ANSYS仿真电磁系统温度场步骤
- 格式:docx
- 大小:37.06 KB
- 文档页数:2
基于Ansys Workbench雅阁ISG温度场仿真分析李新华1杨国威1李哲然2(1.湖北工业大学电气与电子工程学院,430068;2.华中科技大学控制科学与工程系,430074)摘要:本文研究基于Ansys Workbench ISG温度场仿真方法,在此基础上使用Ansys Workbench软件对本田Accord ISG不同工况下的温度场进行仿真,并与电枢绕组温升试验结果做比较,同时讨论电机温度对转子磁钢和磁桥结构的影响。
关键词:ISG,Ansys Workbench,温度场仿真,应力分析Accord ISG Temperature Field Simulation Based onAnsys WorkbenchLI Xinhua1,YANG Guowei1,LI Zheran2(1.School of Electrical & Electronic Engineering,Hubei University of Technology,Wuhan430068,China2.Department of control science and Engineering,Huazhong University of Science andTechnology,Wuhan 430074,China)Abstract:In this paper,ISG temperature field simulation method is researched based on Ansys Workbench.On this basis, the temperature field of the Honda Accord ISG different operating conditions are simulated by Ansys Workbench.And it is compared with the armature winding temperature rise test results.The impact of the motor temperature of the rotor magnet and the magnetic bridge structure are also discussed.Keywords:ISG,Ansys Workbench,temperature field simulation,stress analysis1 引言轻度混合动力汽车集成式起动-发电机ISG(ISG: Integrated Starter Generator)功率和转矩密度高、运行工况多变、特别是工作环境温度高、散热条件差,这些都给电机设计带来了新的挑战,仅按有常规的电磁设计是不够的,还需要对其进行温度场的仿真分析与设计。
基于ANSYS的温度场仿真分析引言:在工程领域中,温度场分布的仿真分析是一项重要的工作。
温度场分布的准确预测和优化设计对于许多工业过程和产品的设计和改进至关重要。
在这里,我们将介绍一种基于ANSYS软件的温度场仿真分析方法。
一、ANSYS软件简介ANSYS是一种广泛使用的通用有限元分析(FEA)软件。
它提供了强大的功能,可以进行多种物理和工程仿真分析。
其中,温度场分布的仿真分析是ANSYS的一个主要功能之一二、温度场仿真分析的步骤1.几何建模:使用ANSYS的几何模块进行物体的几何建模。
可以通过绘制二维或三维几何形状来定义和创建模型。
2.网格划分:对几何模型进行网格划分,将其划分为小的单元,以便进行离散化计算。
网格划分的质量直接影响到仿真结果的准确性和计算速度。
3.边界条件设置:根据具体的问题,设置物体表面的边界条件。
边界条件包括固定温度、传热系数、对流换热等。
边界条件设置的准确与否对温度场的分布有重要影响。
4.材料属性定义:为物体的各个部分定义材料属性,包括热导率、热容量等。
这些属性是模型中的重要参数,直接影响到温度场的分布。
5.求解和后处理:设置求解算法和参数,开始进行仿真计算。
求解器根据网格和边界条件,通过计算方程的数值解确定温度场的分布。
计算完成后,可以进行后处理,生成温度场分布的图表和报告。
三、温度场仿真分析的应用温度场仿真分析在多个工程领域中得到广泛应用。
以下是几个示例:1.电子设备散热优化:通过温度场仿真分析,可以评估电子设备中的热量分布,优化散热设计,确保电子设备的正常运行和寿命。
2.汽车发动机冷却系统:通过温度场仿真分析,可以预测汽车发动机冷却系统中的温度分布,优化冷却器的大小和位置,提高冷却效果。
3.空调系统设计:通过温度场仿真分析,可以预测房间内的温度分布,优化空调系统的风口布置和参数设置,实现舒适的室内温度。
4.熔炼和混合过程优化:通过温度场仿真分析,可以预测熔炼和混合过程中的温度分布,优化加热和冷却控制,提高生产效率和产品质量。
ANSYS温度场分析步骤ANSYS是一个计算机辅助工程软件,用于各种工程应用,包括温度场分析。
温度场分析主要是用于研究物体或系统内部的温度分布和传热过程,可以帮助工程师设计和改进各种设备和系统。
下面是ANSYS温度场分析的步骤:1.准备工作:在进行温度场分析之前,首先需要准备好相关的几何模型和网格模型。
几何模型可以由CAD软件创建,而网格模型则需要使用ANSYS的网格生成工具进行网格划分。
在划分网格时,需要根据物体的几何形状和分析需求选择适当的划分网格的密度。
2.定义材料属性:在进行温度场分析之前,需要定义材料的热传导特性。
在ANSYS中,可以通过输入材料的热导率、热容和密度来描述材料的热性能。
3.设置边界条件:在进行温度场分析时,需要设置边界条件来模拟实际工况。
边界条件包括:初始温度、加热或冷却速率、边界热通量以及固定温度等。
这些条件将对温度场分析结果产生重要影响,需要根据实际情况进行合理设置。
4.定义物理模型:在进行温度场分析之前,需要定义物理模型,包括所分析的物体的几何形状和边界条件。
在ANSYS中,可以通过绘制几何模型和设置边界条件来定义物理模型。
5.进行温度场分析:在完成前面的准备工作后,就可以进行温度场分析了。
在ANSYS中,可以使用热传导分析模块来进行温度场分析。
热传导分析模块可以通过求解热传导方程来计算温度场的分布。
分析结果可以包括温度场分布图、热通量分布图等。
6.分析结果的后处理:在进行温度场分析之后,需要对分析结果进行后处理。
后处理包括对温度场分布图进行可视化分析,并进行更详细的结果解释。
可以通过ANSYS提供的后处理工具来进行分析结果的可视化。
7.结果验证和优化:在进行温度场分析之后,可以对分析结果进行验证和优化。
验证可以通过与实际测量数据进行对比来确定模型的准确性和可靠性。
优化则可以通过调整边界条件、几何形状或材料属性等来提高设计的性能。
总结:ANSYS温度场分析是一个非常强大和灵活的工程分析工具,可以用于各种工程应用。
ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。
0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。
其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。
对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。
对于三维模型,多选择SLOID87:六节点四面体单元。
3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。
4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。
GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。
则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。
对话框5中,Material菜单,New Model选项,添加多种材料的热参数。
实验名称:温度场有限元分析一、实验目的1. 掌握Ansys分析温度场方法2. 掌握温度场几何模型二、问题描述井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。
井式炉炉壁体材料的各项参数见表1。
表1 井式炉炉壁材料的各项参数三、分析过程1. 启动ANSYS,定义标题。
单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine”2.定义单位制。
在命令流窗口中输入“/UNITS, SI”,并按Enter 键3. 定义二维热单元。
单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE554.定义材料参数。
单击Main Menu→Preprocessor→Material Props→Material Models菜单5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。
6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。
7.建立模型。
单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。
在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。
8.重复第7步,输入RAD1=0.86-0.065,RAD2=0.86-0.245,单击APPL Y;输入RAD1=0.86-0.245,RAD2=0.86-0.36,单击OK。
目录第一章简介 (1)一、热分析的目的 (1)二、ANSYS的热分析 (1)三、A N S Y S热分析分类 (1)四、耦合分析 (1)第二章基础知识 (2)一、符号与单位 (2)二、传热学经典理论回顾 (2)三、热传递的方式 (3)四、稳态传热 (3)五、瞬态传热 (4)六、线性与非线性 (4)七、边界条件、初始条件 (4)八、热分析误差估计 (4)第三章稳态传热分析 (5)一、稳态传热的定义 (5)二、热分析的单元 (5)三、A N S Y S稳态热分析的基本过程 (5)实例1 (9)实例2 (12)第四章瞬态传热分析 (20)一、瞬态传热分析的定义 (20)二、瞬态热分析的单元及命令 (20)三、ANSYS瞬态热分析的主要步骤 (20)四、建模 (20)五、加载求解 (21)六、后处理 (23)七、相变问题 (23)实例1 (24)实例2 (25)第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析∙在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
∙ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
∙ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类∙稳态传热:系统的温度场不随时间变化∙瞬态传热:系统的温度场随时间明显变化四、耦合分析∙热-结构耦合∙热-流体耦合∙热-电耦合∙热-磁耦合∙热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2-℃ 3二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆U ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
基于ANSYS的温度场计算ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS 开发,它能与多数C AD软件接口,实现数据的共享和交换,如Pro/Engine er, NASTRA N, Alogor, I-DEAS, AutoCA D等,是现代产品设计中的高级CAD 工具之一。
应用ansy s分析软件对一个具体的对象进行分析和计算时,完整的ans ys分析过程可分成三个阶段:即前处(Prepro cessi ng),前处理是建立有限元模型,完成单元网格剖分:求解(Soluti on)和后处理(Postpr ocess ing),后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
下面分别进行说明。
Ansys的前处理Ansys的前处理技术一般由两部分组成:一、对求解场域进行离散,生成有限元网格;二、区域物理参数的处理。
网格剖分主要是实现对求解场域单元的自动剖分,自动把各个单元和节点进行编号,确定各节点的坐标、边界节点的编号等数据,形成一个数据文件,作为有限元程序的输入数据。
为了方便查看各单元剖分情况,判断合理性,还要绘制网格剖分图。
自适应网格剖分(Adapti ve Mesh Genera tion)及其加密技术是近年来a n sys温度场计算中发展比较快和比较完整的内容,它也属于an sys的前处理范畴。
前处理程序是定义问题的程序,它安排所有必须进行汇编的实体数据。
它由可分开的两部分组成。
第一部分是几何图形和拓扑结构的描述,即该实体有一定几何形状和材料性质,这是对原型样机的结构仿真,我们通过第一部分的工作建立有限元分析实体模型。
ANSYS温度场命令流简介ANSYS是一种通用的有限元分析软件,可用于进行各种各样的工程仿真。
在ANSYS中,温度场是一种重要的分析对象,通过模拟和分析温度场,可以帮助工程师评估和改进产品的耐热性能。
本文将介绍ANSYS中用于创建和处理温度场的命令流。
创建网格在进行温度场分析之前,首先需要创建一个网格。
网格可以通过ANSYS中的多种方法生成,例如利用CAD软件导入几何体、手动定义节点和单元、利用自动网格生成工具等等。
在这里,我们将使用ANSYS中的自动网格生成工具来创建一个简单的二维矩形网格。
! 创建一个2D矩形区域BLOCK, 0, 1, 0, 1, 0, 0.1! 划分网格MESH, 1! 输出网格信息/PREP7ET, 1, PLANE42MP, EX, 1, 100000MP, DENS, 1, 7800上述命令流首先创建了一个2D矩形区域,坐标范围为(0, 0)到(1, 0.1)。
然后使用MESH命令将该区域划分为网格。
最后,使用ET命令定义了一个平面应力单元,使用MP命令设置了该单元的材料属性。
定义边界条件一旦网格创建完毕,我们需要定义温度场的边界条件。
在ANSYS中,我们可以通过在边界上定义温度或者通过定义热通量来设置边界条件。
以下是一个设置边界条件的示例命令流:! 在左侧边界定义一个恒定温度D, 1, TEMPER, 200ESIZE, 0.05! 在右侧边界定义一个恒定热通量D, 2, FLUX, 500上述命令流中,我们使用D命令分别在左侧和右侧边界定义了边界条件。
在左侧边界上,我们将温度设置为200度。
在右侧边界上,我们定义了一个恒定热通量,其值为500。
定义材料属性在进行温度场分析之前,我们还需要定义材料的热传导性质。
以下是一个定义材料属性的示例命令流:! 定义材料属性MAT, 1MP, E, 100000MP, PRXY, 0.3MP, COND, 50! 指定单元材料属性REAL, 1TYPE, 1MAT, 1上述命令流中,我们首先使用MAT命令定义了一个材料,并使用MP命令分别设置了该材料的弹性模量、泊松比和热导率。
应用ANSYS对接触器电磁系统热场仿真步骤1、熟悉掌握ANSYS软件的基本操作。
2、建模(Modeling)。
通过ANSYS前处理器中的Modeling对电磁系统进行建模,可适当进行一些简化。
需要建一大的空气体将整个电磁系统包住。
3、选择单元(Element Type)。
ANSYS软件中SOLID97单元可以进行电磁场与温度场的顺序耦合,所以选择这个单元进行磁场的分析。
选择好单元后,进行自由度设置,这方面可以详细阅读ANSYS的help文件中关于SOLID97单元的介绍。
电磁系统中线圈是载压型线圈,它的SOLID97单元的自由度就应该选择AX、AY、AZ、CURR;其他部件为了进行涡流场计算,选择AX、AY、AZ、VOLT。
4、材料属性设置(Material Props)。
电磁系统中包含硅钢片、分磁环、线圈、骨架以及空气体,需对每个部分设置相应的材料属性。
本次分析涉及到的材料属性有相对磁导率、电阻率、热传导系数和对流散热系数,查阅相关材料手册获得这些参数。
对于受温度影响的参数需将其与温度变化的关系设置好。
5、对模型各部分赋相应的材料、坐标系、实参数(Meshing)。
对于线圈单元,需进行实参数定义,包括线圈横截面、匝数、体积、电流方向矢量、对称系数和填充系数(线圈体积可以通过建好的模型直接获得)。
线圈的单元坐标系必须为圆柱局部坐标系。
其他部分可以使用全局坐标系,不需要实参数。
6、划分网格(Meshing)。
具体如何划分需通过自己不断尝试。
网格划分越密,计算越精确,但计算速度很慢,对电脑内存要求很大,所以需不断调试。
7、耦合线圈单元CURR自由度(Coupling/Ceqn)。
选中线圈所有节点进行耦合。
8、加载磁场分析的边界条件和载荷(Loads)。
线圈电压加载在线圈单元上,电压大小为峰值,相角为0。
由于SOLID97单元是矢量法分析,因此在整个模型最外层表面施加磁力线平行的边界条件即可。
9、磁场分析选项设置,写入物理环境。
Instruction of Ansys temperature field calculationQuestion 1:Consider an infinite (in one direction) plate with initial temperature T0。
One end of the plate is exposed to the environment of which the temperature is T e (III type boundary condition). Analyze the temperature distribution in the plate during the period of 2000s。
问题1:考虑一个方向无限长的平板,初始温度为T0,一段暴露在温度为T e的环境中,分析其在2000s内温度分布情况。
Basic parameters基本物性参数Geometry几何:a=1 m, b=0.1 mMaterial材料:λ=54 W/m·o C,ρ=7800 kg/m3, c p=465 J/kg·o CLoads载荷:T0=0 o C, T e=1000 o C,h=50 W/m2·o CJobname and directory settings设置文件名、存储路径Menu |File |Change JobnameMenu |File | Change DirectoryPreprocessing前处理(1)Define Element Type定义单元类型Preprocessor |Element Type | Add/Edit/DeleteAdd: Thermal Mass |Solid |Quad 4node 55(2)Set Material Properties设置材料属性Preprocessor | Material Props | Material ModelsThermal: Conductivity:Isotropic KXX=54Thermal:Density=7800Thermal:Specific Heat=465Modeling建模(1)Create Node 1建立节点1Preprocessor | Modeling |Create | Nodes |In Active CSNo.:1,(x, y, z) = (0,0,0)(2) Create Node 12建立节点12Preprocessor |Modeling | Create | Nodes |In Active CSNo.: 2,(x,y, z)= (0,1,0)(3) Fill Between Node 1 and 12在节点1,12间填充其余节点Preprocessor |Modeling |Create | Nodes |Fill Between NdsNumber of nodes to fill:10Spacing ratio: 1(均匀网格)(4)Create Node 13~24 by copying复制生成节点13~24Preprocessor |Modeling |Copy | Nodes | CopyPick All选择所有节点Total number of copies: 2复制2份(包含原先的1份)X-offset:0。
ANSYS CFD电机温度场仿真分析流程1前言电机是一种实现机电能量转换的电磁装置。
从19世纪末期起,电机就逐渐代替蒸汽机作为拖动生产机械的原动机。
电机在运行时将产生各种损耗,这些损耗转变成热量,使电机各部件发热,温度升高。
电机中的某些部件,特别是电机的绝缘,只能在一定的温度限值内才能可靠工作。
为维持电机的合理寿命,需要采取适当的措施将电机中的热量散发出去,使其在允许的温度限值内运行。
电机冷却的目的就是根据不同类型的电机选择一种合理的冷却方式,保证在额定运行状态下,电机各部分温度不超过国家标准允许的限值。
电机的冷却方式,主要是指对电机散热采用什么冷却介质和相应的流动途径。
改进电机的冷却技术,对提高电机的利用系数和效率及增加可靠性和寿命,特别对提高大型电机的单机容量,都具有重要的意义。
为了找到最佳的电机冷却方式,需要对电机在工作过程中的核心流动问题进行CFD仿真分析。
电机的CFD仿真分析的核心问题即是电机散热系统分析,涉及通风系统、通风部件、换热部件的设计优化问题以及电机核心部件的温升(起动时及额定工况)等问题。
2技术路线电机的稳态温度场仿真的分析流程如下图所示。
3实施过程以一个基于FLUENT的异步电机的稳态温度场分析为例进行说明。
3.1几何处理电机的温度场仿真既涉及到空气的流动,也涉及到热量在绕组和其他结构件之间的传递,属于流-固共轭换热的范畴,因此仿真计算域中既包含流体域,也包含固体域。
由于流体域和固体域两者是互补的关系,所以在抽取流体域之前,需要先对固体域做处理。
电机模型较为复杂,细节特征较多,而流场仿真分析对网格质量的要求较高,因此在保证计算精度的前提下,需要先对实际电机物理模型做一些合理的简化从而尽可能缩小计算的规模。
简化对象的选取是根据具体结构对温度场计算的影响程度来决定:如果局部的细节特征对温度场计算的影响和主要因素相比可以忽略不计,那么这些细节就可以去除;如果考察的对象是局部的细节特征,则需要建立局部细化模型,从而考虑具体的细节特征。
ANSYS仿真电磁系统温度场步骤
1.创建几何模型:在ANSYS中,可以使用多种方法创建电磁系统的几
何模型,包括使用建模工具、导入CAD文件或使用ANSYS的几何建模工具。
确保几何模型完整且准确。
2.定义材料属性:对于每个几何体,需要为其分配材料属性。
这些属
性包括热导率、比热容和密度等。
可以使用材料库中的标准材料,也可以
定义自定义材料属性。
3.设置边界条件:在仿真中,需要设置边界条件来模拟实际操作条件。
对于电磁系统的温度场仿真,需要设置壁面流动条件和散热条件等。
4. 网格划分:将几何模型离散化为小区域,即网格或网格。
这可以
通过使用ANSYS网格工具手动创建网格,或者使用ANSYS自动网格生成器,如AutoMesh或TGrid。
5.定义热源:对于电磁系统的温度场仿真,可能存在电磁源,如电流
或电压。
需要定义这些热源,并将其添加到仿真模型中。
6.定义边界条件:除了热源之外,还需要为仿真模型定义边界条件,
如固定温度、固定热流或固定热通量条件。
这些边界条件将在仿真过程中
施加在模型的边界处。
7.定义求解器设置:在ANSYS中,可以选择不同的求解器来求解热传
导问题。
根据实际需求,可以选择稳态或瞬态求解器,并定义其他相关设置,如收敛准则和求解步长等。
8.运行仿真:完成所有前期准备工作后,可以运行仿真并等待结果。
ANSYS将根据定义的边界条件和材料属性,求解电磁系统的温度场分布。
9.结果后处理:一旦仿真完成,可以对结果进行后处理和分析。
可以查看温度分布图、温度剖面图或导出结果以供进一步分析和使用。
10.优化设计:根据分析和后处理结果,可以对电磁系统的设计进行优化。
可以将结果与实际需求进行比较,并根据需要进行设计修改。
总结:使用ANSYS进行电磁系统温度场仿真的步骤主要包括创建几何模型、设定材料属性、确定边界条件、网格划分、定义热源和边界条件、设置求解器参数、运行仿真、结果后处理和优化设计。
这些步骤将帮助工程师分析和优化电磁系统的温度场,并提供有关系统的详细信息。