初二等腰三角形讲义
- 格式:docx
- 大小:358.63 KB
- 文档页数:12
初二数学讲义 等腰三角形的性质及应用等腰三角形的性质:性质1▲等腰三角形的两个底角相等。
(简写成: 等边对等角. )性质2▲等腰三角形的 、底边上的 、底边上的 互相重合。
(简写成:等腰三角形的“三线合一”)性质3▲ 等腰三角形是轴对称图形,底边的垂直平分线是它的对称轴.用几何符号语言表达:性质1性质2注意:△ABC 中,如果AB =AC ,D 在BC 上,那么由条件①∠1=∠2,②AD ⊥AC ,③BD =CD 中的任意一个都可以推出另外两个.(为了方便记忆可以说成“知一求二” )等腰三角形的三边的关系,三个内角的关系1.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cm B.12cm C.15cm D.12cm 或15cm2.已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( )A .4.8cmB .9.6cmC .2.4cmD .1.2cm3.若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒ B.80︒ C.65︒或50︒ D.50︒或80︒∵AB =AC∴∠B =∠C (等边对等角)∵AB =AC ,AD ⊥BC ,∴∠1=∠____,BD =_____;(等腰三角形的“三线合一”)∵AB =AC ,∠1=∠2, ∴AD ⊥_____,BD =______;(等腰三角形的“三线合一”) ∵AB =AC ,BD =CD , ∴∠1=∠___,AD ⊥_____.(等腰三角形的“三线合一”)【例1】如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,求∠CBD的度数.【例2】在ABC∆中,AB AC=,BC BD ED EA===.求A∠的度数.【例3】已知等腰三角形一腰上的高与另一腰的夹角为60︒,求三角形三个内角的度数.【例4】如图所示,已知ABC∆中,D、E为BC边上的点,且AD AE=,BD EC=,求证:AB AC=.AB CD E例题精讲【例5】ABC ∆中,22.5B ∠=︒,边AB 的垂直平分线交BC 于D ,DF AC ⊥于F ,交BC 边上的高于G . 求证:EG EC =.1.已知等腰三角形一腰上的高与另一腰的夹角为50︒,求三角形三个内角的度数.2. 如图,ABC △中,AB AC =,36A ∠=,DE 垂直平分AC ,求BCD ∠的度数.3. 如图,点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE 。
等腰三角形性质及分类讨论(讲义)一、知识点睛1. 在等腰三角形中,顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),这是等腰三角形的重要性质.2. 在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,尝试构造等腰三角形.3. 分类讨论的类型: ①定义法则.如绝对值,平方,完全平方式等. ②关键词不明确.如等腰三角形的角(底角与顶角),边(底边与腰)等. ③位置不确定.如线段端点的位置,角的位置,高等. ④对应关系不确定.如两部分的差,全等三角形对应关系等. 4. 分类讨论题目解题要点: ①辨识类型;②画出各种类型的图形并求解; ③根据标准进行取舍.标准包括限制条件,实际意义等.二、精讲精练1. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE 交于点O .求证:AB =AC .O EC DB2. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,求BD 的长.AED3.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CF平分∠ACB,交AB于F,AF=BF.求证:BC=CD.AF4.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于点F.求证:EC平分∠DEF.GEBFC A5.(1)若4x2-(m-1)xy+9y2是完全平方式,则m=_________.(2)若x2-4xy+ny2是完全平方式,则n=_________.(3)若9x2-12xy+(m+1)2y2是完全平方式,则m=_________.6.等腰三角形的一个角是另一个角的4倍,则顶角的度数为______________.7.已知一等腰三角形的三边分别是3x-1,x+1,5,则x=________.8.在直线l上任取一点A,截取AB=2cm,再截取AC=3cm,则线段BC的长为______________.9.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为__________.10.若等腰三角形的底边长为5cm,一腰上的中线把其周长分成的两部分之差为3cm,则腰长为__________.11.已知等腰三角形的周长为20cm,两边的差为2cm,则底边长为__________.12.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为30º,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.B30°lA13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△P AB为等腰三角形,找出所有符合条件的点P.AB C三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明略(提示:连接BC,证明AC=BC,AB=BC)2.10cm(提示:延长CE交BA的延长线于点F,证明BD=2CE)3.证明略(提示:延长CF到E,使CF=EF,连接BE,证明△AFC≌△BEF,再证明BE=BC)4.证明略(提示:利用等腰三角形“三线合一”,证明AD⊥EC,再证明ED=CD,利用平行导角)5.(1)-11,13 (2)4 (3)1,-36.120°或20°7. 28.1cm或5cm9.65°或115°10. 8cm 11. 8cm 或163cm 12. 作图略 13. 作图略等腰三角形性质及分类讨论(随堂测试)1. 若x 2-(a+1)xy +4y 2是完全平方式,则a =_________.2. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形顶角的度数为______________.3. 如图,在△ABC 中,D ,E 为BC 上的点,AC =CD ,CF ⊥AD 交AD 于G ,交AB 于F ,AD 平分∠BAE . 求证:DF ∥AE .【参考答案】1.3或-52.50°或130°3.证明略;(利用等腰三角形“三线合一”得到AG =DG ,得到AF =FD ,证得∠F AD =∠FDA ,由角平分线可得∠FDA =∠EAD ,所以DF ∥AE ) FGEDA等腰三角形性质及分类讨论(作业)14.已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.15.已知:如图,在等边△ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=ME.16.如图,在△ABC中,D为BC上一点,DE⊥AB,DF⊥AC,垂足分别为E,F,DE平分∠ADB,AF=FC,连接AD.M DAF DAE求证:BD=CD.AFE17.若4x2-axy+16y2是完全平方式,则a=_________.18.在直线l上任取一点A,截取AB=8cm,点C为AB中点,截取CD=5cm,则线段AD的长为______________.19.若等腰三角形的一个角比另一个角大30°,则此等腰三角形顶角的度数为______________.20.已知一等腰三角形的三边分别是5x 3,3x+3,27,则x=__________.21.等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则顶角的度数为__________.22.已知等腰三角形的周长为24cm,两边的差为3cm,则底边长为__________.23.在已知直线l上找一点C,和直线外的A,B两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l上找出所有符合条件的点C.l【参考答案】1.证明略(提示:延长AD到H,使DH=AD,连接BH,证明△BHD≌△CAD,导出AB=AC,再证明△BED≌△CFD)2.证明略(提示:连接BD,利用“三线合一”证明∠DBE=∠E=30°)3.证明略(提示:证明AD=DC,AD=BD)4.±165. 1cm 或9cm6. 80°或40°7. 6或88. 60°或120°9. 10cm 或6cm 10. 点C 有5个,作图略等腰三角形(讲义)一、知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________.二、精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.ABC DABDC第2题图第3题图3. 如图,在等腰△ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =_________.4. 如图,在Rt △ABC 中,∠B =90°,DE 垂60°108°BA C ABC A BCA直平分AC ,交AC 于D ,交BC 于E ,连接AE ,若 ∠BAE :∠BAC =1:5,则∠C =_____.5. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC . (1)若∠ADE =80°,则∠DEB =________.(2)若F 为BE 中点,则DF 与BE 的位置关系是________.C DAB EF6. 已知:如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE =CD ,DM ⊥BC 于M . 求证:M 是BE 的中点.7. 已知:如图,在△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E ,使AE =AD ,连接DE .求证:DE ⊥BC .E DCAECMAD B8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.11. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.12. 若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.13. 已知:如图,线段AB 的端点A 在直线l 上(AB 与l 不垂直),请在直线l上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.14.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】一、知识点睛1.有两边相等的三角形叫做等腰三角形.2.等腰三角形是轴对称图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.3.等腰三角形的两个底角相等,简称等边对等角.如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边.4.三边都相等的三角形是等边三角形.等边三角形三边都相等,三个内角都是60°.1.60°,60°;45°,45°;36°,36°2.80°3.108°4.40°5.(1)40°;(2)DF⊥BE6.提示:连接BD,由三线合一得∠DBC=∠E=30°,从而得到BD=ED,△BDE是等腰三角形,利用三线合一可以知道底边BE上的高DM也是BE边上的中线,所以M是BE的中点.7.提示:延长ED与BC交于点F,根据已知条件可以知道△AED和△ABC是等腰三角形,设∠E=α,可以表示出∠CDF=α,∠BAC=2α,∠C=90 α,得到∠EFC=90°,所以DE⊥BC.8.提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE.9.3cm10.5cm或353cm11.40°或100°12.50°或130°13.这样的点有4个14.这样的点有2个等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.DC2. 等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .E DCB A【参考答案】1. 20°2. 10cm 或8cm3. 提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得到BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD .等腰三角形(作业)1. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D ,点E 在BC 边上,且BD =BE .若∠A =84°,则∠DEC =______.E DC BA2. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.DCB AN MEA第2题图第3题图3. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N .若BM +CN =9,则线段MN 的长为( ) A .6B .7C .8D .94. 如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于D ,12CD BC.求证:∠ACD =∠B .DB A5. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .DBAP6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE . 求证:BD =CE .AB CD E7. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为________. 8. 等腰三角形的一个角比另一个角大30°,则这个三角形的顶角的度数为_____________.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.1.78°2.36°3. D4.提示:过点A作AE⊥BC于E,可证Rt△ADC≌Rt△AEB(HL),从而得到∠ACD=∠B.5.提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC.6.提示:根据等边对等角可以得到∠B=∠C,∠ADE=∠AED,进而可以得到∠BAD=∠CAE,从而证明△ABD≌△ACE(ASA),根据全等三角形对应边相等,可以得到BD=CE.7.208.80°或40°9.共有4个,图略.。
13.3等腰三角形-13.4最短路径1.等腰三角形的性质性质1:等腰三角形的两个底角__________(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互__________(简写成“三线合一”).等腰三角形的其他性质:(1)等腰三角形两腰上的中线、高分别相等.(2)等腰三角形两底角的平分线相等.(3)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.(4)当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定判定等腰三角形的方法:(1)定义法:有两边__________的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对__________”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).【注意】(1)“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.(2)“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.3.等边三角形及其性质等边三角形的概念:三边都相等的三角形是__________三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.【注意】(1)等边三角形是轴对称图形,它有三条对称轴;K—重点分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.【例1】如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形60︒【例2】已知等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的顶角是30︒60︒A.B.150︒30︒150︒C.D.或【例3】如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.二、等边三角形的性质和判定判定等边三角形时常用的选择方法:若已知三边关系,一般选用(1);若已知三角关系,一般选用(2);若已知该三角形是等腰三角形,一般选用(3).【例4】下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【例5】如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.三、含30°角的直角三角形的性质含30°角的直角三角形的性质是求线段长度和证明线段倍分关系的重要依据.【例6】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm四、最短路径问题通常利用轴对称变换将不在一条直线上的两条或多条线段转化到一条直线上,从而作出最短路径的选择.【例7】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.801.等腰三角形的一个内角是,则它顶角的度数是A .B .或C .或D .80︒80︒20︒80︒50︒20︒2.一个等边三角形的对称轴共有A .1条B .2条C .3条D .6条3.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于A .30°B .40°C .45°D .36°4.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 长为A .6B .9C .3D .85.如图,△ABC 是等边三角形,P 为BC 上一点,在AC 上取一点D ,使AD =AP ,且∠APD =70°,则∠PAB 的度数是A .10°B .15°C .20°D .25°6.如图,在中,为的中点,,则__________.ABC △AB AC D =,BC 35BAD ∠=︒C ∠=7.等腰三角形的一腰的中线把三角形的周长分成16 cm 和12 cm ,则等腰三角形的底边长为______.分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,在△ABC 中,D 在边AC 上,如果AB =BD =DC ,且∠C =40°,那么∠A =__________°.9.如图,已知在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC ,试说明:AO ⊥BC .10.如图,在△ABC 中,,是边上的中线,于,试说AB AC =AD BC BE AE ⊥E 明.CBE BAD ∠=∠11.已知在△ABC 中,AB =5,BC =2,且AC 的长为奇数.(1)求△ABC 的周长;(2)判断△ABC 的形状.12.如图,在△ABC 中,AB =AC ,∠BAC =40°,分别以AB ,AC 为边作两个等腰三角形ABD 和ACE ,且AB =AD ,AC =AE ,∠BAD =∠CAE =90°.。
《等腰三角形》讲义一、等腰三角形的定义等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
二、等腰三角形的性质1、两腰相等这是等腰三角形最基本的特征,也是其名称的由来。
2、两底角相等这是等腰三角形的重要性质。
可以通过折叠、全等三角形证明等方法来理解和证明。
3、三线合一等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合。
这一性质在解决与等腰三角形相关的几何问题时非常有用。
4、轴对称性等腰三角形是轴对称图形,对称轴为底边上的高(或顶角平分线或底边的中线)所在的直线。
三、等腰三角形的判定1、定义法如果一个三角形有两条边相等,那么这个三角形就是等腰三角形。
2、等角对等边如果一个三角形的两个角相等,那么这两个角所对的边也相等。
四、等腰三角形中的重要线段1、顶角平分线将顶角平均分成两个相等的角,并且这条平分线也是等腰三角形的对称轴之一。
2、底边上的中线将底边平分,同时这条中线也是底边上的高。
3、底边上的高垂直于底边,将等腰三角形分成两个全等的直角三角形。
五、等腰三角形的周长和面积1、周长等腰三角形的周长等于两腰长之和加上底边的长度。
2、面积可以使用多种方法计算等腰三角形的面积。
常见的方法是使用底乘以高除以 2 的公式。
六、等腰三角形在实际生活中的应用1、建筑设计在一些建筑结构中,等腰三角形的稳定性和对称性被充分利用,以增加结构的强度和美观度。
2、服装设计某些服装的剪裁和图案设计会运用等腰三角形的元素,展现独特的风格。
3、道路交通标志部分交通标志的形状采用等腰三角形,以引起驾驶员的注意并传达特定的信息。
七、等腰三角形相关的常见题型1、角度计算已知等腰三角形的顶角或底角的度数,求其他角的度数。
2、边长计算给出等腰三角形的周长和某些边的关系,求各边的长度。
3、证明题证明一个三角形是等腰三角形,或者利用等腰三角形的性质证明其他结论。
等腰三角形的性质知识点一、等腰三角形的概念与性质顾名思义,至少有两边相等的三角形叫等腰三角形,这两条边就是等腰三角形的“腰”,另一边叫做“底边”腰和底边的夹角叫做“底角”,两腰的夹角叫做“顶角”如图,过等腰三角形ABC的顶点A,作垂线AD⊥BC于D,则△ADB与△ADC有什么关系?为什么?等腰三角形性质总结:1、两腰相等2、两底角相等3、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(简称:三线合一)例1、等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A、50°,50°,80°B、80°,80°,20°C、100°,100°,20°D、50°,50°,80°或80°,80°,20°例2、等腰三角形中的一个角等于100°,则另两个内角的度数分别为( )A 、40°,40°B 、100°,20°C 、50°,50°D 、40°,40°或100°,20°例3、一个等腰三角形的一边是6,周长是12,则它的三边长分别为_____________1、已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A 、55°,55°B 、70°,40°C 、55°,55°或70°,40°D 、以上都不对2、在下列命题中,正确的是( )A 、等腰三角形是锐角三角形B 、等腰三角形两腰上的高相等C 、两个等腰直角三角形全等D 、等腰三角形的角平分线是中线3、已知等腰三角形的一边长为5cm ,另一边长为6cm ,则它的周长为( )A 、11cmB 、17cmC 、16cmD 、16cm 或17cm4、在ABC ∆中,x BC AC AB ==,,若ABC ∆的周长为24,则x 的取值范围是()A 、121≤≤xB 、120≤<xC 、120<<xD 、126<<x5、三角形一边上的高和这边上的中线重合,则这个三角形一定是( )A 、锐角三角形B 、钝角三角形C 、等腰三角形D 、等边三角形6、若△ABC三条边的长度分别为m,n,p,且()02=-+-pnnm,则这个三角形为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形7、有一个内角为40°的等腰三角形的另外两个内角的度数为______.8、有一个内角为140°的等腰三角形的另外两个内角的度数为________.9、如果△ABC中,AB=AC,它的两边长为2cm和4cm,那么它的周长为________.10、如果等腰三角形的三边均为整数且它的周长为cm10,那么它的三边长为______.11、如果等腰三角形的周长为cm18,那么它的底边x的取值范围是_______.12、已知等腰三角形的一个顶角与一个底角的和为︒110,则其顶角的度数为______.13、等边三角形的周长为cm15,则它的边长为________14、在等腰三角形中,如果顶角是一个底角的2倍,那么顶角等于_____度;如果一个底角是顶角的2倍,那么顶角等于_______度.15、如图,AB=AC,AD⊥BC交BC于点D,BD=5cm,那么BC的长为_________.16、如图,D是等腰三角形ABC的腰AC上一点,DE⊥AC于E,EF⊥AB于F,若∠BDE=158°,则∠DEF=_____.17、如图,在△ABC中,AB=AC,∠A=30°,BD是△ABC的角平分线,求∠ADB的度数。
课题等腰三角形教学目的1、、熟练掌握等腰三角形的性质和判定2、熟练等腰三角形“三线合一”的性质重点、难点重点:等腰三角形的性质难点:“三线合一”的应用教学内容基础知识巩固:1 .等腰三角形定义:有两条边相等的三角形叫作等腰三角形2.等腰三角形的性质:1.有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2.定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相3.等腰三角形的判定:等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
1.有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3.等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
初二第一学期讲义(2)等腰三角形[知识要点]1. 等腰三角形的性质:“同一三角形中,等边对等角”,“三线合一”。
(右图是基本图形) 2.等腰三角形的判定:“同一三角形中,等角对等边” “角平分线”+“平行线”==》等腰三角形 3.“两圆一线”是已知两点找第三点的好方法。
学好几何“三部曲”一、建立自己的“基本图形库”(基础库和经验库);二、锻炼自己在复杂图形中发现“基本图形”的能力;三、当“基本图形”不完整时,通过添加适当的辅助线把基本图形补充完整。
[例题讲解]例1 若等腰三角形的一个角为40°,则其它两个角分别是 。
练习:若等腰三角形的一个角为100°,则其它两个角分别是 。
拓展:等腰△ABC 中,与∠A 相邻的外角是100°,则∠B 的度数是 。
例2 等腰三角形一边长是10cm ,另一边长是6cm ,则它的周长是( ) A .26cm B .22cmC .16cmD .22cm 或26cm练习:若等腰三角形的两边长分别为9cm 和4cm ,求其周长例3 已知等腰三角形的周长为20cm ,一边长为8cm ,则其它两边长分别是 . 练习:若等腰三角形周长为20cm ,一边长为4cm ,求其它两边长分别是拓展: 有一个等腰三角形,三边分别是3x -2,4x -3,6-2x ,等腰三角形的周长是 例4 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为 练习: 已知等腰三角形△ABC 中,BC 边上的高12AD BC,求∠BAC 的度数.拓展:已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰三角形,一共可以作出 个例5:如图①,△ABC 中,AB=AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .试回答:(1)图中等腰三角形有 个.猜想:EF 与BE 、CF 之间的关系是 ________ . (2)如图②,若AB ≠AC ,图中等腰三角形有 ____个.(1)中EF 与BE 、CF 间的关系还存在吗? (3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.C例6:如图,△ABC中,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC.求证:EF∥AB.巩固练习:1.若等腰三角形的一个外角为70°,则它的其它两个角分别为_________________度2.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为_____________________3.等腰三角形是对称图形,它的对称轴是所在的直线。
专题17等腰三角形的核心知识点精讲1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.考点1:等腰三角形的性质与判定考点2:等边三角形的性质与判定性质 1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形,有2条对称轴判定 1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式,其中a 是底边常,hs 是底边上的高性质 1.三条边相等2.三个内角相等,且每个内角都等于60°3.等边三角形是轴对称图形,有3条对称轴判定 1.三条边都相等的三角形是等边三角形2.三个角相等的三角形是等边三角形3.有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长,h 是任意边上的高考点3:线段垂直平分线(1)线段垂直平分线的作图1.分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C 、D 两点;2.作直线CD ,CD 为所求直线(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上【题型1:等腰三角形的性质和判定】【典例1】(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为()A .25B .22C .19D .18【答案】C 【解答】解:由题意可得,MN 垂直平分BC ,∴DB =DC ,∵△ABD 的周长是AB +BD +AD ,∴AB +BD +AD =AB +DC +AD =AB +AC ,∵AB =7,AC =12,∴AB +AC =19,∴△ABD 的周长是19,故选:C .1.(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°【答案】C【解答】解:当等腰三角形的顶角为110°时,则它的底角==35°,故选:C.2.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D【解答】解:由题意得,解得,∵a2+b2=c2,且a=b,∴△ABC为等腰直角三角形,故选:D.3.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.【答案】(1)见解析;(2)CD=ED,理由见解析.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠CBD=∠EBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB.(2)解:CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC,∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC,∴∠ADE=∠AED,∴AD=AE,∴CD=BE,由(1)得,∠EBD=∠EDB,∴BE=DE,∴CD=ED.【题型2:等边三角形的性质和判定】【典例2】(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交B C的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°【答案】C【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,故选:C1.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°【答案】A【解答】解:∵△ABC为等边三角形,∴∠A=60°,∵∠A+∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△B OC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×12+=,∴△AOB与△BOC的面积之和为S△BOC故选:C.3.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是1+.【答案】1+.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD==,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.【题型3:线段的垂直平分线】【典例3】(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是13.【答案】13.【解答】解:∵DE是BC的垂直平分线.∴BD=CD,∴AC=AD+CD=AD+BD,∴△ABD的周长=AB+AD+BD=AB+AC=5+8=13,故答案为:13.1.(2023•吉林)如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为55度.【答案】55.【解答】解:∵AB=AC.∴△ABC是等腰三角形,∵分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.∴AE垂直平分BC,∴AE是∠BAC的平分线,∴∠BAE=∠BAC=55°.故答案为:55.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若A B=4,则DC的长是4.【答案】4.【解答】解:∵∠B=∠ADB,AB=4,∴AD=AB=4,∵DE是AC的垂直平分线,∴DC=AD=4,故答案为:4.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是40°.【答案】40°.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.一.选择题(共9小题)1.若等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【答案】C【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.2.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°【答案】D【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,∵AD是等边△ABC的一条中线,∴AD⊥BC,∠CAD=∠BAC=30°,∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠AED+∠CAD=180°,∴∠ADE=75°,∴∠EDC=90°﹣75°=15°,故选:D.3.如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A.AB,AC两边中线的交点处B.AB,AC两边高线的交点处C.∠B与∠C这两个角的角平分线的交点处D.AB,AC两边的垂直平分线的交点处【答案】D【解答】解:∵生活超市到这三个居民小区的距离相等,∴生活超市应建在△ABC的三边的垂直平分线的交点处.故选:D.4.在△ABC中,若AB=AC=3,∠B=60°,则BC的值为()A.2B.3C.4D.5【答案】B【解答】解:∵AB=AC,∠B=60°,∴△ABC为等边三角形,∴BC=AB=3.故选:B.5.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.22【答案】C【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=20,即△AEF的周长为20,故选:C.6.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.10【答案】C【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴BD+CD=AC=10.∴BC=△BDC的周长﹣(BD+CD)=18﹣10=8,故选:C.7.如图,在△ABC中,∠A=90°,边AB的垂直平分线交AB于点D,交BC于点E,已知BE=3,则B C长为()A.5B.6C.7D.8【答案】B【解答】解:如图所示,连接AE,∵DE是AB的垂直平分线,∴EA=EB,∴∠B=∠EAB,∵∠A=90°,∴∠B+∠C=90°,∠BAE+∠CAE=90°,∴∠CAE=∠C,∴EA=EC,∴EC=EB,∴BC=BE+CE=2BE=6,故选:B.8.如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点F,若∠BAC=140°,则∠EAF的度数为()A.95°B.100°C.105°D.110°【答案】B【解答】解:∵∠BAC=140°,∴∠B+∠C=180°﹣∠BAC=40°,∵AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,∴EA=EB,FA=FC,∴∠B=∠BAE,∠C=∠FAC,∴∠BAE+∠FAC=40°,∴∠EAF=∠BAC﹣(∠BAE+∠FAC)=100°,故选:B.9.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE的度数为()A.20°B.25°C.30°D.35°【答案】C【解答】解:∵P是等边△ABC的边AC的中点,∴BP平分∠ABC,∠ABC=60°=∠ACB,∴∠PBC=30°,∵PE=PB,∴∠PBC=∠E=30°,∴∠CPE=∠ACB﹣∠E=30°,故选:C.二.填空题(共6小题)10.如图所示,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交A C于点E,则∠EBC的度数是18度.【答案】见试题解答内容【解答】解:∵DE是线段AB的垂直平分线∴AE=BE∵∠C=90°,∠A=36°∴∠EBA=∠A=36°∴∠EBC=90°﹣36°﹣36°=18°.11.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC与点E,∠A=∠ABE.若AC=7,BC=4,则BD的长为.【答案】.【解答】解:∵CD平分∠ACB,∴∠BCD=∠ECD,∵BE⊥CD,∴∠BDC=∠EDC=90°,∵CD=CD,∴△BDC≌△EDC(ASA),∴BC=CE=4,BD=DE,又∵∠A=∠ABE,∴AE=BE,∵AC=7,BC=4,∴AE=AC﹣CE=3,∴BE=AE=3,∴BD=BE=,故答案为:.12.如图,在等边三角形ABC中,AD⊥BC,垂足为D,则∠BAD=30°.【答案】30.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=∠ADB﹣∠B=30°;故答案为30.13.如图,在边长为4的等边△ABC中,点P为BC边上任意一点,PE⊥AB于点,PF⊥AC于点F,则PE+PF的长度和为2.【答案】2.【解答】解:如图所示,连接AP,作CD⊥AB交AB于点D,=S△ABP+S△ACP,则S△ABC即AB•CD=AB•PE+AC•PF,∵△ABC为等边三角形,∴AB=AC,∴CD=PE+PF,∵AB=AC=BC=4,CD⊥AB,∴,∴,∴,故答案为:.14.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于点D.若BC=9,AD=5,则△ABD的面积为.【答案】.【解答】解:∵AB的垂直平分线交BC于点D,∴DB=DA=5,∴CD=BC﹣BD=9﹣5=4,在Rt△ACD中,∵∠C=90°,∴AC===3,=×5×3=.∴S△ABD故答案为:.15.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为2.【答案】见试题解答内容【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=4,∴DE=.故答案为:2.三.解答题(共3小题)16.已知,如图,△ABC是等边三角形,D是边AC的中点,E是BC延长线上的一点,DB=DE.求∠CD E的度数.【答案】30°.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵D是边AC的中点,∴,∵DB=DE,∴∠E=∠DBC,∴∠E=30°,∵∠BCD=60°,∴∠CDE=∠BCD﹣∠E=30°.17.图①中所示的遮阳伞,伞柄垂直于地面,其示意图如图②.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN,CM=CN.(1)求证:PC垂直平分MN;(2)若CN=PN=60cm,当∠CPN=60°时,求AP的值.【答案】(1)见解析;(2)60cm.【解答】(1)证明:在△CMP和△CNP中,,∴△CMP≌△CNP(SSS),∴∠MPB=∠NPB,∵PM=PN,∴△PMN是等腰三角形,∴PB⊥MN,BM=BN,∴PC垂直平分MN;(2)解:∵CN=PN=60cm,∴当伞收紧时,点P与点A重合,∴AC=CN+PN=120cm,当∠CPN=60°时,∵CN=PN,∴△CPN是等边三角形,∴PC=PN=60cm,∴AP=AC﹣PC=60cm.18.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为20cm,AC=7cm,则DC的长为多少?【答案】(1)见解析;(2).【解答】(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为20cm,∴AB+BC+AC=20cm,∵AC=7cm,∴AB+BC=13cm,∵AB=EC,BD=DE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=13cm∴.一.选择题(共5小题)1.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°【答案】C【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠E=∠DFE=15°.故选:C.2.如图,用一张矩形纸片DEFG覆盖等边△ABC,且DG∥BC,若边AB被DG、EF三等分,则△ABC被覆盖(阴影部分)的面积是未被覆盖的面积的()A.B.C.D.【答案】A【解答】解:如图:DG交AB于M,交AC于L,EF交AB于N,AC于K,∵DG∥BC,边AB被DG、EF三等分,∴△AML∽△ANK,△ABC∽△ANK,∴BP=,,∴,,=9a,设S△ABC=a,S△ANK=4a,则S△AML=4a﹣a=3a,∴S四边形MNKL∴未被覆盖的面积为:9a﹣3a=6a,△A B C被覆盖(阴影部分)的面积是未被覆盖的面积,故选:A.3.如图,在等边三角形ABC中,AB=AC=BC=10cm,DC=4cm.如果点M,N都以2cm/s的速度运动,点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动.它们同时出发,当两点运动时间为t秒时,△BMN是一个直角三角形,则t的值为()A.B.C.D.【答案】D【解答】解:∵点M、N都以2cm/s的速度运动则CM=2t,BM=10﹣2t,BN=2t,当∠BMN=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BNM=30°,∴BN=2BM,即2t=2×(10﹣2t),解得:,当∠BNM=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BMN=30°,∴BM=2BN,即2×2t=(10﹣2t),解得:,综上所述,t的值为或时,△BMN是一个直角三角形.故选:D.4.如图,在等边△ABC中,AB=5,点D在AB上,且BD=1,点E、F分别是BC、AC上的点,连接DE,EF,如果∠DEF=60°,DE=EF,那么BE的长是()A.3B.3.5C.4D.4.5【答案】C【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=5,∵∠BEF=∠C+∠EFC=∠DEF+∠BED,∠DEF=∠C=60°,∴∠BED=∠EFC,在△DBE和△ECF中,,∴△DBE≌△ECF(AAS),∴DB=EC=1,∴BE=BC﹣EC=5﹣1=4.故选:C.5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2B.1cm2C.1.2cm2D.不能确定【答案】B【解答】解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP(ASA),∴AP=PE,=S△EBP,S△ACP=S△ECP,∴S△ABP=S△ABC=×2=1(cm2),∴S△PBC故选:B.二.填空题(共4小题)6.如图,边长为5cm的正三角形ABC向右平移1cm,得到正三角形A'B'C',此时阴影部分的周长为12 cm.【答案】见试题解答内容【解答】解:由题意得,△ABC为等边三角形,BC=5cm,BB'=1cm,∴B'C=BC﹣BB'=5﹣1=4cm,且阴影部分为等边三角形,∴阴影部分的周长为3×4=12cm,故答案为12.7.如图,在等边△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在BC延长线上,且EB=EF,若BD=4,BF=8,则线段DE的长为2.【答案】2.【解答】解:过E点作EH⊥BF,设DE=x,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∵BD=4,∴EC=BD=4,AB=BC=AC=4+x,∠ACB=60°,在Rt△CHE中,∵∠ACB=60°,EC=BD=4,∴∠HEC=180°﹣∠ACB﹣∠EHC=180°﹣60°﹣90°=30°,∴,∴BH=BC﹣CH=4+x﹣2=2+x,∵EB=EF,∴△EBF是等腰三角形,∵EH⊥BF,BF=8,∴BH=FH=4,∴2+x=4,∴x=2,∴DE=2.故答案为:2.8.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AB于O,则:①DB=AE;②∠AMC=∠DNC;③△MCE是等腰三角形;④△MCN是等边三角形;⑤∠AOD=60°.其中,正确的有①②④⑤.【答案】①②④⑤.【解答】解:△ACD和△BCE都是等边三角形,∴AC=AD=CD,CE=CB=BE,∠ACD=∠DAC=∠ADC=60°=∠BCE=∠CBE=∠CEB,∴∠DCE=60°,∴∠ACE=∠DCB=120°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD,∠EAC=∠BDC,故①符合题意;∴∠AOD=∠ACD=60°,故⑤符合题意;在△ACM和△DCN中,,△ACM≌△DCN(ASA),∴AM=DN,CM=CN,∠AMC=∠DNC,∴△MCN是等腰三角形;△MCN是等边三角形;故②④符合题意,综上:①②④⑤都符合题意.故答案为:①②④⑤.9.如图,四边形ABCD,AD=1,,BC=3,点E为AB的中点,连接DE、CE,使得∠DEA+∠CEB=60°,则DC的最大值为.【答案】##.【解答】【详解】解:将△ADE沿DE翻折得到△MDE,将△BCE沿CE翻折得到△NCE,连接MN,由翻折可知:∠AED=∠MED,∠BEC=∠NEC,AD=MD=1,BC=NC=3,∵E是AB中点,,∴,∵∠DEA+∠CEB=60°,∴∠AEM+∠BEN=120°,∴∠MEN=60°,∴△EMN是等边三角形,∴,∴CD≤DM+MN+CN,当D,M,N,C共线时,CD取得最大值为,故答案为:.三.解答题(共2小题)10.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE=DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).【答案】见试题解答内容【解答】解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=11.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?【答案】(1)△BPQ是等边三角形;(2)当t=2s或t=4s时,△PBQ是直角三角形.【解答】解:(1)如图,根据题意得:AP=tcm,BQ=2tcm,当t=2时,AP=2cm,BQ=4cm,∵△ABC是边长为6cm的等边三角形,∴AB=6cm,∠B=60°,∴BP=4cm,∴BP=BQ,∴△BPQ是等边三角形;(2)△PBQ中,BP=6﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,①当∠BQP=90°时,∠B=60°,∴∠BPQ=30°,∴BQ=BP,即t=,解得:t=2;②当∠BPQ=90°时,同理得:BP=BQ,即6﹣t=t,解得:t=4,答:当t=2s或t=4s时,△PBQ是直角三角形.1.(2022•大连)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6B.3C.1.5D.1【答案】C【解答】解:由已知可得,MN是线段AC的垂直平分线,设AC与MN的交点为E,∵∠ACB=90°,MN垂直平分AC,∴∠AED=∠ACB=90°,AE=CE,∴ED∥CB,∴△AED∽△ACB,∴,∴,∴AD=AB,∴点D为AB的中点,∵AB=3,∠ACB=90°,∴CD=AB=1.5,故选:C.2.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【答案】见试题解答内容【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.3.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交A C于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.。
满分晋级等腰三角形4特殊三角形之等腰三角形三角形5级全等中的基本模型三角形6级特殊三角形之等腰三角形三角形7级倍长中线与截长补短暑期班第二讲暑期班第四讲秋季班第二讲等腰?定 义示例剖析等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.如图,ABC △是等腰三角形,AB AC模块一 等腰三角形知识导航漫画释义知识互联网则①AB 、AC 是该三角形的腰. ②BC 是该三角形的底边.③B ∠、C ∠是该三角形的底角, 且B C ∠=∠.④A ∠是该三角形的顶角.AB AC =,B C ∠=∠等腰三角形的性质: ⑴ 两腰相等.⑵ 两底角相等(等边对等角). ⑶ “三线合一”,即顶角平分线、底边上的中线、底边上的高相互重合.⑷ 是轴对称图形,底边的垂直平分线是它的对称轴.CBADABC △是等腰三角形,AB AC =①若AD BC ⊥,则BD CD =, BAD CAD ∠=∠; ②若BD CD =,则BAD CAD ∠=∠, AD BC ⊥; ③若BAD CAD ∠=∠,则AD BC ⊥,BD CD =.等腰三角形的判定方法: ⑴有两条边相等的三角形是等腰三角形. ⑵有两个角相等的三角形是等腰三角形(等角对等边). C B A 若AB AC =或B C ∠=∠,则ABC △是等腰三角形. 易错点:注意分类讨论,并舍去不符合条件的情况.【例1】 ⑴ 如图,ABC △中,AC AD BD ==,80DAC ∠=︒,则B ∠的度数是( )A .40︒B .35︒C .25︒D .20︒⑵ ABC △的一个内角的大小是40︒,且A B ∠=∠,那么C ∠的外角的大小是( ) A .140︒ B .80︒或100︒ C . 100︒或140︒ D . 80︒或140︒⑶如图,ABC △内有一点D ,且DA DB DC ==,若20DAB ∠=︒,30DAC ∠=︒,则BDC ∠的大小是( ) A.100︒ B.80︒ C.70︒ D.50︒夯实基础CBADC B AD C B A【例2】 ⑴等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形的底边的长为( ) A .17cm B .5cm C .17cm 或5cm D .无法确定⑵如图,在△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,∠A n 的度数为_________.【例3】 如图1,AB AC =,BD 、CD 分别平分ABC ∠、ACB ∠.问:⑴ 图1中有几个等腰三角形?⑵ 过D 点作EF ∥BC ,交AB 于E ,交AC 于F ,如图2,图中又增加了几个等腰三角形?⑶ 如图3,若将题中的ABC △改为不等边三角形,其它条件不变,图中有几个等腰三角形? 线段EF 与BE 、CF 有什么关系?⑷ 如图4,BD 平分ABC ∠,CD 平分外角ACG ∠.DE ∥BC 交AB 于E ,交AC 于F .线段EF 与BE 、CF 有什么关系?⑸ 如图5,BD 、CD 为外角CBM ∠、BCN ∠的平分线,DE ∥BC 交AB 延长线于E ,交AC 延长线于F ,线段EF 与BE 、CF 有什么关系?图1DCBA图2F EDCBA图3F E DCBA图4G FDC A EB图5NMFED CB A能力提升n A 4A 3A 2A 1ED C A B【例4】 如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . ⑴求证:DE 平分∠BDC ; ⑵若点M 在DE 上,且DC=DM ,求证:ME=BD .定 义示例剖析等边三角形的定义:三条边都相等的三角形叫做等边三角形.BCA如图△ABC 中,AB AC BC ==,则△ABC 是等边三角形.等边三角形的性质:三边都相等,三个内角都相等,并且每一个角都等于60︒.B CA如图,ABC △是等边三角形,则60AB AC BC A B C ==∠=∠=∠=,°等边三角形的判定:⑴三条边都相等的三角形是等边三角形. ⑵三个角都相等的三角形是等边三角形. ⑶有一个角是60︒的等腰三角形是等边三B CA知识导航模块二 等边三角形M ED B角形.若AB AC BC ==,则ABC △是等边三角形 若A B C ∠=∠=∠,则ABC △是等边三角形 若60AB AC A =∠=,°(或60B ∠=︒,或60C ∠=︒),则ABC △是等边三角形【引例】下面给出的五种三角形:①所有外角都相等的三角形;②三边上的高都相等的三角形;③有两个角是60︒的三角形;④有一个角是60︒的等腰三角形;⑤以等边三角形三边中点为顶点的三角形.其中是等边三角形的个数有( ) A .2个 B .3个 C .4个 D .5个【例5】 ⑴如下左图,等边三角形ABC 中,D 、E 分别在AB 、AC 边上,且AD =CE ,BE 、CD 交于P 点,则图中︒60的角共有( )A. 6个B. 5个C. 4个D. 3个⑵如下右图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当P A =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A.13 B.12 C.23 D.不能确定【例6】 数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC ,如图,试确定线段AE 与DB 的大小关系,并说明理由.EDCB A小敏与同桌小聪讨论后,进行了如下解答: ⑴特殊情况,探索结论当点E 为AB 的中点时,如图1确定线段AE 与DB 的大小关系,请你直接写出结论:夯实基础能力提升PE DCBA QPEDCBAAE DB (填“>”,“<”或“=”).FD ABCE图2图1ED C BA⑵特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作EF BC ∥,交AC 于点F .(请你完成以下解答过程) ⑶拓展结论,设计新题 在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC △的边长为1,2AE =,求CD 的长(请你直接写出结果).【探究对象】等腰三角形中常用的辅助线【探究一】作顶角的平分线,底边中线,底边高线【变式一】已知,如图,AB = AC ,BD ⊥AC 于D ,求证:∠BAC = 2∠DBC21E DCBA【探究二】有底边中点时,常作底边中线【变式二】已知,如图,△ABC 中,AB = AC ,D 为BC 中点,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE = DF【探究三】将腰延长一倍,构造直角三角形解题【变式三】已知,如图,△ABC 中,AB = AC ,在BA 延长线和AC 上各取一点E 、F ,使AE = AF ,求证:EF ⊥BC【探究四】常过一腰上的某一已知点做另一腰的平行线【变式四】已知,如图,在△ABC 中,AB = AC ,D 在AB 上,E 在AC 延长线上,且BD = CE ,连结DE 交BC 于F ,求证:DF = EFF E DC B AF E N C B A D N F EC B A 21MD F EC B A21【探究五】常过一腰上的某一已知点做底的平行线【变式五】已知,如图,△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD = AE ,连结DE ,求证:DE ⊥BC【探究六】常将等腰三角形转化成特殊的等腰三角形——等边三角形 【变式六】已知,如图,△ABC 中,AB = AC ,∠BAC = 80°,P 为形内一点,若∠PBC = 10°,∠PCB = 30°,求∠P AB 的度数.D F EC B A P CB A【例7】 MON ∠是一个钢架,10MON ∠=o ,在其内部添加一些钢管BC ,CD ,DE ,EF ,FG ,…添加的钢管长度都与OB 相等.⑴当添加到第五根钢管时,求FGM ∠的度数.⑵假设OM 、ON 足够长,能无限地添加下去吗?如果能,请说明理由.如果不能,则最多能添加几根?DNMFEO CBG探索创新训练1. 若等腰三角形一腰上的高和另一腰的夹角为25︒,则该三角形的一个底角为( )A .32.5︒B .57.5︒C .65︒或57.5︒D .32.5︒或57.5︒训练2. 已知ABC △中,90ACB ∠=︒,点D 、E 在AB 上,且AD AC =,BE BC =,求DCE ∠.训练3. 已知等腰三角形的高与三角形一边的夹角为40o ,求三角形的三个内角.训练4. 已知如图,在正ABC △所在平面上找点P 使PAB △、PBC △、PCA △同时为等腰三角形,作出这些点.思维拓展训练(选讲)CB A知识模块一 等腰三角形 课后演练【演练1】 已知等腰三角形一腰上的中线将它们的周长分为9和12两部分,求腰长和底边长.【演练2】7cm AB =,:2:5BC AC =,如果ABC △恰好是等腰三角形,试求BC 、AC 的值.【演练3】 如图,在ABC △中,ABC ∠与ACB ∠的角平分线相交于点F ,过F 作DE BC ∥,交AB 于D ,交AC 于E ,若9BD CE +=,则线段DE 之长为 .实战演练FE D CBA知识模块二 等边三角形 课后演练【演练4】 在ABC △中,如果只给出条件60A ∠=°,那么还不能判定ABC △是等边三角形,给出下面四种说法:① 如果再加上条件“AB AC =”,那么ABC △是等边三角形; ② 如果再加上条件“B C ∠=∠”,那么ABC △是等边三角形; ③ 如果再加上条件“D 是BC 的中点,且AD BC ⊥”,则ABC △是等边三角形; ④ 如果再加上条件“AB 、AC 边上的高相等”,那么ABC △是等边三角形. 其中正确的说法有 (把你认为正确的序号全部填上).【演练5】 已知如图等腰△ABC ,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面的结论:①∠APO +∠DCO =30°;②△OPC 是等边三角形;③AC =AO +AP ;④S △ABC =S 四边形AOCP .其中正确的有( ).A .①②③B .①②④C .①③④D .①②③④PO DCBA测1.如图,在ABC △中,AD BC ⊥于D .请你再添加一个条件,就可以确定ABC △是等腰三角形.你添加的条件是 . (在不添加辅助线的前提下,写出所有符合题意的答案)测2. 已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使CE CD =.求证:BDDE =. 测3.如图,在ABC △中,AB AC =,且D 、E 、F 分别为BC 、AB 、AC 边上的点,当BD EB DC CF ===,且40EDF ∠=°时,则A ∠= .课后测DCBAFEDCBA EDCBA第十五种品格:创新将头脑打开一毫米美国有一间生产牙膏的公司,产品优良,包装精美,深受广大消费者的喜爱,每年营业额蒸蒸日上.记录显示,前十年每年的营业增长率为10 20%,令董事部雀跃万分.不过,业绩进入第十一年,第十二年及第十三年时,则停滞下来,每个月维持同样的数字.董事部对此三年业绩表现感到不满,便召开全国经理级高层会议,以商讨对策.会议中,有名年轻经理站起来,扬了扬手中的一张纸对董事部说:“我有个建议,若您要使用我的建议,必须另付我5万元!”总裁听了很生气说:“我每个月都支付你薪水,另有红包奖励.现在叫你来开会讨论,你还要另外要求5万元.是否过分?”“总裁先生,请别误会.若我的建议行不通.您可以将它丢弃,一毛钱也不必付.”年轻的经理解释说.“好!”总裁接过那张纸后,阅毕,马上签了一张5万元支票给那年轻经理.那张纸上只写了一句话:将现有的牙膏开口扩大1mm.总裁马上下令更换新的包装.试想,每天早上,每个消费者多用1mm的牙膏,每天牙膏的消费量将多出多少倍呢?这个决定,使该公司第十四年的营业额增加了32%.好点子的身价是没有上限的,点子是所有财富的起点.今天我学到了。
13.3 等腰三角形第1课时等腰三角形的性质基础题知识点1等边对等角1.已知一个等腰三角形的顶角为30°,则它的一个底角等于( )A.30°B.75°C.150°D.125°2.已知一个等腰三角形的一个底角为30°,则它的顶角等于( )A.30°B.40°C.75°D.120°3.如图所示,射线BA、CA交于点A,连接BC,已知AB=AC,∠B=40°,那么x的值是________.#4.等腰直角三角形的底角的度数为________.5.一个等腰三角形中有一个内角为80°,则另外的两个内角的度数为________________.6.如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.知识点2三线合一7.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线:C.顶角的角平分线所在的直线D.腰上的高所在的直线8.(苏州中考)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为( )A.35°B.45°C.55°D.60°9.如图,在△ABC中,AB=AC,AD平分∠BAC,BC=3 cm.则∠ADB的度数是________,BD的长是________.10.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,若∠BAC=70°,则∠BAD=________.:11.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是________.12.如图,在△ABC中,AB=AC,D是BC中点,DE⊥AC,垂足为E,∠BAC=50°,求∠ADE的度数.中档题13.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()\A.100°B.80°C.70°D.50°14.(新疆中考)如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是________.15.(云南中考)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=________.16.(贺州中考)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A 的度数是________.17.如图,AD∥BC,点E在AB的延长线上,CB=CE,试猜想∠A与∠E的大小关系,并说明理由.]18.如图,在△ABC中,AB=AC,AD⊥BC,点P是AD上的一点,且PE⊥AB,PF⊥AC,垂足分别为点E、F,求证:PE=PF.19.(十堰中考)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.…20.已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数.综合题21.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数;{(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗为什么参考答案1.B ° °,20°或50°,50° 6.证明:∵AB =AC ,∴∠ABC =∠ACB.∵BD =CD.∴∠DBC =∠DCB.∴∠ABC -∠DBC =∠ACB -∠DCB ,即∠ABD =∠ACD. ° cm ° 12.∵AB =AC ,D 是BC 的中点,∴AD 平分∠BAC.∵∠BAC =50°,∴∠DAE =12∠BAC =25°.又∵DE ⊥AC ,∴∠AED =90°.∴∠ADE =90°-∠DAE =90°-25°=65°. ° ° ° 17.∠A =∠E.理由如下:∵CB =CE ,∴∠E =∠CBE.∵AD ∥BC ,∴∠A =∠CBE.∴∠A =∠E. 18.证明:在△ABC 中,∵AB =AC ,AD ⊥BC ,∴AD 是∠BAC 的平分线.又∵PE ⊥AB ,PF ⊥AC ,∴PE =PF. 19.证明:过点A 作AF ⊥BC 于点F.又∵AB =AC ,∴BF =CF.∵BD =CE ,∴DF =EF.∴AD =AE. 20.①当(2x -2)°作为顶角时,即(2x -2)+2×(3x -5)=180,解得x =24,三角形三个角的度数分别为46°,67°,67°;②当(3x -5)°为顶角时,即(3x -5)+2×(2x -2)=180,解得x =27,三角形三个角的度数分别为52°,52°,76°;③当以上两个角均为底角时,即2x -2=3x -5,解得x =3,三角形三个内角分别为4°,4°,172°. 21.(1)∵△ABC 中,∠BAC =90°,AB =AC ,∴∠B =∠ACB =45°.∵BD =BA ,CE =CA ,∴∠BAD =(180°-45°)÷2,∠CAE =45°÷2.∴∠DAE =90°-∠BAD +∠CAE =45°.(2)不变.∠DAE =90°-180°-∠B 2+12∠ACB =12(∠B +∠ACB)=45°,从上式可看出当AB 和AC 不相等时,∠B +∠ACB 也是90°.所以∠DAE 的度数不变.)第2课时 等腰三角形的判定基础题】知识点1等腰三角形的判定1.下面几个三角形中,不可能是等腰三角形的是( )A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为80°,一个内角为100°的三角形2.如图所示,已知OC平分∠AOB,CD∥OB,若OD=4 cm,则CD等于()A.3 cm B.4 cm C.cm D.2 cm3.如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形的个数为( )(A.3个B.4个C.5个D.6个4.如果一个三角形的一内角的平分线垂直对边,那么这个三角形一定是( )A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形5.在△ABC中,∠A=40°,∠C=70°,则这个三角形是________三角形.6.在△ABC中,如果∠A∶∠B∶∠C=3∶2∶3,那么△ABC是________三角形.7.如图,在△ABC中,AD⊥BC于D,请你再添加一个条件,就可以确定△ABC是等腰三角形,你添加的条件是________________________.8.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=5 cm,则AB=________.&9.如图,在△ABC中,AB=AC,DE∥BC,交AB于点D,交AC于点E,△ADE也是等腰三角形吗为什么10.已知在△ABC中,AD平分∠BAC,BD=CD,求证:△ABC为等腰三角形.知识点2用尺规作等腰三角形11.已知等腰三角形的底边长为a,顶角的平分线长为b,求作这个等腰三角形.&中档题12.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,那么点C的个数有( )A.6个B.7个C.8个D.9个13.在如图所示的三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是():A.(1)(2)(3) B.(1)(2)(4)C.(2)(3)(4) D.(1)(3)(4)14.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC=18,则△CDE的周长是________.15.已知等腰△ABC中,AB=AC,D为BC边上一点,连接AD.若△ACD和△ABD都是等腰三角形,则∠C =________.16.如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC.17.如图所示,一艘轮船在近海处由南向北航行,点C是灯塔,轮船在A处测得灯塔在其北偏西38°的方向上,轮船又从A向北航行30海里到B,测得灯塔在其北偏西76°的方向上.!(1)求∠ACB的度数;(2)轮船在B处时,到灯塔C的距离是多少18.(襄阳中考)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形(用序号写出所有成立的情形)'(2)请选择(1)中的一种情形,写出证明过程.综合题19.已知:D为△ABC所在平面内一点,且DB=DC,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF. (1)当点D在BC边上时(如图),判断△ABC的形状(直接写出答案);(2)当点D在△ABC内部时,(1)中的结论是否一定成立若成立,请证明;若不成立,请举出反例(画图说明).参考答案1.B 5.等腰 6.等腰 =CD 或∠BAD =∠CAD cm 9.△ADE 是等腰三角形.理由如下:∵AB =AC ,∴∠B =∠C.又∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C.∴∠ADE =∠AED.∴AD =AE.∴△ADE 是等腰三角形. 10.证明:过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 平分∠BAC ,∴DE =DF.在Rt △BDE 和Rt △CDF 中,∵BD =CD ,DE =DF ,∴Rt △BDE ≌Rt △CDF(HL).∴∠B =∠C.∴AB =AC ,即△ABC 为等腰三角形. 11.(1)作线段AB =a ;(2)作线段AB 的垂直平分线MN ,与AB 交于点D ;(3)在MN 上取一点C ,使CD =b ;(4)连接AC ,BC ,则△ABC 就是所求作的三角形.14.30 °或45° 16.证明:∵AD 平分∠EDC ,∴∠ADE =∠ADC.又∵ED =DC ,AD =AD ,∴△ADE ≌△ADC.∴∠E =∠C.又∵∠E =∠B ,∴∠B =∠C.∴AB =AC. 17.(1)∵∠NAC =38°,∠NBC =76°,∠NBC =∠ACB +∠NAC ,∴∠ACB =∠NBC -∠NAC =76°-38°=38°.(2)∵∠ACB =∠NAC =38°,∴AB =BC.∵AB =30海里,∴BC =30海里.即轮船在B 处时,到灯塔C 的距离是30海里. 18.(1)①②;①③.(2)选①③,证明如下:∵OB =OC ,∴∠OBC =∠OCB.∵∠EBO =∠DCO ,且∠ABC =∠EBO +∠OBC ,∠ACB =∠DCO +∠OCB ,∴∠ABC =∠ACB.∴△ABC 是等腰三角形. 19.(1)△ABC 是等腰三角形.(2)如图,当点D 在△ABC 内部时,△ABC 是等腰三角形成立.理由:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°.在Rt △EBD 与Rt △FCD 中,⎩⎪⎨⎪⎧DE =DF ,DB =DC ,∴Rt △EBD ≌Rt △FCD(HL).∴∠EBD =∠FCD.∵DB =DC ,∴∠DBC =∠DCB.∴∠EBD +∠DBC =∠FCD +∠DCB ,即∠EBC =∠FCB.∴AB =AC.∴△ABC 是等腰三角形.。
等腰三角形的性质和判定知识点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C = .知识点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.知识点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”). 要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.1802A ︒-∠类型一、等腰三角形的性质1. 已知:如图,AD 、BE 相交于点C ,AB AC =,EC ED =,M 、F 、G 分别是AE 、BC 、CD 的中点.求证:(1)2AE M F =;(2)MF MG =.类型二、等腰三角形的判定2. 已知:ABC ∆是等边三角形,点D 是AB 边上的一个动点,点E 是AC 边上的一个动点,且BD CE =,BE 与CD 交于点F .若BFD ∆是等腰三角形,求FBD ∠的度数.类型三、等腰三角形的构造方法知识点① 依据平行线构造等腰三角形3.若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D 在AB 边上,CD CB =,则ABC ∆和ACD ∆就是友好三角形.(1)两个友好三角形 全等.(从下面选择一个正确的填入)A .一定B .不一定C .一定不(2)如图2,在ABC ∆中,AB AC =,点D 在AB 上,点E 在AC 延长线上,连接DE 交BC 于其中BD BF ≠,若BDF ∆和CEF ∆是友好三角形,求证:DF EF =.知识点② 依据“三线合一”构造等腰三角形4. 如图,在ABC ∆中,120BAC ∠=︒,AD BC ⊥于D ,且AB BD DC +=,那么C ∠= 20 度.5.已知:如图,在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.知识点③ 依据倍角关系构造等腰三角形6.在ABC ∆中,2B C ∠=∠,则AC 与2AB 之间的大小关系是( )A .2AC AB >B .2AC AB = C .2AC ABD .2AC AB <举一反三:【变式1】如图,在ABC ∆中,AD 平分∠BAC 交BC 于点D ,且∠ABC=2∠C ,求证:AB+BD=AC【复习巩固】1.下列命题中正确的是( )A .有两条边分别相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .有两条边分别相等的两个直角三角形全等D .斜边和一条直角边对应相等的两个直角三角形全等2.如图,在等腰ABC ∆中,AB AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 做//DE BC ,分别交AB 、AC 于点D 、E ,若ADE ∆的周长为18,则AB 的长是( )A .8B .9C .10D .123.如图,ABC ∆的面积为28cm ,AP 垂直B ∠的平分线BP 于P ,则PBC ∆的面积为( )A .23cmB .24cmC .25cmD .26cm 4.如图,已知D 、E 分别为AB 、AC 上的点,AC BC BD ==,AD AE =,DE CE =,则B ∠的度数为 度.5.一个等腰三角形的三边长分别为x ,23x -,46x -,求这个三角形的周长.6.如图,在△ABC 中,AB=AC ,点E 在AB 上,点F 在AC 的延长线上,且BE=CF ,EF 交BC 于点N ,EM⊥BC于点M,求证:MN=BM+CN.。
第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。
等腰三角形的判定等腰三角形的判定:1、两边相等2、两角相等3、三线合一逆定理例1、如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()个A、5B、4C、3D、2例2、如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O作EF//BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A、5B、6C、7D、81、如图,∠B=∠BCD=∠ACD=36°,则图中共有()个等腰三角形A、0个B、1个C、2个D、3个2、如图,把两个全等的含30°角的直角三角板,按如图所示的方式拼在一起,其中等腰三角形有()A、1个B、2个C、3个D、4个3、如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF//BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF的周长为()A、6B、7C、8D、104、如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,PD//AB,PE//AC,求△PDE的周长5、如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC(1)求证:△ABC是等腰三角形(2)判断点O是否在∠BAC的角平分线上,并说明理由6、如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE(1)求证:∠BAE=∠CAE(2)求证:AD⊥BC7、如图,在三角形△ABC中,AB=AC,点D是BC的中点,点E在AD上(1)求证:BE=CE(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其他条件不变,求证:EF=CF8、如图,在△ABC中,∠ABC=∠C,线段AB的垂直平分线MN交AC于D(1)若AB=10,BC=6,求△BCD的周长(2)若BD=BC,求∠A的度数9、△ABC中,D是AB边上的一点,过D作DE//BC,交∠ABC的角平分线于E(1)如图1,当点E恰好在AC边上时,求证:∠ADE=2∠DEB(2)如图2,当点D在BA的延长线上,其余条件不变,请直接写出∠ADE于∠DEB之间的数量关系10、如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形11、如图,在△ABC中,∠ACB=90°,CD⊥AB,∠1=∠2,求证:CE=CF12、如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,求∠BAC的度数。
辅导讲义------等腰三角形知识点:1.等腰三角形的两个底角相等.(简写成“等边对等角”)2.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.3.等边三角形的各个内角都相等,并且每一个内角都等于60°.所以我们把等边三角形也称为正三角形.4.如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)练习:1.填空(1) 如果等腰三角形的一个底角为50°,那么其余两个角为______和_____.(2) 如果等腰三角形的顶角为80°,那么它的一个底角为___________. 问:等腰三角形的底角可以是直角或者钝角吗?为什么?2.如图AB =AC , D 在BC 上,(1)如果AD ⊥BC , 那么∠BAD =_______, BD=________;(2) 如果∠BAD =∠CAD , 那么AD ⊥____, BD=________;(3) 如果BD= CD , 那么∠BAD =___________, AD ⊥____; 3.底角等于顶角一半的等腰三角形是____________三角形.4.△ABC 是等腰直角三角形,∠ACB =90°,CD 是底边上的高,那么图中共有哪几个等腰直角三角形?5.等腰三角形的周长为16米,其中一条边的长是6,求另两条边的长.6. 等腰三角形的底角比顶角大15°,求各内角的度数.7. 如图,已知在△ABC 中,AB =AC ,∠ACD =112°,求△ABC 各内角的度数.(第4题)8. 如图,在等腰△ABC 中,两底角的平分线BE 和CD 相交于 O 点,那么△OBC 是什么三角形?为什么?试用推理格式写出推理过程.9. 已知在△ABC 中,AB =AC , ∠B =80°.求∠C 和∠A 的度数.10. 如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,∠B =30°,求∠ADC 和∠1的度数.11. 如图,在△ABC 中,已知AB =AC ,且AB =BD ,AD =DC ,求:△ABC 三个内角的大小.(第8题) C。
学员编号: 学员姓名: 年级:初二
辅导科目:数学
课时数:3课时
学科教师:精锐教育学科教师辅导
课
题等腰三角形
教学目的1、熟练掌握等腰三角形的性质和判定
2、熟练等腰三角形“三线合一”的性质
3、会运用性质和判定解决实际问题
重点、难点
重点:等腰三角形的性质
难点:“三线合一”的应用
教学内容小细节彖定命运.
基础知识巩固:
i •等腰三角形定义:
2 •等腰三角形的性质:
3 •等腰三角形的判定:
(2)
—度. 秒的速度运动,
(4), DE 、 随堂练习:
1 .如图 1,在厶ABC 中,AB=AC ,/A=50 ° , BD 为/ABC 的平分线,则/ BDC=_____________________
2 •如图2, 一个顶角为40。
的等腰三角形纸片,剪去顶角后,得到一个四边形,则/ 1+ 72= 3.等腰△ABC 的底边BC=8cm ,腰长AB=5cm , 一动点P 在底边上从点 B 开始向点C 以0.25cm/
当点P 运动到PA 与腰垂直的位置时,点 P?运动的时间应为 _____________________ .
动手操作:
拿出一张类似于如图(1)的矩形纸张,按照虚线对折如图( 2),按(3)中的线段剪开,得到图形 DF 分别是边AC 、BC 上的高线,观察 DF 与DE 的关系,并给予证明。
(1)
例 1 .在△ABC 中,AB=AC 如果DE 、DF 是两边上的中线或者是/ ADC ,/BDC 的平分线,它们还相等吗?
【例题经典】
根据等腰三角形的性质寻求规律
71= — ZABC , 72= —7ACB , BD 与CE 相交于点 0,如图,
7 BOC 的大小与7 2 2
A 的大小有什么关系?
【分析】在上述条件由特殊到一般的变化过程中,
根据等腰三角形的性质,7 1= 7,7ABD= 7ACE ,
即可得到 7 1= — ZABC , 72= 1ZACB 时,7 BOC=90 °+ 17 ;
2 2 2
卄 1
若 71= ZABC ,
3 1 若 71= ZABC ,
n 72= 72= ZACB ,则7 BOC 与7A 大小关系如何?
3
1
一 7ACB ,则7 BOC 与7A 大小关系如何?
n
1 1 亠 71= ZABC , 72= ZACB 时,7 BOC=120 3 3 1 1 亠 71= — ZABC ,72= — 7ACB 时,7 BOC= n n
【点评】在例1图中,若 1 AE= - AB , n ° 17A ;
3 n 1 ——180 °+ Z A .
n
1
AD= AC •类似上题方法同样可证得
n
BD=CE . ?上述规律仍然存在. 练习:如图,在下列三角形中若 AB=AC , 则能被一条直线分成两个小等腰三角形的是
15和6两部分,求
OA=OB .当跷跷 会用等腰三角形的判定和性质计算与证明
例2 .如图,等腰三角形 ABC 中,AB=AC ,—腰上的中线 BD?将这个等腰三角形周长分成 这个三角形的腰长及底边长. 【分析】要分 AB+AD=15 ,CD+BC=6 和AB+AD=6 ,CD+BC=15 两种情况
讨论.
练习:1、如图,在△ ABC 中,AB=AC ,/BAD=20? °,且AE=?AD ,则Z CDE= ________________________
2、同学们都玩过跷跷板的游戏•如图 11所示,?是一跷跷板的示意图,立柱 0C 与地面垂直, 板的一头A 着地时,/ OAC=25 °,?则当跷跷板的另一头 B 着地时,/ AOA '
等于()
利用等腰三角形的性质证线段或角相等
例3 .如图,P 是等边三角形 ABC 内的一点,连结 PA 、PB 、PC , ?以 BP 为边作/ PBQ=60。
,且BQ=BP ,连结
CQ .
(1 )观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.
(2 )若PA : PB : PC=3 : 4 : 5,连结PQ ,试判断△ PQC 的形状,并说明理由.
【分析】(1 )把△ABP 绕点B 顺时针旋转60 °即可得到△CBQ .刑用等边三角形的性质证△ ABP ^zCBQ ,得
到AP=CQ . ( 2)连接PQ ,则△ PBQ 是等边三角形.PQ=PB , AP=CQ 故CQ : PQ : PC=PA : PB : PC=3 : 4 : 5,A^^QC 是直角三角形.
【点评】利用等边三角形性质、 判定、三角形全等、直角三角形的判定等知 识点完成此题的证明.
例:如图,△ ABC 中,AD 平分/ BAC , BP 丄 AD 于 P , AB=5 , BP=2 , AC=9。
求证:/ ABP=2 /ACB 。
B . 50
C . 60
D . 130 练习:已知:如图所示, BD EC D
E . ABC, ACB 的平分线交于
练习:1、如图,△ ABC中,D、E分别是AC、AB上的点,BD与CE交于点0, ?给出下列三个条件:①/ EB0= /DC0 ;②/ BE0= ZCD0 :③ BE=CD .
(1)上述三个条件中,哪两个条件可判定△ ABC是等腰三角形(用序号写出所有情形)
(2)选择第(1 )小题中的一种情况,证明△ ABC是等腰三角形.
2、如图,AD=BC , AC=BD,求证△ EAB是等腰三角形。
F1 广
实际应用:
上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行, 10时到达海岛B处,从A, B望灯塔C, 测得/ NAC=42 °,z NBC=84。
•求从海岛B到灯塔C的距离。
如图,
/BAC= Z ABD ,AC =BD , 点O 是AD 、BC 的交点,点E 是AB 的中点。
试判断OE 和AB 的位置关系, 2、如图,△ ABC 中,/ABC=50 3、如图,AD 是△ABC 的角平分线, DE , DF 分别是△ ABD 和△ACD 的高,求证 AD 垂直平分 EF
练习:要在离地面5m 处引拉线固定电线杆,?使拉线和地面成60。
角,若考虑既要符合设计要求,
又要节省材料, 则在库存的L i =5.2m ,L 2=6.2m ,L 3=7.8m ,L 4=10m 的四种备用拉线材料中,拉线 AC 最好选用() A . L i B . L 2 C . L 3 D . L 4
典型题目练习:
并给予证明。
,Z CB=80 °,延长CB 至D ,使DB=BA ,延长 BC 至E ,使CE=CA 。
连接 AD 、AE 。
求Z D , Z E ,Z DAE 的度数。
fi
知识点补充
等腰三角形有时作为隐含的挑拣出现在题目中,需要我们能够识别出来,下面列出五种常见的情形:
OC为/ AOB的平分线,CD//OB于AO
于点D,则△ ODC是等腰三角形。
想一想:为什么?
△ ABC 中,AB=AC , DE//BC 则厶ADE 为
等腰三角形。
想一下,相等的两腰为什么?
△ ABC中,OC为/ AOB的平分线,D是OB
上一点,DC丄OC于C,延长DC交OA于E,
则厶DOE是等腰三角形,其中OD=OE , DC=EC
想一想,为什么?起发现数
学中的美!
C是线段AB的垂直平分线上的一点,则厶ABC
是等腰三角形,其中AC=BC
想一想,为什么?
△ ABC 中,AB=AC,BD 平分/ ABC , /
ABD=36 ° ,则图中共有三对等腰三角形,哪三
对?
顶点为36°的等腰三角形是黄金三角形,它较等边三角形又多了一份秀气,更有着很多“神奇”的性质;它的底角平分线(BD )将原三角形分割成两个等腰三角
形,其中一个(△ BCD)仍保持着黄金三角形的形状。
不仅如此,点D在AC上
的位置也有着非同一般的意义,即DA2=CD X AC,即点D是线段AC的黄金分割
点。
(五角星是由一个正五边形和五个黄金三角形组成的)。