分式函数的像和性质
- 格式:docx
- 大小:36.75 KB
- 文档页数:2
一次分式型函数的对称中心一次分式型函数,即函数的分子和分母都是一次函数的函数表达式。
其一般形式为f(x) = (ax + b)/(cx + d),其中a、b、c、d为常数,且c和d不能同时为0。
在这篇文章中,我们将讨论一次分式型函数的对称中心及其性质。
我们来定义一次分式型函数的对称中心。
对于一次分式型函数f(x) = (ax + b)/(cx + d),当满足f(-d/c)存在时,我们称点(-d/c, f(-d/c))为该函数的对称中心。
接下来,我们将讨论一次分式型函数对称中心的性质。
首先,我们可以证明一次分式型函数的对称中心一定在直线x = -d/c上。
这是因为在该直线上,分母为0,但分子不为0,从而可以得到一个有定义的函数值。
对于一次分式型函数f(x) = (ax + b)/(cx + d),如果它的对称中心存在,那么它一定是该函数的一个不动点,即f(-d/c) = (-d/c, f(-d/c))。
这是因为对称中心的横坐标等于f(x)的自变量x,纵坐标等于f(x)的函数值。
进一步地,我们可以通过函数的图像来观察一次分式型函数的对称中心。
以f(x) = (2x + 1)/(3x + 2)为例,我们可以通过绘制函数的图像来找到其对称中心。
在图像上,我们可以看到一条直线x = -2/3,该直线与函数的图像有一个交点,即对称中心。
这个交点的坐标为(-2/3, -1/3)。
一次分式型函数的对称中心还具有以下性质:1. 对称性:对称中心将函数图像关于直线x = -d/c进行对称。
这意味着当点P(x, y)位于函数图像上时,对称中心A(-d/c, f(-d/c))关于直线x = -d/c的对称点P'也在函数图像上。
2. 不动点性质:对称中心满足f(-d/c) = (-d/c, f(-d/c)),即函数在对称中心处的函数值等于对称中心的坐标。
3. 发散性:对称中心是一次分式型函数的“奇点”,即在对称中心处,函数的值可能趋于无穷大或无穷小。
一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
二次函数二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n,对称()2=-+关于点()y a x h k,对称后,得到的解析式是m n()2=-+-+-22y a x h m n k反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
2、性质:1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
高中数学函数题型全归纳
一、函数定义与性质
函数的基本定义:函数的定义域、值域、对应法则。
函数的性质:奇偶性、对称性、周期性、连续性等。
二、一次函数与反比例函数
一次函数的表达式及性质。
反比例函数的表达式及性质。
一次函数与反比例函数的图像及性质。
三、二次函数
二次函数的表达式及性质。
二次函数的图像及性质。
二次函数的极值问题。
四、分式函数与根式函数
分式函数的表达式及性质。
根式函数的表达式及性质。
分式函数与根式函数的图像及性质。
五、三角函数
正弦、余弦、正切的定义及性质。
三角函数的图像及性质。
三角函数的变换公式。
三角函数的值域及最值问题。
六、指数函数与对数函数
指数函数的表达式及性质。
对数函数的表达式及性质。
指数函数与对数函数的图像及性质。
指数函数与对数函数的运算性质。
七、幂函数与反函数
幂函数的表达式及性质。
反函数的定义及性质。
幂函数与反函数的图像及性质。
八、复合函数
复合函数的定义及性质。
复合函数的分解与化简。
复合函数的值域及最值问题。
复合函数的单调性及极值问题。
九、函数的单调性与极值
函数的单调性的判断方法。
函数的极值的定义及求法。
分 式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。
分式函数与绝对值函数的基本关系与计算分式函数与绝对值函数是高中数学中重要的概念和计算内容之一。
它们在数学建模、解题过程和实际问题中都有广泛的应用。
本文将介绍分式函数与绝对值函数的基本关系,并探讨如何进行计算。
一、分式函数的定义与性质分式函数是指由多项式函数的比值构成的函数形式。
通常表示为f(x) = p(x) / q(x),其中p(x)和q(x)都是多项式函数。
分式函数在定义域上的性质与多项式函数类似。
但是需要注意的是,由于分母不能为0,所以在计算中需避免使分母为0的情况。
二、绝对值函数的定义与性质绝对值函数是指以实数集上的任意数x为自变量,以|x|表示的函数。
当x为正数时,|x| = x;当x为负数时,|x| = -x;当x等于0时,|x| = 0。
绝对值函数的性质包括非负性、奇偶性和单调性。
非负性表示绝对值函数的值始终大于等于0,即对于任意的实数x,|x| ≥ 0。
奇偶性表示绝对值函数关于原点对称,即对于任意的实数x,|x| = |-x|。
单调性表示当x增大时,绝对值函数的值也增大,即对于任意的实数x1和x2,若x1 < x2,则| x1 | < | x2 |。
三、分式函数与绝对值函数的基本关系分式函数与绝对值函数之间存在一定的关系,可以通过一些例子来说明。
例1:设f(x) = (2x + 1) / |x + 3|,求f(-5)的值。
解:当x = -5时,f(x) = (2(-5) + 1) / |-5 + 3| = -9 / 2 = -4.5。
例2:设g(x) = |2x - 3| / (x - 1),求g(2)的值。
解:当x = 2时,g(x) = |2(2) - 3| / (2 - 1) = 1 / 1 = 1。
通过以上例子可以看出,在计算分式函数的值时,需要先计算绝对值函数的值,再根据具体的分式形式计算得到结果。
四、分式函数与绝对值函数的计算方法对于分式函数与绝对值函数的计算,可以采用以下方法。
(完整版)⾼中各种函数图像及其性质(精编版)⾼中各种函数图像及其性质⼀次函数(⼀)函数1、确定函数定义域的⽅法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有⼆次根式时,被开放⽅数⼤于等于零;(4)关系式中含有指数为零的式⼦时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(⼆)⼀次函数1、⼀次函数的定义⼀般地,形如y kx b(k,b是常数,且k 0 )的函数,叫做⼀次函数,其中x 是⾃变量。
当b 0时,⼀次函数y kx,⼜叫做正⽐例函数。
⑴⼀次函数的解析式的形式是y kx b,要判断⼀个函数是否是⼀次函数,就是判断是否能化成以上形式.⑵当 b 0,k 0时,y kx仍是⼀次函数.⑶当 b 0,k 0时,它不是⼀次函数.⑷正⽐例函数是⼀次函数的特例,⼀次函数包括正⽐例函数.2、正⽐例函数及性质⼀般地,形如y=kx(k 是常数,k≠0)的函数叫做正⽐例函数,其中k叫做⽐例系数.注:正⽐例函数⼀般形式y=kx (k 不为零)① k 不为零② x 指数为 1 ③ b 取零当k>0 时,直线y=kx 经过三、⼀象限,从左向右上升,即随x 的增⼤y 也增⼤;当k<0 时,?直线y=kx经过⼆、四象限,从左向右下降,即随x增⼤y反⽽减⼩.(1)解析式:y=kx (k 是常数,k≠ 0)(2)必过点:(0,0)、(1,k)(3)⾛向:k>0时,图像经过⼀、三象限;k<0时,?图像经过⼆、四象限(4)增减性:k>0,y 随x 的增⼤⽽增⼤;k<0,y 随x 增⼤⽽减⼩(5)倾斜度:|k| 越⼤,越接近y 轴;|k| 越⼩,越接近x 轴3、⼀次函数及性质⼀般地,形如y=kx +b(k,b 是常数,k≠0),那么y叫做x的⼀次函数.当b=0时,y=kx +b 即y=kx ,所以说正⽐例函数是⼀种特殊的⼀次函数.注:⼀次函数⼀般形式 y=kx+b (k 不为零)① k 不为零②x 指数为 1 ③ b 取任意实数⼀次函数 y=kx+b 的图象是经过( 0,b )和(- b , 0)两点的⼀条直线,我们称它为直k线 y=kx+b, 它可以看作由直线 y=kx 平移 |b| 个单位长度得到 . (当 b>0 时,向上平移;当 b<0 时,向下平移)1)解析式: y=kx+b (k 、 b 是常数, k 0)2)必过点:(0,b )和( - b ,0) k3)⾛向: k>0 ,图象经过第⼀、三象限; k<0,图象经过第⼆、四象限b>0,图象经过第⼀、⼆象限;b<0,图象经过第三、四象限k 0 直线经过第⼀、⼆、三象限k 0 直线经过第⼀、三、四象限b 0b 0k 0 直线经过第⼀、⼆、四象限k 0 直线经过第⼆、三、四象限b 0b 04)增减性: k>0 , y 随 x 的增⼤⽽增⼤; k<0,y 随 x 增⼤⽽减⼩ . 5)倾斜度: |k| 越⼤,图象越接近于 y 轴; |k| 越⼩,图象越接近于 x 轴 .6)图像的平移:当 b>0 时,将直线 y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .4、⼀次函数 y=kx + b 的图象的画法根据⼏何知识:经过两点能画出⼀条直线,并且只能画出⼀条直线,即两点确定⼀条直线,所以画⼀次函数的图象时,只要先描出两点,再连成直线即可. ⼀般情况下:是先选取它与两坐标轴的交点:(0,b),或纵坐标为0 的点.. 即横坐标5、正⽐例函数与⼀次函数之间的关系⼀次函数y=kx +b的图象是⼀条直线,它可以看作是由直线y=kx平移|b| 个单位长度⽽得到(当b>0时,向上平移;当b<0 时,向下平移)6、正⽐例函数和⼀次函数及性质正⽐例函数⼀次函数概念⼀般地,形如y=kx(k 是常数,k≠0)的函数叫做正⽐例函数,其中k 叫做⽐例系数⼀般地,形如y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的⼀次函数. 当b=0 时,是y=kx ,所以说正⽐例函数是⼀种特殊的⼀次函⾃变量范围X 为全体实数图象⼀条直线必过点(0,0)、(1,k)(0,b)和(- b,0)k⾛向k>0 时,直线经过⼀、三象限;k<0时,直线经过⼆、四象限k>0,b>0, 直线经过第⼀、⼆、三象限k>0,b<0直线经过第⼀、三、四象限k<0,b>0 直线经过第⼀、⼆、四象限k<0,b<0 直线经过第⼆、三、四象限增减性k>0 ,y 随x 的增⼤⽽增⼤;(从左向右上升)k<0 ,y 随x 的增⼤⽽减⼩。
函数知识点一.图像及性质 1.一次函数 ①图像:y=kx+b(k≠0) y=kx(k ≠0,b=0)①k>0 增 k<0 减 ②b ≠0一次函数,b=0正比例函数 2.二次函数 ①图像:②a>0 开口向上,a<0开口向下 ③a>0最小值,a<0最大值 ④X 对称=-b2a⑤顶点坐标:(-b2a,244ac a b -)⑥三种表达形式222(1)(2)4()24y a x x x x b ac b y a x a a y ax bx c =--⎧⎫⎪⎪-⎪⎪=++⎨⎬⎪⎪⎪⎪=++⎩⎭两点式顶点式一般式3指数函数①图像:y=x a (a>0且a ≠1)②0<a<1 增函数,a 越小越靠近y 轴,a>1 减函数,a 越大越靠近y 轴,0a =1(a ≠0)③必过(0,1)④y>04对数函数①图像:y=lo x a g (a>0且a ≠1)②0<a<1 增函数,a 越小越靠近x 轴,a>1 减函数,a 越大越靠近x 轴 ③必过(1,0)④x>0 5幂函数①图像:y=a x (a ∈R )②a<0 减函数,a>0 增函数 ③0<a<1下凸,a>1上凸 ④必过(1,1)6对勾函数①图像:y=x+ px(p>0)②顶点坐标-二.定义域1.给定解析式(1)12x-(2)2()x xy-=(3)cosl xy g=2.已知f(x)定义域,求f(g(x))定义域(1)已知f(x)定义域为[-12,12],求y=f(2x-x-12)定义域3.已知f(g(x))的定义域。
求f(x)的定义域(1)若f(2x)的定义域为[-1,1],求f(x)的定义域(一)求函数定义域例:(21)f x-的定义域为[]0,1,求(13)f x-的定义域1.求下列函数定义域①xxxy--+=2)1(2②)45(log)1(xxy-=+2.已知6lg)3(222-=-xxxf,则()f x的定义域是3.(2013陕西理1)设全集为R,函数21)(xxf-=的定义域为M,则MCR为( ).A]1,1[-.B)1,1(-.C),1[]1,(+∞--∞.D),1()1,(+∞--∞4.(2013江西理2)函数)1ln(xxy-=的定义域为( ).A)1,0(.B)1,0[.C ]1,0( .D ]1,0[5.(2013山东文5)函数3121)(++-=x x f x的定义域为( ).A ]0,3(-.B ]1,3(-.C ]0,3()3,(---∞ .D ]1,3()3,(---∞6.(2013重庆文3)函数)2(log 12-=x y 的定义域为( ).A )2,(-∞ .B ),2(+∞ .C ),3()3,2(+∞ .D ),4()4,2(+∞7.(2013安徽文11)函数1l n (11y x=++的定义域为_____________.(二)利用定义域求参数范围例.)1lg(2++=ax x y 的定义域为R ,求a 的范围?练1.82)(2--=x x x f 的定义域为A ,mx x g --=11)(的定义域为B ,Φ=⋂B A ,求m 的取值范围?练2.341)(2++=ax ax x f 的定义域为R ,求a 的范围练3.2(1),1()41x x f x x +<⎧⎪=⎨≥⎪⎩ ;使1)(≥x f 的x取值范围?三.求函数的解析式1.拼凑法:例1.已知f(x+1x )=3x +31x ,求f(x)例2:2(1)()f x x f x -=,求例3:,求2换元法:例1:已知f (2x+1)=lgx,求f(x)的解析式564)12(2+-=+x x x f )(x f例2:2)1(x x f =-,求f (x )例3:,求例4:x x x f 2)1(-=-3.待定系数法:例1:已知二次函数f(x)满足f (2+x )=f(2-x),且f(x)=0的两实根平方和为10,f(x)的图像过点(0,3),求f(x)例2:若()[]12-=x x f f ,则一次函数=例3:二次函数满足,且。
分式函数的像和性质
分式函数是指形式为f(x)=\frac{P(x)}{Q(x)}的函数,其中P(x)和
Q(x)都是多项式函数,且Q(x)≠0。
分式函数的像是指定义域中所有满足f(x)=y的x值构成的集合,即函数的所有可能的输出值。
分式函数的性质包括定义域、值域、奇偶性、单调性和图像。
1. 分式函数的定义域:
分式函数的定义域由Q(x)≠0确定,因为分母不能为零。
可以通过求解Q(x)≠0的方程来确定定义域的范围。
2. 分式函数的值域:
分式函数的值域包括所有满足f(x)=y的y值,其中x是定义域中的值。
对于一些特定的分式函数,可以通过变换或者观察分子、分母的特点来确定值域的范围。
3. 分式函数的奇偶性:
对于分子和分母都是偶函数或者奇函数的分式函数,其奇偶性与分子和分母相同。
如果分子是奇函数而分母是偶函数,或者分母是奇函数而分子是偶函数,则分式函数是奇函数。
4. 分式函数的单调性:
对于分式函数f(x)=\frac{P(x)}{Q(x)},其单调性取决于P(x)和Q(x)的符号变化。
如果P(x)和Q(x)都大于零或者都小于零,那么分式函数是单调的。
如果P(x)比Q(x)先变号,那么分式函数在这个区间上是增
函数;如果P(x)和Q(x)同时变号,那么分式函数在这个区间上是减函数。
5. 分式函数的图像:
分式函数的图像可以通过绘制图像或者利用分子和分母的零点、极值点、拐点等特点来分析。
- 当分式函数的分子的次数小于分母的次数时,函数的图像在水平方向上趋近于零。
- 当分式函数的分子的次数等于分母的次数时,函数的图像在水平方向上存在水平渐近线。
- 当分式函数的分子的次数大于分母的次数时,函数的图像在水平方向上存在斜渐近线。
分式函数的像和性质对于理解和分析分式函数的性质和行为具有重要意义。
通过对分式函数的像和性质进行研究,可以更好地理解分式函数的定义和特点,并且能够应用于解决实际问题和数学推理中。