5×2=11,三角形的三边分别为5cm、5cm、11cm,∵5+5=10<11,∴不能围成三角形,综上所述,能围成一个底边是5cm,腰长是8cm的等腰三角形.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.教学建议:熟悉等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【答案】(1)△DEF是等腰三角形;(2)70°【解析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°讲解用时:3分钟解题思路:此题主要考查学生对等腰三角形的判定与性质的理解和掌握,此题主要应用了三角形内角和定理和平角是180°,因此有一定的难度,属于中档题.教学建议:通过证明两个三角形全等得到角相等,再利用等角对等边判断为等腰三角形是关键.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.(1)求证:△BCD是等腰三角形;(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)【答案】(1)△BCD是等腰三角形;(2)a﹣b【解析】(1)先由AB=AC,∠A=36°,可求∠B=∠ACB==72°,然后由DE是AC的垂直平分线,可得AD=DC,进而可得∠ACD=∠A=36°,然后根据外角的性质可求:∠CDB=∠ACD+∠A=72°,根据等角对等边可得:CD=CB,进而可证△BCD是等腰三角形;(2)由(1)知:AD=BD=CB=b,由△ABD的周长是a,可得AB=a﹣2b,由AB=AC,可得CD=a﹣3b,进而得到△BCD的周长=CD+BD+BC=a﹣3b+b+b=a﹣b.(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵DE是AC的垂直平分线,∴AD=DC,∴∠ACD=∠A=36°,∵∠CDB是△ADC的外角,∴∠CDB=∠ACD+∠A=72°,∴∠B=∠CDB,∴CB=CD,∴△BCD是等腰三角形;(2)∵AD=BD=CB=b,△ABD的周长是a,∴AB=a﹣2b,∵AB=AC,∴CD=a﹣3b,∴△BCD的周长长=CD+BD+BC=a﹣3b+b+b=a﹣b.讲解用时:3分钟解题思路:此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.教学建议:熟练掌握垂直平分线的性质、等腰三角形的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】如图,△ABC中,AB=AC,D是BC的中点,过A点的直线EF∥BC,且AE=AF,求证:DE=DF.【答案】DE=DF【解析】连接AD,先根据等腰三角形三线合一的性质得出AD⊥BC,再结合已知条件EF∥BC,得到AD⊥EF,又AE=AF,即AD垂直平分EF,然后根据线段垂直平分线的性质即可证明DE=DF.证明:如图,连接AD.∵△ABC中,AB=AC,D是BC的中点,∴AD⊥BC,∵EF∥BC,∴AD⊥EF,又AE=AF,∴AD垂直平分EF,∴DE=DF.讲解用时:4分钟解题思路:本题主要考查了等腰三角形的性质,线段垂直平分线的性质,难度适中.准确作出辅助线是解题的关键.教学建议:熟练掌握等腰三角形的性质、线段垂直平分线的性质并应用.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】如图.BD平分∠ABC,点E在AB边上,满足DE=BE.试判断DE与BC的位置关系,并证明你的结论.【答案】DE∥BC【解析】根据角平分线的定义可得∠1=∠2,根据等边对等角可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行解答.解:DE∥BC.理由如下:如图,∵BD平分∠ABC,∴∠1=∠2,∵DE=BE,∴∠1=∠3,∴DE∥BC.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质,角平分线的定义,平行线的判定,是基础题,用阿拉伯数字加弧线表示角更形象直观.教学建议:熟练掌握等腰三角形的性质并应用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.【答案】2.5【解析】求出∠CAD=∠BAD=∠EDA,推出AE=DE,求出∠ABD=∠EDB,推出BE=DE,求出AE=BE,根据直角三角形斜边上中线性质求出即可.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE=AB=2.5.讲解用时:4分钟解题思路:本题考查了平行线的性质,等腰三角形的性质和判定,直角三角形斜边上中线性质的应用,关键是求出DE=BE=AE.教学建议:熟练掌握等腰三角形的性质和判定并应用.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】如图,△ABC中,AB=AC,AD是∠BAC的平分线,交BC于D,过点B作BE⊥AC 于E,交AD于F,又知AF=2BD,△BCE与△AFE全等吗?为什么?【答案】全等【解析】根据等腰三角形的性质得到BC=2BD,AD⊥BC,由已知条件得到AF=BC,由垂直的定义得到∠AEF=∠BEC=90°,推出∠EAF=∠CBE,根据全等三角形的判定定理即可得到结论.解:△BCE与△AFE全等,理由:∵AB=AC,AD是∠BAC的平分线,∴BC=2BD,AD⊥BC,∴AF=BC,∵BE⊥AC于E,∴∠AEF=∠BEC=90°,∵∠AFE=∠BFD,∴∠EAF=∠CBE,在△BCE与△AFE中,,∴△BCE≌△AFE.讲解用时:3分钟解题思路:本题考查了全等三角形的判定,等腰三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.教学建议:熟练掌握全等三角形的判定和等腰三角形的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°【答案】A【解析】首先根据∠1=125°,求出∠ADE的度数;然后根据DE∥BC,AB=AC,可得AD=AE,∠C=∠AED,求出∠AED的度数,即可判断出∠C的度数是多少.解:∵∠1=125°,∴∠ADE=180°﹣125°=55°,∵DE∥BC,AB=AC,∴AD=AE,∠C=∠AED,∴∠AED=∠ADE=55°,又∵∠C=∠AED,∴∠C=55°.故选:A.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,在△ABC中,D为AB边上一点.BD=BC,AD=DC,∠B=36°.求∠ACB的度数.【答案】108°【解析】根据等腰三角形两底角相等求出∠BCD=∠BDC,再根据等边对等角和三角形的一个外角等于与它不相邻的两个内角的和求出∠ACD,然后相加即可.解:∵BD=BC,∠B=36°,∴∠BCD=∠BDC=(180°﹣∠B)=(180°﹣36°)=72°,∵AD=DC,∴∠A=∠ACD,∴∠ACD=∠BDC=×72°=36°,∴∠ACB=∠ACD+∠BCD=36°+72°=108°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】下列说法中正确的是()A.等腰三角形顶角的外角平分线与底边平行B.等腰三角形的高、中线、角平分线互相重合C.等腰三角形三条高都在三角形内D.等腰三角形的一边不可能是另一条边的两倍【答案】A【解析】从各选项提供的已知条件进行思考,根据等腰三角形的性质进行证明后直接选择答案,其中只有选项A是正确的.解:A正确,可以通过证明验证.如图所示,△ABC中,AB=AC,AE是BA的延长线,AF是∠EAC的角平分线求证:AF∥BC证明:∵AB=AC∴∠B=∠C∵AF是∠EAC的角平分线∴∠EAF=∠FAC∵∠EAC=∠B+∠C=∠EAF+∠FAC∴∠B=∠C=∠EAF=∠FAC∴AF∥BC∴选项A正确;其它选项无法证明是正确的.故选:A.讲解用时:4分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】如图,已知△ABC中,AB=AC,BC=6,AM平分∠BAC,D为AC的中点,E为BC延长线上一点,且CE=BC.(1)求ME的长;(2)求证:△DMC是等腰三角形.【答案】(1)3;(2)△DMC是等腰三角形【解析】(1)由条件可知M是BC的中点,可知BM=CM=CE=3;(2)由条件可知DM为Rt△AMC斜边上的中线,可得DM=DC,则可证得△DMC是等腰三角形.(1)解:∵AB=AC,AM平分∠BAC,∴BM=CM=BC=CE=3,∴ME=MC+CE=3+3=6;(2)证明:∵AB=AC,AM平分∠BAC,∴AM⊥BC,∵D为AC中点,∴DM=DC,∴△DMC是等腰三角形.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018。
第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。
第1课 等腰三角形一、基本内容三角形按照边是否相等分类,两边(角)相等的三角形是等腰三角形。
等腰三角形是轴对称图形,因此得到2个重要的性质:两个底角相等、“三线合一”。
等边三角形是特殊的等腰三角形,有3条对称轴。
解决等腰三角形的有关问题,一般利用全等,有时需要运用一些几何变换。
证明线段相等或者角相等的问题,可以考虑将2个线段或角转化到同一个图形中去,然后利用等腰三角形的性质完成证明。
二、例题例1、等腰三角形一条腰上的高与另一腰的夹角是500,求三角形的3个内角的度数。
例2、将下列三角形分成2个等腰三角形。
CBAAB=ACA BC72︒72︒36︒CBA 36︒36︒108︒例3、将正三角形分成4个等腰三角形。
(三种方法)CCC例4、 Rt △ABC 中,∠C=900,∠A=300,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,符合条件的P 有几个?在图上找出来。
例5、在平面上取4个点,使得这4点之间的距离只有2个不同的数值,则这4点的取法有多少种?请画图说明。
例6、在△ABC中,AB=AC,直线DE交AB、BC于点D、F,交AC延长线于点E,DF=EF.求证:BD=CE例7、等边三角形ABC中,延长BA到D,延长BC到E,若DC=DE.求证AD=AC+CE.例8、△ABC中,D是BC中点,若∠BAD=30°,∠BAC=120°.求证:AB=2AC.例9、在△ABC 中,AB=2AC ,∠1=∠2,DA=DB .求证:DC ⊥AC .例10、如图,△ABC 中,AD ⊥BC 于D ,AB+BD=CD,求证:∠B=2∠C.D例11、△ABC 中,AB=AC,D 、E 分别是BC 、AC 上的点,问∠BAD 和∠CDE 满足什么关系时,AD=AE.写出推理过程。
BCD例12、如图,在△ABC 中,AC ⊥BC ,D 、E 为AB 上的点,且AD=AC ,BE=BC ,求∠ECD 的度数。
1
A R Q
学科教师辅导讲义
教学过程 一:选择题
1.等腰三角形底边长为
,一腰上的中线把其周长分为两部分的差为
.则腰长为 。
2、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为( )
A 、50°
B 、130° C、50°或130° D、55°或130°
3、如图,△ABC 中,AB=AC ,过AC 上一点作DE ⊥AC ,EF ⊥BC ,若∠BDE=140°,
则∠DEF=( )
(A )55° (B )60° (C )65° (D )70°
B
A
D
C F
E
B '
B
C
A '
(第3题) (第4题) (第5题)
4、如图,在△ABC 中,∠A :∠B :∠C=3:5:10,又△A ′B ′C•′≌△ABC ,
则∠BCA ′:∠BCB ′等于( )
A 、1:2 (
B )1:3 (
C )2:3 (
D )1:4
5、如图,CD 是ABC Rt ∆斜边AB 上的高,将∆BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A
等于( )
A 、25
B 、30
C 、45
D 、60 6、下列能断定△ABC 为等腰三角形的是( )
A 、∠A=30º、∠B=60º
B 、∠A=50º、∠B=80º
C 、AB=AC=2,BC=4
D 、AB=3、BC=7,周长为13
7、正三角形ABC 所在平面内有一点P ,使得⊿PAB 、⊿PBC 、⊿PCA 都是等腰三角形,则这样的P
点有( )
A 、1个
B 、4个
C 、7个 C 、10个
1、如图,在△ABC 中, P 是的BC 边上一点,过点P 作BC 的垂线,交AB 于点Q ,交CA 的延
2
长线于点R ,若AQ=AR ,则△ABC 是等腰三角形吗?请说明理由。
2、如图所示,△ABC 中,∠ABC=100°,AM=AN ,CN=CP ,求∠MNP 的度数.
A
C
M
P
N
3、如图所示,已知:Rt △ABC 中,∠C=90°,AC=BC ,AD 是∠A 的平分线. 求证:AC+CD=AB .
.c
B
A
D C
4、如图所示:∠ABC 的平分线BF 与△ABC 中∠ACB•的相邻外角的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,则:
①图中有几个等腰三角形?为什么?②BD ,CE ,DE 之间存在着什么关系?请证明.
B A D
C
F
E
5.如图所示,在△ABC 中,AB=AC ,E 在AC 上,且AD=AE ,DE 的延长线与BC 相交于F ,试求∠DFC 的度数.
B
C
A
E
D
F
6.如图,△ABC 是边长为2的等边三角形,点D 是BC 边上的任意点,DE ⊥AB 于E 点,
DF ⊥AC 于F 点,则DE+DF= .
C
B
3
7、如图,线段OD 的一个端点O 在直线a 上,以OD 为一边画等腰三角形,并且使另一个顶点在直线a 上,这样的等腰三角形能画多少个?(用直尺与....圆规找出相应的等腰三角形............)
8、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?
9、按下面的方法折纸,然后思考问题:
连结AF ,你知道∆AEF 是什么三角形吗?请说明理由。
10、如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD , (1)求证:△BCE ≌△DCF; (4分)
(2)若AB=21,AD=9,BC=CD=10,求AC 的长。
(4分)
11、如图,在ABC Rt ∆中,090=∠ACB ,AC=BC=10,CD 是射线,060=∠BCF ,点D 在AB 上,AF 、BE 分别垂直于CD (或延长线)于F 、E ,求EF 的长.
观测点 B A C E F C
E O D a D
A
B
C
E
F A
C
D F
E 第12题图
A
E P Q
第 11题
第13题第 14题12、如图,等边△ABC中,BD=CE,AD与BE相交于点P,
则∠APE的度数是()A.45° B.55° C.60° D.75°
13已知,△ABC是等边三角形,D、E分别是BC、AC边上的点,AE=CD,连接AD、BE 相交于点P,BQ⊥AD于Q
(1)求∠BPD的度数;
(2)若PQ=3,PE=1,求AD的长
14、如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN 的周长为
4。