大一(上)高数课件—ch3不定积分习题
- 格式:ppt
- 大小:120.00 KB
- 文档页数:3
第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰ 思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。
10分钟掌握高数上不定积分问题(考研、期末复习均可以用)好久没有更新高数的内容了,之前一直更新的是概率论和线性代数的内容,其中概率基本更完了,线性代数还没,知识点有点多,道阻且长,哭唧唧T_T!!下面是之前更新的内容,请自取10分钟掌握高等数学上册函数极限求解问题(考研、期末复习均可以用)10分钟掌握高等数学上册导数及微分问题(考研、期末复习均可以用)10分钟掌握高等数学上册函数图像绘制问题(考研、期末复习均可以用)10分钟掌握中值定理相关问题(考研、期末复习均可以用)码字不易,观看后的同学请给个赞+关注如果有考研或是期末复习方面问题的话可以随时留言或者私信【答学百科】,更多期末复习资料更多更新内容也可以点击下方链接加入社群--------------分割线---------------首先简单介绍下积分,积分是导数的一个反向求解过程,很多人在高中的时候是学过导数的,所以在大学再学的时候会觉得比较简单,但是到了积分这一节,会突然卡住,发现怎么那么难,正着做会,反着就不会了,那么下面重点讲讲不定积分的求解吧一、原函数与不定积分的基本概念1、原函数设 f(x),F(x) 为定义在区间 I 上的函数,若对一切的 x\in I ,有 F'(x)=f(x) ,则称 F(x) 为 f(x) 的原函数备注:(1)函数 f(x) 是否存在原函数与区间 I 有关(2)连续函数一定存在原函数,反之不对(3)有第一类间断的函数一定不存在原函数,但有第二类间断点的函数可能有原函数(这句话还有另一种表达方式:即某个函数的导函数不一定连续),如F(x)=x^{2}sin\frac{1}{x}(x\ne0) ,F(x)=0(x=0)f(x)=2xsin\frac{1}{x}-cos\frac{1}{x}(x\ne0) ,f(x)=0(x=0)显然 F'(x)=f(x) ,但 x=0 为 f(x) 的二类间断点,即导函数不连续(4)若 f(x) 有原函数,则一定有无数个原函数,且任意两个原函数之差为常数(5)原函数、函数及导函数对比2、不定积分设 F(x) 为 f(x) 的一个原函数,则 f(x) 的所有原函数F(x)+C 称为 f(x) 的不定积分,记为 \int f(x)dx=F(x)+C注解:(1)\int [f(x)\pm g(x)]dx=\int f(x)dx\pm \int g(x)dx (2) \int kf(x)dx=k\int f(x)dx【例题】\int (x+\frac{1}{x})dx=\int xdx+\int\frac{1}{x}dx=\frac{1}{2}x^{2}+ln\left| x\right|+C\int 5xdx=5\intxdx=5\times\frac{1}{2}x^{2}=\frac{5}{2}x^{2}+C二、不定积分基本公式1、常数函数积分\int kdx=kx+C2、幂函数积分\int x^{n}dx=\frac{1}{n+1}x^{n+1}+C ,\int\frac{1}{x}dx=ln\left| x \right|+C3、指数函数积分\int a^{x}dx=\frac{1}{lna}a^{x}+C ,\inte^{x}dx=e^{x}+C4、三角函数积分\int sinxdx=-cosx+C ,\int cosxdx=sinx+C,\inttanxdx=-ln\left| cosx \right|+C, \int cotxdx=ln\left| sinx \right|+C , \int secxdx=ln\left| secx+tanx\right|+C , \int cscxdx=ln\left| cscx-cotx\right|+C , \int sec^{2}xdx=tanx+C , \intcsc^{2}xdx=-cotx+C , \int secxtanxdx=secx+C , \int cscxcotxdx=-cscx+C5、特殊函数积分\int \frac{1}{\sqrt{1-x^{2}}}dx=arcsinx+C , \int\frac{1}{1+x^{2}}dx=arctanx+C三、不定积分的积分法不定积分的积分方法主要有五种:一类换元法、二类换元法、分步积分法、有理函数积分法、三角函数积分法,课本上一般只介绍了前三种,不够全面,下面具体来看看(一)一类换元法(凑微法)1、定义设 f(u) 的原函数为 F(u) , \varphi(x) 为可导函数,则\int f[\varphi(x)]\varphi'(x)dx=\intf[\varphi(x)]d\varphi(x)令 \varphi(x)=u ,则原式 =\intf(u)du=F(u)+C=F[\varphi(x)]+C在微凑法里面,很多同学会懵逼:d后面那个是怎么来的,完全没有思路实际上,一类换元法的话会涉及到微分的知识,如果对微分熟悉的同学应该还是可以看懂的,下面简单讲解一下回顾下微分的内容, dy=f'(x)dx ,其中 y=f(x) ,基于这个点,看下几个例子y=x^{2},dy=2xdx\Rightarrowdx^{2}=2xdxy=sinx,dy=cosxdx\Rightarrowdsinx=cosxdx【例题】\int 2xdx=\int d(x^{2})=x^{2}+C\intcosxdx=\int d(sinx)=sinx+C上述两道题从第一步到第二部的变化现在应该可以看懂了,主要就是利用微分的形式进行变化的2、凑微法基本公式以下列举了一些凑微法中常用的公式,不过不建议大家去背下来,主要还是要靠题目去巩固【例题】\int \frac{arcsinx}{\sqrt{1-x^{2}}}dx=\intarcsinxdarcsinx=\frac{1}{2}(arcsinx)^2+C(二)二类换元法1、定义设 \varphi(t) 为单调可导函数,且\varphi'(t)\ne0, f(x) 有原函数,则令 x=\varphi(t)\int f(x)dx=\int f[\varphi(t)]\varphi'(t)dt=\intg(t)dt=G(t)+C =G[\varphi^{-1}(x)]+C2、适用范围(1)二类换元法经常使用在根号下的平方相加减的积分计算中,这时候就利用三角替换进行解答主要利用两个三角函数公式的变换:sin^{2}x+cos^{2}x=1 , tan^{2}x+1=sec^{2}x ,利用三角函数的变化,去掉根号,再进行计算,常用的替换如下:情形一:若函数中含有 \sqrt{a^{2}-x^{2}} ,变换 x=asint情形二:若函数中含有 \sqrt{a^{2}+x^{2}},变换 x=atant情形三:若函数中含有 \sqrt{x^{2}-a^{2}},变换 x=asect(2)无理函数化成有利函数的积分【例题1】求解\int \frac{dx}{\sqrt{x}+1}解答:令 \sqrt{x}=t,x=t^{2},dx=2tdt原式为 \int\frac{dx}{\sqrt{x}+1}=\int\frac{2tdt}{t+1}=\int \frac{2t+2-2}{t+1}dt=2-\int \frac{2}{t+1}dt=2t-2ln\left| t+1\right|+C最后将 t 换回 x 即可,即原函数为2\sqrt{x}-2ln\left| \sqrt{x}+1 \right|+C【例题2】求解 \int \frac{dx}{\sqrt{1+x^{2}}}解答:令 x=tant,dx=sec^{2}t原式为 \int\frac{sec^{2}tdt}{\sqrt{1+tan^{2}t}}=\int\frac{sec^2t}{sect}dt=\int sectdt=ln\left|tant+sect \right|+C做到这边很多人又有疑问了,tant 可以换回去 x ,那么 sect 呢,如何换成 x的表达式,这里介绍一种图像结合的方法,大家看下下面这张三角形结合直角三角形及t和x的函数关系,即可推导出其余三角函数的公式所以原式为 =ln\left|x+\sqrt{1+x^{2}} \right|+C(三)分部积分法1、定义设 u(x),v(x) 连续可导,则分部积分法公式为 \intu(x)dv(x)=u(x)v(x)-\int v(x)du(x)2、适用情况以下几种形式可以采用分部积分法进行计算:(1)被积函数为幂函数与指数函数之积,如\int x^ne^{x}dx (2)被积函数为幂函数与指数函数之积,如\int x^nlnxdx (3)被积函数为幂函数与三角函数之积(4)被积函数为幂函数与反三角函数之积(5)被积函数为指数函数与三角函数之积(6)被积函数含有 sec^nx 或 csc^nx ( n 为奇数)备注:用分部积分法时一定要注意,哪个函数设为 u(x) ,哪个函数为 v(x) ,下列简述下不同的设法最后的结果是怎么样的【例题】求解 \int xe^{x}dx解答一:u(x)=e^{x},v'(x)=x 则u'(x)=e^{x},v(x)=\frac{1}{2}x^2\intxe^{x}dx=\inte^{x}d\frac{1}{2}x^2=\frac{1}{2}x^2e^{x}-\int\frac{1}{2}x^2e^{x}dx做到这发现一个问题,原来的积分仅为一次方,而用了一次分部积分后发现变成了二次方,解答难度变得更大了,这说明在函数的假设过程中是有问题的,若利用该方法继续往下算,会发现永远算不出来解答二:u(x)=x,v'(x)=e^{x} 则 u'(x)=1,v(x)=e^{x}\intxe^{x}dx=\int xde^{x}=xe^{x}-\inte^{x}dx=xe^{x}-e^{x}+C做到这里会发现分部积分法最重要的就是要将 u,v 设正确了,只要假设正确了,一般就能做出来(四)有理函数积分1、形式设 R(x)=\frac{P(x)}{Q(x)} ,其中 P(x),Q(x) 为多项式,此处仅考虑P(x)的次数比 Q(x) 次数低时的情况(若P(x)的次数比 Q(x) 次数高时,可对 P(x) 进行拆分)(1) \int \frac{dx}{(x+a)(x+b)}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}dx(2) \int \frac{dx}{(x+a)(x+b)^2}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^2}dx(3)\int \frac{dx}{(x+a)(x^2+bx+c)}=\int\frac{A}{(x+a)}+\frac{Bx+C}{(x^2+bx+c)}dx将有理函数设成上面带有 A,B,C 的函数,通过与原式对比,解答出 A,B,C ,再进行计算【例题】求解 \int \frac{x+1}{x^2-x-6}dx分析:\frac{x+1}{x^2-x-6}=\frac{x+1}{(x+2)(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x-3)}由 A(x-3)+B(x+2)=(A+B)x+(2B-3A)=x+1A+B=1 , 2B-3A=1\RightarrowA=\frac{1}{5} , B=\frac{4}{5}解答:\int \frac{x+1}{x^2-x-6}dx=\int\frac{1}{5}\frac{1}{x+2}+\frac{4}{5}\frac{1}{x-3}dx\frac{1}{5}ln\left| x+2\right|+\frac{4}{5}ln\left| x-3 \right|+C(五)三角函数积分三角函数的积分一般利用几个基础的三角变换公式进行化简,化简后再进行积分求解:1、倍角公式:sin2x=2sinxcosx , cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2、半角公式:利用背角公式进行推导,此处不进行列举3、和积化差公式:sin\alpha+sin\beta=2sin(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})sin\alpha-sin\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{2})sin(\fr ac{\alpha}{2}-\frac{\beta}{2})cos\alpha+cos\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})cos\alpha-cos\beta=-2sin(\frac{\alpha}{2}+\frac{\beta}{2})sin(\frac{\alpha }{2}-\frac{\beta}{2})4、万能公式法令 tan\frac{x}{2}=u ,则 sinx=\frac{2u}{1+u^2} ,cosx=\frac{1-u^2}{1+u^2} , dx=\frac{2}{1+u^2}du利用万能公式便可将三角函数积分变换成有理函数积分进行求解,不过该解法相对比较麻烦,很少会采用该方法进行计算不定积分的解答方法基本就是这些了,方法比较多,但是不同方法有对应的积分形式,只要熟悉了积分形式,解答的时候也相对快捷--------------分割线---------------码字不易,请大家点个赞吧~另外如果有考研或者数学方面问题的话可以随时留言或者私信,有问必答哈~也可以点击头像加入社群进行交流~。
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习一一求不定积分的基本方法思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分★⑴dx x2 . x思路: 被积函数由积分表中的公式(2)可解。
解:dxx2-x5x 2dx★⑵1 ^=)思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
(x3x 2)dx1x3dx1x 2dx3 - 13x32x2C4★(3)(2x x2) dx思路:根据不定积分的线性性质,将被积函数分为两项, 分别积分。
解:(2x x2)dx 2x dx x2dx 2In 21x3 C 3★(4). x(x 3)dx思路:根据不定积分的线性性质,将被积函数分为两项, 分别积分。
解: ' x(x 3)dx3x2dx1x2dx5 32 2x2 C3x42x Jx1思路:观察到3x43x2 1x2 1 3x2 -后,根据不定积分的线性性质,将被积函数分项,分别积1分。
解:(注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分 解为一个整式加上或减去一个真分式的形式,再分项积分。
思路:分项积分。
思路:分项积分。
…、1 ★★(10) - ------- -dxx (1 x )思路:裂项分项积分。
解:4 2 ,3x 3x 12 ,dx 3x dx. 3—dx x arctan x Cx★★ (6)dx思路:注意到2x 1 x 2,根据不定积分的线性性质,将被积函数分项,分别积分。
25 x .斛:-------- 2dx1 xdx ----- 2dx1 xarctan x C.,/ x ★⑺( --- 21 + 1- 4、4)dx x…/x斛:(一 ——i - 3 x x 4、 —)dx 1 2 -x 4 In |x| x3 x 2 24 x 3 xdx-dx x 3 x 3dx 4 x 4dx C. 3 ★(8) (rv2-解:2、,-dx1 , c c . c ---- dx 3arctan x 2arcsin x C. x 2★★(9)x x xdx1 1x 2 47x 8,直接积分。
大一高数不定积分
不定积分又称无穷积分和积分极限,是在实数范围内研究函数平均值及偏差的有用工具,
它既可以解决计算机科学的若干重要问题,也可以作为数学中积分的一种变形。
不定积分最早由英国科学家简·伯纳兹提出,他发现某些连续函数没有明确的定义域,不
能用定积分来计算其平均值和偏差,他把之称为不定积分。
不定积分有以下特点:(1)它是应用无穷数学到积分而产生的结果;(2)它不需要定义域,
可以在任意区间进行计算;(3)它的存在本身表明函数可以任意延伸,不存在最小最大值;
(4)如果将给定的函数的分段延伸到无穷大,那么不定积分就可以求出其平均值和偏差;(5)不定积分可以定量衡量函数的不连续状态,可以从函数的行为角度理解不定积分。
大学一年级高数课程中,学生们一般会逐渐接触不定积分,首先会学习例题作练习,以加强对函数的理解。
在更深入的学习阶段,学生会学习不定积分的基础理论,比如它的定义,特性,用法和计算方法,还会学习微积分中常见的积分变换和无穷级数的原理,以及它们
的表达方法和应用。
通过对不定积分的学习,学生可以了解函数的定义和特点,以及应用它们时的注意事项。
总之,学习不定积分可以拓展学生们对数学思维和解决问题的能力,从而加深对数学学习的兴趣,帮助他们更好地掌握数学课程的知识。