全站仪后方交会法原理
- 格式:docx
- 大小:37.25 KB
- 文档页数:3
后方交会法计算推导公式后方交会法是一种用于计算物体在空间中的坐标和距离的方法。
它基于两个观测者在不同位置观测同一个物体的现象。
假设有两个观测者A和B,在空间中观测同一个物体P。
观测者A 和B的位置分别为A(xA, yA, zA)和B(xB, yB, zB)。
物体P在观测者A和B的朝向上的投影分别为a和b,它们的长度分别为dA和dB。
根据几何关系,可以推导出以下公式:dA = sqrt((xA - xP)^2 + (yA - yP)^2 + (zA - zP)^2)dB = sqrt((xB - xP)^2 + (yB - yP)^2 + (zB - zP)^2)其中,(xP, yP, zP)是物体P的坐标。
如果已知dA、dB和相关观测者位置的坐标,可以使用这些公式来计算物体P的坐标(xP, yP, zP)。
同时,如果已知物体P在两个观测者朝向上的投影长度a和b,也可以利用这些公式计算物体P到观测者A和B的距离。
需要注意的是,后方交会法在实际应用中可能会受到观测误差的影响,因此在计算时需要考虑这些误差,并采取合适的数据处理和精度控制方法。
拓展:后方交会法是测量和定位的重要方法之一,广泛应用于地理测量、摄影测量、建筑工程等领域。
它可以通过精确的测量和计算,确定物体在三维空间中的准确位置和形状,对于工程设计、地理信息系统等具有重要的实际应用价值。
除了后方交会法,还有其他一些方法可以用于测量和定位物体的坐标和距离,比如三角测量法、三角高程测量法、全站仪测量法等。
每种方法都有其适用的场景和局限性,根据具体的测量需求和条件选择合适的方法是非常重要的。
此外,随着科技的进步和发展,新的测量和定位技术不断涌现,为实现更精确和高效的测量和定位提供了更多的选择。
“待测点高度仪器读数0.5m”不知是不是指待测点与设站点之间的高差。
假设设站点A,待测点B,则HA+h=HB+i(棱镜高)-d高差即实际高度是:HA+h-i+d高差=1.43+0.5-1.2=0.73M其中HA+h是指视线高,即你所说的仪器高度1.43m。
不过我还是对你的描述有些不解!A是全站仪的点 B是棱镜的点 HB=H A+1.43+所测斜距*COS天顶距-1.2 如果你正常设站测坐标的话直接测出来的读书就是B点高程输入建站点的坐标和高程,测量出建站点到全站仪的垂直高度,输入到仪器高里面,再输入棱镜高。
后视完,就可以测量了,一般全站仪上有个三角型按钮代表测量距离(平距HD,斜距SD)和高程(高程Z高差V D)。
根据楼层高程和测量的高程差,就可以算出实际差了。
方法一:架设C为已知高程点Hc,B为未知高程点,高程记为Hb将全站仪架设在C点精确对中整平,用钢卷尺量取仪器高度记为i,在B点架设棱镜精确对中整平,量取棱镜高度记为v,用全站仪望远镜精确照准棱镜中心,按下测距按键,得出AB水平距离D,读出竖盘读数A,则可得到B点高程:Hb=Hc+DTan A+i-v方法二:采用全站仪三维坐标测量程序功能将全站仪架设在已知高程点C,将棱镜架设在另一已知高程点B在全站仪的功能里面找到:三维坐标测量或者是直角坐标测量然后进入1.建站,按照仪器提示,输入仪器架设的点C的所有已知数据(如果仅已知高程,那就把其他需要输入的项全部架设,仪器高必须用卷尺量取,并真实输入)2.定向,将全站仪望远镜瞄准另一已知高程点B,输入B点所有已知数据后,按确认键完成。
郑卢4标全站仪后方交会放样全站仪放样,作为施工过程中一项重要环节,对技术员已上升为必须擅长的仪器操作内容。
全站仪建站一般有两种方法,即极坐标法建站和后方交会法建站,本项目采用的一般为后方交会法。
现以本项目尼康全站仪为例,讲述全站仪后方交会法建站、放样全过程。
(其他品牌全站仪可参考进行)一、建站1.将仪器架于两已知点均可通视,且可完全看到放样目标点位置的高处。
尽量保证视线夹角在60度左右,仪器架设高度适中,三脚架腿踩实,不可出现放样过程中架腿松动现象。
(注意:整个放样过程中仪器附近不应有人来回走动,且放样人员应尽量站在一点不动,减少因人员走动导致仪器震动偏移。
)2.固定仪器,上下松动架腿大致调整圆水准器气泡基本居中,按下电源键开机,上下左右转动一下,按下“0”键,进入精平模式。
将水准管放于平行于两螺旋连线方向,关注屏幕上数值,“”过大,便同时向内或向外转动平行方向两螺旋至数值符合要求(一般数值处于5"以内即可);“”过大,便左转或右转垂直方向螺旋至数值符合要求。
旋转60度,检查,若仍有些许偏差,再按上述调整。
再旋转60度继续检查至完成。
3.按下“确定”键记录,按“建站”键进入建站模式,选择“后方交会法”按“确定”。
①若全站仪内已有建站点坐标,可在“PT”栏输入点名(“MODE”键可切换数字与字母),按“确定”键自动跳出坐标,再输入棱镜高(本项目为1.35m和1.2m两种);②若全站仪内无建站点坐标,于“PT”处按“确定”键进入坐标输入界面,XYZ 输完后,按“确定”回到界面,再输入仪器高。
CD数值暂时不输,按“确定”跳过进而记录,进入瞄准后视点1界面,视线内横竖丝卡住棱镜头“横竖尖头”(一般要求:竖向从镜杆底部瞄起,再翻转上去;横向以卡住两边尖为准),瞄准后,点击“测量1”(一般仪器内部设置“测量1”为棱镜模式且双频,“测量2”为免棱镜模式且单频,具体设置可内部调节变动)测量,待响两声后,在不转动仪器前按“确定”键记录,重复“PT”输入点坐标和棱镜高进行后视点2的瞄准,按“测量1”测量(若发现测量时后视瞄准有移动,再瞄准再按“测量1”测量)。
后方交会残差值误差范围后方交会是摄影测量中常用的一种方法,用于确定地面上各个点的空间坐标。
在实际应用中,由于各种误差的存在,后方交会的结果会产生一定的残差值误差。
误差范围的确定对于保证测量结果的准确性和可靠性非常重要。
本文将从后方交会的基本原理、误差来源、误差计算方法以及误差范围的确定等方面进行详细的分析和论述。
一、后方交会的基本原理后方交会是一种基于像对几何关系的摄影测量方法,通过对各个像点的位置测量和相对方位角的观测,计算出地面控制点的空间坐标。
其基本原理可以简述如下:1. 反投影原理:根据像点在像空间上的位置,利用摄影测量的几何关系反推出这些像点所对应的地面点在物空间上的位置。
反投影原理是后方交会的理论基础,也是误差产生的根源。
2. 控制点观测:确定一定数量的控制点,并测量其像点位置及相对方位角。
控制点的选择应满足精度要求和实际情况,通常采用地面测量或其他摄影测量方法进行。
3. 几何模型:根据反投影原理和控制点观测,建立几何模型,描述像空间与物空间之间的几何关系。
模型包括相机的内外参数、像点的位置和相对方位角等。
4. 误差方程:利用几何模型,建立误差方程,将测量值与真实值之间的误差表示出来。
误差方程是分析误差来源、计算误差范围的基础。
二、后方交会误差的来源后方交会的误差主要来自于以下几个方面:1. 相机内外参数的误差:相机的内外参数是后方交会的重要参数,包括焦距、主点位置、旋转矩阵、平移向量等。
由于摄影测量设备和仪器的制造和使用限制,这些参数会存在误差,从而影响后方交会的结果。
2. 观测误差:观测误差包括控制点的像点测量误差和方位角观测误差。
像点测量误差可以由像点测量精度来描述,方位角观测误差可以由方位角观测精度来描述。
观测误差是由测量设备、操作人员和环境等因素共同引起的。
3. 地面控制点的精度:后方交会的精度还受到地面控制点的精度限制。
如果地面控制点的精度较差,那么后方交会的精度也会受到影响。
、角度测量(angle observation)1 (1)功能:可进行水平角、竖直角的测量。
AOB ,则:(2)方法:与经纬仪相同,若要测出水平角∠1)当精度要求不高时:HR 的大小。
瞄准 B 点,记下水平度盘瞄准 A 点——置零(0 SET )——)。
——可用测回法(method of observation set 2)当精度要求高时:)。
”(H SET 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘distance measurement )2、距离测量(测距、测坐标、放样前。
PPM 的设置——PSM 、PSM )的设置。
1)棱镜常数((国产棱镜)PRISM=0 (原配棱镜),-30mm 一般:(乘常数)的设置。
)大气改正数(PPM )2 PPM 的值。
PRESS ),或经计算后,输入输入测量时的气温(TEMP )、气压((全站仪镜点至棱镜镜点间高差及斜SD VD 和斜距1()功能:可测量平距HD 、高差距))。
(MEAS (2)方法:照准棱镜点,按“测量”coordinate measurement )3、坐标测量(。
H )X ,Y ,1()功能:可测量目标点的三维坐标((2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:坐标:若输入:测站S 高程,测得:仪器高i ,棱镜高v ,平距,竖直角,则有:高程:(3)方法:输入测站S (X ,Y ,H ),仪器高i ,棱镜高v ——瞄准后视点 B ,将水平度盘读数设置为——瞄准目标棱镜点T ,按“测量”,即可显示点T 的三维坐标。
全站仪后方交会法步骤和高程测量步骤1、角度测量(angle observation)(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠ AOB ,则:1)当精度要求不高时:瞄准 A 点——置零( 0 SET )——瞄准 B 点,记下水平度盘 HR 的大小。
2)当精度要求高时:——可用测回法( method of observation set )。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”( H SET )。
2、距离测量( distance measurement )PSM 、PPM 的设置——测距、测坐标、放样前。
1)棱镜常数(PSM )的设置。
一般: PRISM=0 (原配棱镜),-30mm (国产棱镜)2)大气改正数( PPM )(乘常数)的设置。
输入测量时的气温( TEMP )、气压( PRESS ),或经计算后,输入 PPM 的值。
(1)功能:可测量平距 HD 、高差 VD 和斜距 SD (全站仪镜点至棱镜镜点间高差及斜距)(2)方法:照准棱镜点,按“测量”( MEAS )。
3、坐标测量( coordinate measurement )(1)功能:可测量目标点的三维坐标( X , Y , H )。
(2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:坐标:若输入:测站 S 高程,测得:仪器高 i ,棱镜高 v ,平距,竖直角,则有:高程:(3)方法:输入测站 S ( X , Y ,H ),仪器高 i ,棱镜高 v ——瞄准后视点 B ,将水平度盘读数设置为——瞄准目标棱镜点 T ,按“测量”,即可显示点 T 的三维坐标。
空间后方—前方交会的原理空间后方—前方交会是一种导航技术,通过测量目标物体在不同观测点的角度,并利用三角测量原理计算目标物体的位置。
这种技术广泛应用于航空、航天、导航等领域,可以帮助人们准确地确定目标物体的位置和方向。
在空间后方—前方交会中,观测者需要站在不同的位置观测目标物体,并测量目标物体相对于观测点的角度。
观测者需要使用测角仪或其他测量工具来测量角度,并记录下相应的数据。
测量完所有观测点的角度后,观测者需要根据这些角度数据进行三角计算,以确定目标物体的位置。
三角计算是利用三角函数来计算角度和边长的关系,通过已知的角度和边长来计算未知的角度和边长。
观测者需要根据测量得到的角度数据和观测点之间的距离,使用三角函数计算目标物体的位置坐标。
空间后方—前方交会的原理简单明了,但在实际应用中需要考虑一些因素。
首先,观测者需要选择合适的观测点,观测点的位置应尽量避免遮挡物,以确保观测到目标物体的角度准确无误。
其次,观测者需要准确测量角度,并尽量避免误差的产生。
最后,观测者需要进行精确的三角计算,以确保计算出的目标物体位置准确无误。
空间后方—前方交会技术的应用非常广泛。
在航空领域,飞行员可以利用该技术确定飞机的位置和方向,以确保飞行安全。
在航天领域,航天员也可以利用该技术确定航天器的位置和方向,以实现精确的轨道控制。
此外,该技术还可以应用于导航系统中,帮助人们准确导航和定位。
空间后方—前方交会是一种通过测量目标物体在不同观测点的角度,并利用三角计算原理确定目标物体位置的导航技术。
该技术在航空、航天、导航等领域有着广泛的应用,可以帮助人们准确地确定目标物体的位置和方向。
通过合理的观测点选择、准确的角度测量和精确的三角计算,空间后方—前方交会技术可以为人们提供准确可靠的导航和定位服务。
全站仪后方交会法步骤和高程测量步骤集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-1、角度测量(angleobservation)?(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠AOB,则:1)当精度要求不高时:瞄准A点——置零(0SET)——瞄准B点,记下水平度盘HR的大小。
2)当精度要求高时:——可用测回法(methodofobservationset)。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(HSET)。
2、距离测量(distancemeasurement)?PSM、PPM的设置——测距、测坐标、放样前。
1)棱镜常数(PSM)的设置。
一般:PRISM=0(原配棱镜),-30mm(国产棱镜)2)大气改正数(PPM)(乘常数)的设置。
输入测量时的气温(TEMP)、气压(PRESS),或经计算后,输入PPM的值。
(1)功能:可测量平距HD、高差VD和斜距SD(全站仪镜点至棱镜镜点间高差及斜距)(2)方法:照准棱镜点,按“测量”(MEAS)。
3、坐标测量(coordinatemeasurement)?(1)功能:可测量目标点的三维坐标(X,Y,H)。
(2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:?坐标:?若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有:高程:?(3)方法:?输入测站S(X,Y,H),仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标。
1、角度测量angleobservation1功能:可进行水平角、竖直角的测量;2方法:与经纬仪相同,若要测出水平角∠AOB,则:1当精度要求不高时:瞄准A点——置零0SET——瞄准B点,记下水平度盘HR的大小;2当精度要求高时:——可用测回法methodofobservationset;操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”HSET;2、距离测量distancemeasurementPSM、PPM的设置——测距、测坐标、放样前;1棱镜常数PSM的设置;一般:PRISM=0原配棱镜,-30mm国产棱镜2大气改正数PPM乘常数的设置;输入测量时的气温TEMP、气压PRESS,或经计算后,输入PPM的值;1功能:可测量平距HD、高差VD和斜距SD全站仪镜点至棱镜镜点间高差及斜距2方法:照准棱镜点,按“测量”MEAS;3、坐标测量coordinatemeasurement1功能:可测量目标点的三维坐标X,Y,H;2测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去因为有正有负测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下;;;若输入:方位角,测站坐标,;测得:水平角和平距;则有:方位角:坐标:若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有:高程:3方法:输入测站SX,Y,H,仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标;4、点位放样Layout1功能:根据设计的待放样点P的坐标,在实地标出P点的平面位置及填挖高度; 2放样原理1在大致位置立棱镜,测出当前位置的坐标;2将当前坐标与待放样点的坐标相比较,得距离差值dD和角度差dHR或纵向差值ΔX 和横向差值ΔY;3根据显示的dD、dHR或ΔX、ΔY,逐渐找到放样点的位置;5、程序测量programs1数据采集datacollecting2坐标放样layout3对边测量MLM、悬高测量REM、面积测量AREA、后方交会RESECTION等;4数据存储管理;包括数据的传输、数据文件的操作改名、删除、查阅;§7.2TOPCONGTS-312全站仪使用简介一、仪器面板外观和功能说明面板上按键功能如下:——进入坐标测量模式键;◢——进入距离测量模式键;ANG——进入角度测量模式键;MENU——进入主菜单测量模式键;ESC——用于中断正在进行的操作,退回到上一级菜单;POWER——电源开关键◢◣——光标左右移动键▲▼——光标上下移动、翻屏键F1、F2、F3、F4——软功能键,其功能分别对应显示屏上相应位置显示的命令;显示屏上显示符号的含义:V——竖盘读数;HR——水平读盘读数右向计数;HL——水平读盘读数左向计数;HD——水平距离;VD——仪器望远镜至棱镜间高差;SD——斜距;——正在测距;N——北坐标,x;E——东坐标,y;Z——天顶方向坐标,高程H;二、全站仪几种测量模式介绍1、角度测量模式功能:按ANG进入,可进行水平角、竖直角测量,倾斜改正开关设置;第1页F1 OSET:设置水平读数为:0°00ˊ00";F2 HOLD:锁定水平读数;F3 HSET:设置任意大小的水平读数;F4 P1↓:进入第2页;第2页F1 TILT:设置倾斜改正开关;F2 REP:复测法;F3 V%:竖直角用百分数显示;F4 P2↓:进入第3页;第3页F1 H-BZ:仪器每转动水平角90°时,是否要蜂鸣声;F2 R/L:右向水平读数HR/左向水平读数HL切换,一般用HR; F3 CMPS:天顶距V/竖直角CMPS的切换,一般取V;F4 P3↓:进入第1页;2、距离测量模式功能:按◢进入,可进行水平角、竖直角、斜距、平距、高差测量及PSM、PPM、距离单位等设置;第1页F1 MEAS:进行测量;F2 MODE:设置测量模式,Fine/coarse/tragcking精测/粗测/跟踪;F3 S/A:设置棱镜常数改正值PSM、大气改正值PPM;F4 P1↓:进入第2页;第2页F1 OFSET:偏心测量方式;F2 SO:距离放样测量方式;F3 m/f/i:距离单位米/英尺/英寸的切换;F4 P2↓:进入第1页;3、坐标测量模式功能:按进入,可进行坐标N,E,H、水平角、竖直角、斜距测量及PSM、PPM、距离单位等设置;第1页F1 MEAS:进行测量;F2 MODE:设置测量模式,Fine/Coarse/Tracking;F3 S/A:设置棱镜改正值PSM,大气改正值PPM常数;F4 P1↓:进入第2页;第2页F1 R.HT:输入棱镜高;F2 INS.HT:输入仪器高;F3 OCC:输入测站坐标;F4 P2↓:进入第3页;第3页F1 OFSET:偏心测量方式;F2 ———F3 m/f/i:距离单位米/英尺/英寸切换;F4 P3↓:进入第1页;4、主菜单模式功能:按MENU进入,可进行数据采集、坐标放样、程序执行、内存管理数据文件编辑、传输及查询、参数设置等;三、全站仪功能简介测量前,要进行如下设置——按◢或,进入距离测量或坐标测量模式,再按第1页的S/AF3;1、棱镜常数PRISM的设置——进口棱镜多为0,国产棱镜多为-30mm;具体见说明书2、大气改正值PPM的设置——按“T-P”,分别在“TEMP.”和“PRES.”栏,输入测量时的气温、气压;或者按照说明书中的公式计算出PPM值后,按“PPM”直接输入; 说明:PRISM、PPM设置后,在没有新设置前,仪器将保存现有设置;一角度测量按ANG键,进入测角模式开机后默认的模式,其水平角、竖直角的测量方法与经纬仪操作方法基本相同;照准目标后,记录下仪器显示的水平度盘读数HR和竖直度盘读数V;二距离测量先按◢键,进入测距模式,瞄准棱镜后,按F1MEAS,记录下仪器测站点至棱镜点间的平距HD、镜头与镜头间的斜距SD和镜头与镜头间的高差VD;三坐标测量1、按ANG键,进入测角模式,瞄准后视点A;2、按HSET,输入测站O至后视点A的坐标方位角;如:输入65.4839,即输入了;3、按键,进入坐标测量模式;按P↓,进入第2页;4、按OCC,分别在N、E、Z输入测站坐标X0,Y0,H0;5、按P↓,进入第2页,在INS.HT栏,输入仪器高;6、按P↓,进入第2页,在R.HT栏,输入B点处的棱镜高;7、瞄准待测量点B,按MEAS,得B点的XB,YB,HB;四零星点的坐标放样不使用文件1、按MENU,进入主菜单测量模式;2、按LAYOUT,进入放样程序,再按SKP,略过使用文件;3、按OOC.PTF1,再按NEZ,输入测站O点的坐标X0,Y0,H0;并在INS.HT一栏,输入仪器高;4、按BACKSIGHTF2,再按NE/AZ,输入后视点A的坐标xA,yA;若不知A点坐标而已知坐标方位角,则可再按AZ,在HR项输入的值;瞄准A点,按YES;5、按LAYOUTF3,再按NEZ,输入待放样点B的坐标xB,yB,HB及测杆单棱镜的镜高后,按ANGLEF1;使用水平制动和水平微动螺旋,使显示的dHR=0°00ˊ00",即找到了OB 方向,指挥持测杆单棱镜者移动位置,使棱镜位于OB方向上;6、按DIST,进行测量,根据显示的dHD来指挥持棱镜者沿OB方向移动,若dHD为正,则向O点方向移动;反之若dHD为负,则向远处移动,直至dHD=0时,立棱镜点即为B 点的平面位置;7、其所显示的dZ值即为立棱镜点处的填挖高度,正为挖,负为填;8、按NEXT——反复5、6两步,放样下一个点C;后方交会法通常用在高精度测量设站中,因其具备足够检核条件而被广泛应用;这种方法对仪器本身精度要求、稳定性非常高;。
后方交会法计算原理一、已知参数:A点(20515.6960,12164.6580)、B点(20546.1240,12497.4690)A-架仪点平距:La、B-架仪点平距:Lb二、求解方位角:1、Aab=tan-1((Yb-Ya)/ (Xb-Xa))= tan-1((12164.658-12497.469)/(20546.124-20515.696))=84°46'34”2、Lab=√((Xa-Xb)2+(Ya-Yb)2)=334.199=c三、求解夹角:1、C点处夹角c、A点处夹角a、B点处夹角b2、C=cos-1√((C2- a2-b2)/2ab):由余弦定理公式得3、A=sin-1 (La×sinC)/Lab):由正弦定理公式得4、B=sin-1 (Lb×sinC)/Lab):由正弦定理公式得四、求解方位角:1、La边方位角a、Lb边方位角b2、a=Aab+A3、b=Aab-B五、求解坐标:1、C点处坐标:(由点A处推算)Cx=Xa+La×cosa、Cy=Ya+La×sina2、C点处坐标:(由点B处推算)Cx=Xb+Lb×cosb、Cy=Yb+Lb×sinb计算简图如下:斜交放样方法:一、已知参数1、A点桩号:A2、斜距离:S3、斜交角:a二、求解路线右幅:Δx=S×sina、Δy=S×cosa 右幅桩号=A+Δy、边距=Δx 三、求解路线左幅:Δx=S×sina、Δy=S×cosa 右幅桩号=A-Δy、边距=Δx计算简图:。
全站仪后方交会法原理
全站仪后方交会法是一种常用的测量方法,被广泛应用于各种建筑、地质勘探、铁路、公路工程等领域。
它是利用自然射线和人工瞄准目标的方式进行的,通过测量各个测站之间的距离、角度和高差,从而确定目标点的坐标。
本文将对全站仪后方交会法的原理进行详细介绍,以期对相关科研工作者提供指导意义。
一、什么是后方交会法
全站仪后方交会法是一种基于角度与距离测量的三角测量方法,通过测量两个已知点和一个未知点的夹角和距离,推断出未知点的位置坐标。
这种测量方法具有精度高、精度稳定、操作简便等优点,因此被广泛地应用于各种建筑、地质勘探、铁路、公路工程等领域。
二、后方交会法原理
后方交会法的原理是利用三角形余弦定理,确定目标点的坐标。
在测量中,需要先建立一个三角形,其中包含了目标点、两个测站以及三个角度和对应的三条边长。
接着,通过测量这些角度和边长,就可以利用三角形余弦定理求出目标点的坐标。
具体步骤如下:
1.选择两个已知点作为起点和终点,并测量它们之间的角度和距离。
2.使用全站仪测量目标点和起点、终点的夹角,并记录下这些角度。
3.使用全站仪测量目标点到起点、终点的距离,并记录下这些距离。
4.根据三角形余弦定理,计算出目标点的坐标。
具体地,设起点和终点的坐标分别为(Ax,Ay,Az)和(Bx,By,Bz),目标点与起点、终点的距离分别为d1、d2、d3,目标点到起点和终点的夹角分别为角度α、β,则目标点的坐标为
X = Ax + d1 × cosα
Y = Ay + d1 × sinα
Z = Az + h
其中,h为目标点的高程。
三、后方交会法的应用范围
后方交会法具有很广泛的应用范围,包括建筑、地质勘探、路桥工程、管线工程、矿山开采等各个领域。
在建筑工程中,可以利用后方交会法对建筑物的位置、高度等进行精确的测量,保证建筑物的结构稳定和使用安全。
在地质勘探中,可以利用后方交会法对地质构造进行研究,提高勘探效率。
在路桥工程和管线工程中,可以利用后方交会法确定道路、桥梁和管道等的位置和高程,以确保工程的安全和
稳定。
在矿山开采中,可以利用后方交会法对矿山的结构、地形等进
行测量,帮助矿山规划和管理工作。
四、总结
全站仪后方交会法是一种常用的测量方法,通过测量角度和距离,求解目标点的坐标。
这种方法精度高、精度稳定、操作简便,因此被
广泛应用于各个领域。
在实际应用中,需要根据具体情况选择合适的
测量方案,并注意测量误差的控制,确保测量结果的正确性和可靠性。