空间立体几何点线面判断及证明
- 格式:doc
- 大小:820.50 KB
- 文档页数:21
空间几何线面平行面面平行线面垂直面面垂直的证明方法空间几何中,线、面、平行面、面平行线、面垂直面等概念是非常重要的。
在证明这些概念时,我们需要掌握一些基本的证明方法。
下面,我将介绍一些证明方法,帮助大家更好地理解这些概念。
一、线与面的关系1. 线与平面的关系线与平面的关系有两种情况:线在平面内或线与平面相交。
对于线在平面内的情况,我们可以通过以下证明方法来证明:(1)假设线与平面不在同一平面内,那么这条线必然与平面相交,与已知矛盾。
(2)假设线与平面在同一平面内,但不在同一直线上,那么这条线必然与平面相交,与已知矛盾。
(3)假设线与平面在同一直线上,但不在同一点上,那么这条线必然与平面相交,与已知矛盾。
因此,我们可以得出结论:线与平面必然在同一平面内且相交于一点或在平面内。
2. 线与直线的关系线与直线的关系有三种情况:相交、平行、重合。
对于线与直线相交的情况,我们可以通过以下证明方法来证明:(1)假设两条线不相交,那么这两条线必然平行,与已知矛盾。
(2)假设两条线重合,那么这两条线必然相交,与已知矛盾。
因此,我们可以得出结论:两条不同的线必然相交于一点或平行。
二、面与面的关系1. 平行面的关系平行面的关系有两种情况:平行或重合。
对于平行面的情况,我们可以通过以下证明方法来证明:(1)假设两个平面不平行,那么这两个平面必然相交,与已知矛盾。
(2)假设两个平面重合,那么这两个平面必然平行,与已知矛盾。
因此,我们可以得出结论:两个不同的平面必然平行或相交于一条直线。
2. 面垂直面的关系面垂直面的关系有两种情况:相交于一条直线或垂直。
对于面垂直的情况,我们可以通过以下证明方法来证明:(1)假设两个面不垂直,那么这两个面必然相交于一条直线,与已知矛盾。
(2)假设两个面相交于一条直线,那么这两个面必然不垂直,与已知矛盾。
因此,我们可以得出结论:两个不同的面必然相交于一条直线或垂直。
三、面平行线的关系面平行线的关系有两种情况:平行或相交。
空间点、线、面之间的位置关系1.线与线的位置关系:平行、相交、异面(特别注意一下:垂直只是相交与异面当中的特殊情况,我们说相交有相交垂直,异面有异面垂直)2.线与面的位置关系:线在面内(选择题时一定要考虑)、线面平行、线面相交3.如何确定一个平面?方法(1)三个不共线的点可以确定一个平面方法(2)两条相交线可以确定一个平面方法(3)两条平行线可以确定一个平面4.如何证明三点共线?具体的做法:就是把其中两点确定的直线作为两个面的交线,证明剩下这一点是这两个面的交点,那么交点必在交线上,则三点共线。
5.如何证明线线平行?方法(1)利用三角形或梯形的中位线方法(2)利用平行四边形方法(3)利用线段对应成比例(通常题目中会出现三等份点或四等份点)方法(4)垂直于同一个面的两条直线互相平行方法(5)借助一个性质:两个面相交,其中一个面内的一条直线平行于另一个面,则这条线平行于两个面的交线(利用这个性质来证明在以往的高考中出现过若干次,同学们需要注意一下)6.如何证明线面平行?方法(1)只需证明这条直线与平面内的一条直线平行即可,简称线线平行推出线面平行。
方法(2)只需把这条直线放入一个合适的平面内,然后证明这个平面与已知平面平行即可,简称面面平行推出线面平行。
特别注意:直线平行于平面,可以得出直线与平面内无数条直线平行,但得不出与平面内任意一条直线平行。
7.如何证明面面平行?只需证明其中一个面内的两条相交线分别平行于另一个面即可。
8.如何证明线面垂直?只需证明这条直线分别与平面内的两条相交线互相垂直即可。
特别注意:直线垂直于平面,可以得出直线与平面内任意一条直线都垂直。
9.如何证明面面垂直?只需证明其中一个面内的一条直线垂直与另一个面即可。
特别注意:面面垂直,既得不出两个面内的任意两条直线互相垂直,也得不出其中一个面内的任意一条直线都垂直于另一个面。
10.异面直线的夹角范围是多少?如何求出异面直线的夹角?夹角范围是:0°~ 90°在求异面直线的夹角时,要把两条异面直线平移使它们出现交点,有时只需平移一条,有时两条都需要平移,这个过程中用得比较多的是中位线,当平移后两条直线出现交点时,复杂些的在三角形中利用余弦定理来求。
高中数学必备的判断空间线面位置关系公式大全及解题方法整理Hello,我是洪老师!今天给大家带来的是是数学解题模板大全更新判断空间线面位置关系的解题方法,立体几何中判断空间线面位置关系是近几年一直活跃在高考的试题中,更是历年高考的热点问题,每年各省、市的高考试题中几乎都会出现此类题型。
该资料,归纳在63套全高中解题方法大全里,编号是:063!如需完整的word版63套全高中解题方法大全,请关注后,点我头像,然后最底下有个【洪粉必备】的菜单,里面有详细介绍!先我们来梳理下数学有关空间点线面之间的位置关系相关公式,同学们在学习点线面之间的位置关系时可以作为更好的公式参考,方便记忆和掌握。
公理一:如果一条线上的两个点在平面上则该线在平面上公理二:如果两个平面有一个公共点则它们有一条公共直线且所有的公共点都在这条直线上公理三:三个不共线的点确定一个平面推论一:直线及直线外一点确定一个平面推论二:两相交直线确定一个平面推论三:两平行直线确定一个平面公理四:和同一条直线平行的直线平行异面直线定义:不平行也不相交的两条直线判定定理:经过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。
等角定理:如果一个角的两边和另一个角的两边分别平行,且方向相同,那么这两个角相等线线平行→线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
线面平行→线线平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
线面平行→面面平行如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
面面平行→线线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
线线垂直→线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
线面垂直→线线平行如果连条直线同时垂直于一个平面,那么这两条直线平行。
线面垂直→面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
空间点线面位置关系及平行判定及性质【知识点梳理】1.平面的基本性质公理1如果一条直线上的两个点都在一个平面内,那么这条直线上的所有点都在这个平面内,,A B l A B α∈⎫⎬∈⎭l α⇒⊂2.平面的基本性质公理2(确定平面的依据) 经过不在一条直线上的三个点,有且只有一个平面3.平面的基本性质公理2的推论(1)经过一条直线和直线外的一点,有且只有一个平面 (2)经过两条相交直线,有且只有一个平面 (3)经过两条平行直线,有且只有一个平面4.平面的基本性质公理3如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线A A αβ∈⎫⎬∈⎭⇒lA lαβ=∈I5.异面直线的定义与判定(1)定义:不同在任何一个平面内的两条直线,既不相交也不平行(2)判定:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线6.直线与直线平行(1)平行四边形ABCD (矩形,菱形,正方形)对边平行且相等,//AB CD ,//BC AD (2)三角形的中位线,E F 分别是,AB AC 的中点中位线平行且等于底边的一半,//EF BC (3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行 //l α,l β⊂,//m l m αβ=⇒I(4)面面平行的性质定理如果两个平行的平面同时与第三个平面相交,则它们的交线平行 //αβ,a αγ=I ,//b a b βγ=⇒I (5)线面垂直的性质定理如果两条直线同垂直于一个平面,则这两条直线平行a α⊥,//b a b α⊥⇒7.直线与平面平行(1)线面平行的判定定理如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 a α⊄,b α⊂,////a b a α⇒ (2)面面平行的性质定理如果两个平面互相平行,那么一个平面内的任一直线都平行于另一个平面 //αβ,//a a αβ⊂⇒8.平面与平面平行(1)面面平行的判定定理如果一个平面内有两条相交直线,分别平行于另一个平面,那么这两个平面平行a α⊂,b α⊂,a b A =I ,//a β,////b βαβ⇒(2)垂直于同一直线的两个平面互相平行 a α⊥,//a βαβ⊥⇒【典型例题】题型一:点线面的关系用符号表示、判断异面直线 例1.给定下列四个命题①,,//,////a b a b ααββαβ⊂⊂⇒ ②,a a αβαβ⊥⊂⇒⊥ ③,//l m l n m n ⊥⊥⇒④,,,l a a l a αβαβαβ⊥=⊂⊥⇒⊥I其中,为真命题的是A. ①和②B. ②和③C. ③和④D. ②和④变式1.给出下列关于互不相同的直线,,l m n 和平面,,αβγ的三个命题: ①若,l m 为异面直线,,l m αβ⊂⊂,则//αβ; ②若//,,l m αβαβ⊂⊂,则//l m ;③若,,,//l m n l αββγγαγ===I I I ,则//m n 其中真命题的个数为A .3B .2C .1D .0题型二:以中位线为突破口的平行证明问题例2.如图,在四面体PABC 中,,PC AB PA BC ⊥⊥,点,,,D E F G 分别是棱,AP AC ,,BC PB 的中点,求证://DE 平面BCP变式1.如图,在四面体PABC 中,,PC AB PA BC ⊥⊥,点,,,D E F G 分别是棱,AP AC ,,BC PB 的中点,求证:四边形EEFG 为平行四边形变式2.如图,在直三棱柱111ABC A B C -中,BAC 90∠=o ,11AB AC AA ===,延长11A C 至点P ,使111C P A C =,连接AP 交棱1CC 于D .求证:1//PB 平面1BDA ;题型三:以平行四边形为突破口的平行证明问题例3.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,//EF AC ,2AB =,1CE EF ==,求证://AF 平面BDE变式1.在三棱柱111C B A ABC -中,直线1AA 与底面ABC 所成的角是直角,直线AB 与11B C 所成的角为45o ,90BAC ∠=o ,且1AB AA =,,,D E F 分别为11,,B A CC BC 的中点.求证://DE 平面ABC ;题型四:三种平行之间的相互关系与转化例4.如图所示,圆柱的高为2,PA 是圆柱的母线,ABCD 为矩形,2,4AB BC ==,,,E F G 分别是线段,,PA PD CD 的中点,求证://PB 面EFG ;变式1.如图,在长方体1111ABCD A B C D -中,,E P 分别是11,BC A D 的中点,,M N 分别是1,AE D C 的中点,2AB a =,1AD AA a ==,求证: //MN 面11ADD A题型五:探究性问题例5.如图所示,直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,90BAD ∠=o,2AB =,1AD CD ==,在线段AB 上是否存在点P (异于,A B 两点),使得//CP 平面1111A B C D ?证明你的结论变式1.如图,直三棱柱11ABB DCC -中,190ABB ∠=o,14,2,1AB BC CC ===,DC 上有一动点P ,1CC 上有一动点Q ,讨论:无论,P Q 在何处,都有//PQ 平面1ABB ,并证明你的结论【方法与技巧总结】1.熟记立体几何证明中的多个公理,推理,判定定理以及性质定理2.熟练掌握空间中点线面的位置关系的符号表示,并能够适当灵活转化为中文以便理解,在此建立空间的想象能力和空间感,进一步把符号转化为立体图象加以记忆3.熟记平行证明中常用的判定定理和性质定理,特别重视三角形中位线定理和平行四边形性质定理的应用4.应用三角形中位线定理和平行四边形性质定理,证明线线平行,从而得出线面平行或面面平行,重视线线平行证明的重要性5.掌握线性平行,线面平行,面面平行三者之间的相互转化【巩固练习】1.下面命题中正确的是().①若一个平面内有两条直线与另一个平面平行,则这两个平面平行;②若一个平面内有无数条直线与另一个平面平行,则这两个平面平行;③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行.A.①③B.②④C.②③④D.③④2.平面α∥平面β,a⊂α,b⊂β,则直线a,b的位置关系是().A.平行B.相交C.异面D.平行或异面3.在空间中,下列命题正确的是().A.若a∥α,b∥a,则b∥αB.若a∥α,b∥α,a⊂β,b⊂β,则β∥αC.若α∥β,b∥α,则b∥βD.若α∥β,a⊂α,则a∥β4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是().A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m⊂α,n⊂α,m∥β,n∥β⇒α∥β5.在正方体ABCDA1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为________.解答题:1、如图,在四棱锥P ABCD中,底面ABCD为平行四边形,O为AC的中点,M 为PD的中点.求证:PB∥平面ACM.2、如图,若P A⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面PCE.3、如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B;4、如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.5、如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.6、如图,在四棱锥P ABCD中,底面是平行四边形,P A⊥平面ABCD,点M、N 分别为BC、P A的中点.在线段PD上是否存在一点E,使NM∥平面ACE?若存在,请确定点E的位置;若不存在,请说明理由.。
课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。
平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。
点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。
知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。
点线面的位置关系〔1〕四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号语言:A l,B l,且A ,B l .公理2:过不在一条直线上的三点,有且只有一个平面.三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面②经过两条相交直线,有且只有一个平面_______________________③经过两条平行直线,有且只有一个平面_______________________它给出了确定一个平面的依据.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线〔两个平面的交线〕.符号语言:P ,且P I l,P 1.公理4:〔平行线的传递性〕平行与同一直线的两条直线互相平行符号语言:a//l,nb//l a//b 0〔2〕空间中直线与直线之间的位置关系1 .概念异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线.两条异面直线a,b ,经过空间任意一点O作直线a //a,b //b ,我们把a与b所成的角〔或直角〕叫异面直线a, b所成的夹角.〔易知:夹角范围0 90 〕公理4:〔平行线的传递性〕平行与同一直线的两条直线互相平行.符号语言:a〃l,且b//l a//b 0定理:空间中如果一个角的两边分别与另一个角的两边分别平行, 那么这两个角相等或互补.〔注意:会画两个角互补的图形〕小,击〃心相交直线:同一平面内,有且只有一个公共点;u向宜线2 .位置关系:八’ 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点〔3〕空间中直线与平面之间的位置关系直 线 与 平 面 的 位 置 关 系 有 三 种 直线在平面内〔l 〕有无数个公共点〔4〕空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种 两个平面平行〔// 〕没有公共点 两个平面相交〔I 1〕有一条公共直线考点1:点,线,面之间的位置关系例1.〔2021辽宁,4,5分〕m,n 表示两条不同直线,a 表示平面.以下说法正确 的是〔〕A.假设 m// a ,n // a ,那么 m/l nB.假设 a ,n ? a ,那么 nC.假设 a ,m±n, WJ n // aD.假设 mil a ,m±n,那么 n± a[答案]1.B[解析]1.A 选项m n 也可以相交或异面,C 选项也可以n? a ,D 选项也可以n // a 或n 与a 斜交.根据线面垂直的性质可知选 B.例2.〔2021山东青岛高三第一次模拟测试,5〕设"、"是两条不同的直线,空 ,是两个不同的平面,那么以下命题正确的选项是〔〕A.假设 口〃瓦口〃/那么 6"a B .假设 01 人口那么."C .假设 ,, 「那么D .假设・ . . ..那么[答案]2. D[解析]2.A 选项不正确,由于方匚口是可能的;直线在平面外直线与平面相交〔11 直线与平面平行〔1 / / 〕 A 有且只有一个公共点没有公共点B选项不正确,由于以‘产,""靠时,""尸,"仁/都是可能的;C选项不正确,由于我上方,口工户时,可能有m;D选项正确,可由面面垂直的判定定理证实其是正确的.应选D例3. 〔2021广西桂林中学高三2月月考,4〕设小、"是两条不同的直线,以、川是两个不同的平面.以下命题中正确的选项是〔A〕';:」-•・;〃一/…」「;二.一不〔C〕滂,£©[8―明〃,••曾 = .,・,A[答案]3. D[解析]3. 假设m上R MU E用工'、那么平面"与“垂直或相交或平行,故〔A〕错误;假设“1凤阳1 g//Q,那么直线用与〃相交或平行或异面,故〔B〕错误;假设口L凤仪1.二风雨工,;那么直线片与平面#垂直或相交或平行,故〔C〕错误; 假设那么直线、1M,故©正确.选D.例4. 〔2021周宁、政和一中第四次联考, 示不同的平面,给出以下四个命题:①假设州且EU•那么u〞;②假设州// f,且阳// c.贝〞// 口;③假设Hl…内T = M ",那么'//巾//E ;④假设m D 且打// #,那么f //7〕设L E,H表示不同的直线,小丹「表( )(B) " ’(D)睽C f其中正确命题的个数是〔〕A. 1B. 2C. 3D. 4 [答案]4. B[解析]4. ①正确;②直线也或£上,错误;③错误,由于正方体有公共端点的三条棱两两垂直;④正确.故真正确的选项是①④,共2个.2.空间几何平行关系转化关系:i I城线平行---------- "线面平行" ------------ "面面平行直线、平面平行的判定及其性质归纳总结证实线线平行的方法:11 (平行线的传递性)平行与同一直线的两条直线互相平行.即公理4(2证实这条两条直线的方向量共线.③如果两个平行平面同时和第三个平面相交,那么它们的交线平行.即面面平行的性质.2 .证实直线和平面相互平行的方法(1证实直线和这个平面内的一条直线相互平行;②证实这条直线的方向量和这个平面内的一个向量相互平行;③证实这条直线的方向量和这个平面的法向量相互垂直.3 .证实两平面平行的方法:(1)利用定义证实.利用反证法,假设两平面不平行,那么它们必相交,再导出矛盾.(2)判定定理:一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,这个定理可简记为线面平行那么面面平行.用符号表示是:anb, aa , a// e , b// e , WJ a // e.(3)垂直于同一直线的两个平面平行.用符号表示是:a±a , a,B那么a// B.(4)平行于同一个平面的两个平面平行. 〃 ,// //4.两个平面平行的性质有五条:(1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面,这个定理可简记为:〞面面平行,那么线面平行〞.用符号表示是:a // B, aa ,那么a // B.(2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行,这个定理可简记为:〞面面平行,那么线线平行〞.用符号表示是:a//0, aP 丫=a, B C = =b,贝U a// bo(3) 一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面.这个定理可用于证线面垂直.用符号表示是:a // B , a, a ,那么a, B.(4)夹在两个平行平面间的平行线段相等口(5)过平面外一点只有一个平面与平面平行七3.空间几何垂直关系1 .线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一 条,必垂直于另一条.三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂 直,那么它也和这条斜线垂直.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂 直,那麽它也和这条斜线的射影垂直.注意:⑴三垂线指PA PQ AO 都垂直a 内的直线a 其实质是:斜线和平 面内一条直线垂直的判定和性质定理.⑵要考虑a 的位置,并注意两定理交替使 用.2 .线面垂直(1)定义:如果一条直线l 和一个平面a 相交,并且和平面a 内的任意一条直 线都垂直,我们就说直线l 和平面a 互相垂直,其中直线l 叫做平面的垂线,平面 a 叫做直线l 的垂面,直线与平面的交点叫做垂足.直线l 与平面a 垂直记作:I ,ob a J /不(2)直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.(3)直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条 直线平行. 3 .面面垂直(1)两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面. (2)两平面垂直的判定定理:(线面垂直 面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3)两平面垂直的性质定理:(面面垂直 线面垂直)假设两个平面互相垂直, 那么在一个平面内垂直于它们的交线的直线垂直于另一个平面PO 推理模式:PAI,OA ,a APa AOAOa考点2:证实线面之间的平行与垂直例1 .如图,四边形ABC时正方形,PD,平面ABCD/DPC=30 ,AF,PC于点F,FE // CD,交PD于点E.(1)证实:CFL平面ADF;[解析]1.⑴证实:V PDL平面ABCD/ PDL AD,又CDL AD,Pm CD=D,• ・ADL平面PCD/ ADL PC,又AF, PC,AFA AD=A,「• PC1平面ADF,即CF,平面ADF.例2. (2021江苏,16, 14分)如图,在四棱锥P-ABC时,平面PADL平面ABCD, AB=AD, / BAD=60 , E, F 分别是AP, AD的中点.求证:(I )直线EF//平面PCD;(R)平面BEFL平面PAD.J)[答案](I )在△ PAD中,由于E, F分别为AP, AD的中点,所以EF// PD.又因为EF?平面PCD, PC?平面PCD,所以直线EF//平面PCD.(n)连结BD.由于AB=AD, /BAD=60 ,所以△ ABM正三角形.由于F是AD 的中点,所以BF±AD.由于平面PADL平面ABCD, BF?平面ABCD,平面PAD? 平面ABCD=AD所以BF,平面PAD.又由于BF?平面BEF,所以平面BEFL平面PAD.例3. (2021 江苏,16, 14 分)如图,在直三棱柱ABC-ABG中,E、F分别是AB、A i C的中点,点D在BC上,A iD± B i C.求证:(I ) EF // 平面ABC;(II)平面AFD1平面BBCC.[答案]3.( I )由于E、F分别是A i B、A i C的中点,所以EF// BC, EF?面ABC, BC ?面ABC.所以EF//平面ABC.(II)由于直三棱柱ABC-AB i C i,所以BBL面A i B i C i, BB iX A i D,又A i DLBC,所以A i DL面BBCC,又AD?面A i FD,所以平面AFDL平面BBCC.例4. (2021江苏,i6, i4 分)如图,在四面体ABCm,CB=CD, ADLBD,点E、F分别是AB BD的中点.求证:(I )直线EF//平面ACD;(n)平面EFd平面BCD.[答案]4.( I )在4ABD中,由于E、F分别是AB BD的中点,所以EF// AD.又AD?平面ACD, EF?平面ACD,所以直线EF//平面ACD.(H)在AABD^ ,由于ADL BD, EF // AD,所以EF, BD.在△BCDt ,由于CD=CB, F为BD的中点,所以CF± BD.由于EF?平面EFC, CF?平面EFC, EF与CF交于点F,所以BDL平面EFC.又由于BD?平面BCD,所以平面EFCL平面BCD.例5. (2021北京海淀区高三三月模拟题,17,14分)在四棱锥P-/3m 中,产,!平面N夙力,匚是正三角形,金.与凡0的交点5/恰好是AC中点,又= ZCTH二120.,点A『在线段PB上,且(H)求证:AN"平面『DC;[答案]7.(1) 由于必出.是正三角形,■是JC'中点,所以m C',即8OLRC.又由于^ 平面HBCD , 80u平面月8CQ,所以以_LHD.又Rin」心=1,所以叨_L平面心C.又尸.仁平面尸〃’,所以皿_LPC.(H)在正三角形月中,3M =2V'3,在AJC.中,由于M为/C中点, DM±AC y所以才口二CD.又2OM = 120 ,所以NCMf = 60..1tan ZCDM = ♦"=々=出DM —二'所以由冈冈,得3 .所以a1九=31在等腰直角三角形尸/E中,2月"/lA",所以PB = 4五. 所以BMNPCA , BN 小)= BY : ,所以MN NPD .又“V之平面"DC , PD仁平面产比,所以W j平面热乂:.。
第三节 空间点、线、面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.[小题体验]1.(2019·湖州模拟)已知l,m,n为三条不重合的直线,α,β为两个不同的平面,则( )A.若m⊥α,m⊥β,则α∥βB.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αC.若α∩β=l,m⊂α,m⊥l,则m⊥βD.若m∥n,m⊂α,则n∥α解析:选A 由l,m,n为三条不重合的直线,α,β为两个不同的平面知,在A中,若m⊥α,m⊥β,则由面面平行的判定定理得α∥β,故A正确;在B中,若l⊥m,l⊥n,m⊂α,n⊂α,则l与α相交、平行或l⊂α,故B错误;在C中,若α∩β=l,m⊂α,m⊥l,则m与β相交,故C错误;在D中,若m∥n,m⊂α,则n∥α或n⊂α,故D错误.故选A.2.(教材习题改编)设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.答案:③④1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.[小题纠偏]1.(2018·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.2.(2019·杭州诊断)设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个命题:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.①②B.①②③C.②③④ D.①③④解析:选A ①可以根据直线与平面垂直的性质定理得出;②可以根据三垂线定理的逆定理得出;对于③,n可以在平面α内,故③不正确;对于④,反例:正方体共顶点的三个平面两两垂直,故④错误.故选A.3.(教材习题改编)下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数为( )A.4 B.3C.2 D.1解析:选D ①中若三点在一条直线上,则不能确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定四个平面;④中这三个公共点可以在这两个平面的交线上.故错误的是①③④,正确的是②.所以正确命题的个数为1.考点一平面的基本性质及应用重点保分型考点——师生共研[典例引领]如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明:(1)如图,连接EF,A1B,CD1.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.[由题悟法]1.点线共面问题证明的2种方法(1)纳入平面法:先确定一个平面,再证有关点、线在此平面内;(2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.2.证明多线共点问题的2个步骤(1)先证其中两条直线交于一点;(2)再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.[即时应用]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.考点二空间两直线的位置关系重点保分型考点——师生共研[典例引领]如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[由题悟法][即时应用]1.上面例题中正方体ABCDA1B1C1D1的棱所在直线中与直线AB 是异面直线的有________条.解析:与AB异面的有4条:CC1,DD1,A1D1,B1C1.答案:42.在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填上所有正确答案的序号)解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.答案:②④考点三异面直线所成的角重点保分型考点——师生共研[典例引领](2018·全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.22解析:选C 法一:如图,将长方体ABCD A 1B 1C 1D 1补成长方体ABCD A 2B 2C 2D 2,使AA 1=A 1A 2,易知AD 1∥B 1C 2,所以∠DB 1C 2或其补角为异面直线AD 1与DB 1所成的角.易知B 1C 2=AD 1=2,DB 1=12+12+32=5,DC 2=DC 2+CC 22=12+232=13.在△DB 1C 2中,由余弦定理,得cos ∠DB 1C 2=DB 21+B 1C 22-DC 222DB 1·B 1C 2=5+4-132×5×2=-55, 所以异面直线AD 1与DB 1所成角的余弦值为55. 法二:以A 1为坐标原点建立空间直角坐标系(如图),则A (0,0,3),D 1(0,1,0),D (0,1,3),B 1(1,0,0), 所以AD 1=(0,1,-3),DB 1=(1,-1,-3),所以cos 〈AD 1,DB 1〉=AD 1·DB 1|AD 1|·|DB 1|=0×1+1×-1+-3×-32×5=55.[由题悟法]1.用平移法求异面直线所成的角的3步骤(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.2.有关平移的3种技巧求异面直线所成的角的方法为平移法,平移的方法一般有3种类型:(1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移.计算异面直线所成的角通常放在三角形中进行.[即时应用]如图所示,在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCDA1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.一抓基础,多练小题做到眼疾手快1.(2019·台州一诊)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β解析:选D 由a,b是空间中不同的直线,α,β是不同的平面知,在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.2.(2018·平阳期末)已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线解析:选C 由平行直线公理可知,若c∥b,则a∥b,与a,b是异面直线矛盾.所以c与b不可能是平行直线.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12C.12 2 D.242解析:选A 如图,已知空间四边形ABCD,设对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的45°角,故S四边形EFGH=3×4·sin 45°=62,故选A.4.如图所示,平行六面体ABCDA1B1C1D1中,既与AB共面又与CC1共面的棱有________条;与AB异面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.与AB异面的棱有CC1,DD1,B1C1,A1D1,共4条.答案:5 45.如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+222-322×2×22=78.答案:78二保高考,全练题型做到高考达标1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n ⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A ∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.(2018·宁波模拟)如图,在正方体ABCDA1B1C1D1中,M,N 分别是BC1,CD1的中点,则下列说法错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行 D.MN与A1B1平行解析:选D 如图,连接C1D,在△C1DB中,MN∥BD,故C正确;因为CC1⊥平面ABCD,所以CC1⊥BD,所以MN与CC1垂直,故A正确;因为AC⊥BD,MN∥BD,所以MN与AC垂直,故B正确;因为A1B1与BD异面,MN∥BD,所以MN与A1B1不可能平行,故D错误.3.(2018·义乌二模)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.若α⊥β,m⊥β,则m∥αB.若平面α内有不共线的三点到平面β的距离相等,则α∥βC.若m⊥α,m⊥n,则n∥αD.若m∥n,n⊥α,则m⊥α解析:选D 由m,n为两条不同的直线,α,β为两个不同的平面知,在A中,若α⊥β,m⊥β,则m∥α或m⊂α,故A错误;在B中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故B错误;在C中,若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;在D中,若m∥n,n⊥α,则由线面垂直的判定定理得m⊥α,故D正确.故选D.4.(2019·湖州模拟)如图,在下列四个正方体ABCDA1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( )解析:选D 如图,在正方体ABCDA1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,易知多边形EFMN Q G是一个平面图形,且直线BD1与平面EFMN Q G垂直,结合各选项知,选项A、B、C中的平面与这个平面重合,只有选项D中的平面既不与平面EFMN Q G重合,又不与之平行.故选D.5.(2018·宁波九中一模)正三棱柱ABCA1B1C1中,若AC=2 AA1,则AB1与CA1所成角的大小为( )A.60°B.105°C.75° D.90°解析:选D 取A1C1的中点D,连接AD,B1D(图略),易证B1D⊥A1C,因为tan∠CA1C1·tan∠ADA1=22×2=1,所以A1C⊥AD,又B1D∩AD=D,所以A1C⊥平面AB1D,又AB1⊂平面AB1D,所以A1C ⊥AB1,故AB1与CA1所成角的大小为90°.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37.(2018·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是_______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c 可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD ,因为圆柱的轴截面ABB 1A 1是正方形,所以C 1D =2AD , 所以直线AC 1与AD 所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为 2.答案:29.(2018·舟山模拟)在空间四边形ABCD 中,已知AD =1,BC=3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角.解:如图,分别取AD ,CD ,AB ,BD 的中点E ,F ,G ,H ,连接EF ,FH ,HG ,GE ,GF .由三角形的中位线定理知,EF ∥AC ,且EF =34,GE ∥BD ,且GE =134,GE 和EF 所成的锐角(或直角)就是AC 和BD 所成的角.同理,GH ∥AD ,HF ∥BC ,GH =12,HF =32.又AD ⊥BC ,所以∠GHF =90°,所以GF 2=GH 2+HF 2=1.在△EFG 中,GE 2+EF 2=1=GF 2,所以∠GEF =90°,即AC 和BD 所成的角为90°.10.如图所示,在三棱锥P ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =90°,AB =2,AC =23,PA =2.求: (1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23, 故三棱锥P ABC 的体积为V =13·S △ABC ·PA =13×23×2=433. (2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD所成的角.在△ADE 中,DE =2,AE =2,AD =2,则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34.即异面直线BC 与AD 所成角的余弦值为34. 三上台阶,自主选做志在冲刺名校 1.(2019·绍兴质检)如图,在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,A 1C 与底面ABCD 所成的角为60°.(1)求四棱锥A 1ABCD 的体积;(2)求异面直线A 1B 与B 1D 1所成角的余弦值.解:(1)∵在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,连接AC ,∴AC =22+22=22,又易知AA 1⊥平面ABCD ,∴∠A 1CA 是A 1C 与底面ABCD 所成的角,即∠A 1CA =60°,∴AA 1=AC ·tan 60°=22×3=26,∵S 正方形ABCD =AB ·BC =2×2=4,∴VA 1ABCD =13·AA 1·S 正方形ABCD =13×26×4=863. (2)连接BD ,易知BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成的角(或所成角的补角).∵BD =22+22=22,A 1D =A 1B =22+262=27,∴cos ∠A 1BD =A 1B 2+BD 2-A 1D 22·A 1B ·BD =28+8-282×27×22=1414, 即异面直线A 1B 与B 1D 1所成角的余弦值是1414. 2.(2018·台州一模)如图所示的圆锥的体积为33π,圆O 的直径AB =2,点C 是AB 的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积;(2)求异面直线PB 与CD 所成角的大小.解:(1)∵圆锥的体积为33π,圆O 的直径AB =2,圆锥的高为PO ,∴13π×12×PO =33π,解得PO =3,∴PA = 32+12=2,∴该圆锥的侧面积S =πrl =π×1×2=2π.(2)法一:如图,连接DO ,OC .由(1)知,PA =2,OC =r =1.∵点D 是PA 的中点,点O 是AB 的中点,∴DO ∥PB ,且DO =12PB =12PA =1,∴∠CDO 是异面直线PB 与CD 所成的角或其补角.∵PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC ,又点C 是 AB 的中点,∴OC ⊥AB . ∵PO ∩AB =O ,PO ⊂平面PAB ,AB ⊂平面PAB ,∴OC ⊥平面PAB ,又DO ⊂平面PAB ,∴OC ⊥DO ,即∠DOC =90°.在Rt △DOC 中,∵OC =DO =1,∴∠CDO =45°.故异面直线PB 与CD 所成角为45°.法二:连接OC ,易知OC ⊥AB ,又∵PO ⊥平面ABC ,∴PO ,OC ,OB 两两垂直,以O 为坐标原点,OC所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立如图所示的空间直角坐标系.其中A (0,-1,0),P (0,0,3),D ⎝ ⎛⎭⎪⎪⎫0,-12,32,B (0,1,0),C (1,0,0),∴PB =(0,1,-3),CD =⎝⎛⎭⎪⎪⎫-1,-12,32, 设异面直线PB 与CD 所成的角为θ,则cos θ=|PB ·CD ||PB |·|CD |=222=22, ∴θ=45°,∴异面直线PB 与CD 所成角为45°.3.如图所示,三棱柱ABC A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)法一:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC ,所以侧面A 1ACC 1⊥底面ABC .又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB , 所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.法二:如图所示,取EC 的中点P ,AC 的中点Q ,连接P Q ,PB ,B Q.因为EC =2FB =2,所以PE 綊BF ,所以P Q ∥AE ,PB ∥EF ,所以P Q ∥平面AFE ,PB ∥平面AEF ,因为PB ∩P Q =P ,PB ,P Q ⊂平面PB Q ,所以平面PB Q ∥平面AEF .又因为B Q ⊂平面PB Q ,所以B Q ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155, 所以BM 与EF 所成的角的余弦值为155.。
立体几何线面面面平行的证明线面、面面平行是立体几何中重要的概念,在几何证明中经常会遇到。
下面将分别介绍线面平行和面面平行的证明。
一、线面平行的证明:线面平行是指一条直线与其中一平面上的其他线段或射线都平行。
下面给出线面平行的证明。
设直线l与平面α相交于点A,我们要证明直线l与平面上任意一条线段或射线都平行。
设平面上有一条线段BC,先证明直线l与线段BC平行。
假设直线l与线段BC的其中一点D相交,连接线段AD和CD。
现在需要证明线段AD与线段BC平行。
根据平面几何的基本知识,在平面上,如果三个点在同一条直线上,那么该直线上的任意两点连线也位于平面上。
故点A、D、C三点在同一条直线上,那么线段AD也位于平面α上。
又因为直线l与线段BC和AD的交点分别为D和A,根据定理“若两条直线平行,则与这两条直线分别相交的两个平行线交点连线也平行”。
所以,直线l与线段AD平行。
同理,可以证明直线l与线段CD平行。
综上所述,直线l与线段BC平行。
接下来证明直线l与平面上的任意一条射线EF平行。
同样以与射线EF有相交点E的直线l为基准,连接射线BE和EF。
然后使用相同的证明方法,即证明射线BE与EF平行。
通过以上证明,我们可以得出结论:直线l与平面α上的任意一条线段或射线都平行。
即证明了线面平行。
二、面面平行的证明:面面平行是指两个平面平行,这在立体几何中也有重要应用。
下面给出面面平行的证明。
设平面α与平面β相交于一条直线l,我们要证明平面α与平面β上的任意一条线段或射线都平行。
以直线l为基准,设平面α上有一条线段AB,我们需要证明线段AB 与平面β平行。
作直线AB的平行线于平面β相交于点C。
现在需要证明直线BC与线段AB平行。
根据平面几何的基本知识,若两条直线平行,那么有一个点在一条直线上,则另一条直线上的点的连线也在同一平面上。
因此点C在平面β上,那么连接线段BC位于平面β上。
又因为平面α与平面β分别与直线AB和BC相交于A和C两点,根据定理“若两个平面分别与一条直线相交,那么它们的交线上的任意两点连线也在这两个平面的交线上”。
一、线线平行的证明方法:1、利用平行四边形。
2、利用三角形或梯形的中位线。
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两条直线平行。
7、夹在两个平行平面之间的平行线段相等。
(需证明)二、线面平行的证明方法:1、定义法:直线与平面没有公共点。
2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
三、面面平行的证明方法:1、定义法:两平面没有公共点。
2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一平面的两个平面平行。
4、经过平面外一点,有且只有一个平面和已知平面平行。
5、垂直于同一直线的两个平面平行。
四、线线垂直的证明方法:1、勾股定理。
2、等腰三角形。
3、菱形对角线。
4、圆所对的圆周角是直角。
5、点在线上的射影。
6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
(三垂线定理,需证明)8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线逆定理,需证明)9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内任意直线都垂直。
2、点在面内的射影。
3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
常州知典教育一对一教案学生:年级:学科:数学授课时间:月日授课老师:赵鹏飞- 1 - / 21平行关系相交关系独有关系(1)已知m,n表示两条不同直线,α表示平面,下列说法正确是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α(2)下列命题正确是( )A.若两条直线和同一个平面所成角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【解析】(1)对于选项A,m与n还可以相交或异面;对于选项C,还可以是n⊂α;对于选项D,还可以是n∥α或n⊂α或n与α相交.(2)对于命题A,这两条直线可以相交或为异面直线,∴A错误;对于命题B,这两个平面可以相交,∴B错误;对于命题D,这两个平面还可能相交,∴D错误;而由线面平行性质定理可证C正确.故选C.【答案】(1)B (2)C【点拨】解题(1)根据空间线面、面面、线线平行判定与性质、垂直判定与性质逐个进行判断,注意空间位置关系各种可能情况.解题(2)时要注意充分利用正方体(或长方体)模型辅助空间想象.解决空间位置关系问题方法- 3 - / 21(1)解决空间中点、线、面位置关系问题,首先要明确空间位置关系定义,然后通过转化方法,把空间中位置关系问题转化为平面问题解决.(2)解决位置关系问题时,要注意几何模型选取,如利用正(长)方体模型来解决问题.考向2 异面直线所成角1.两条异面直线所成角过空间任意一点分别引两条异面直线平行直线,那么这两条相交直线所成锐角或直角叫作这两条异面直线所成角.若记这个角为θ,则θ∈⎝⎛⎦⎥⎤0,π2.2.判定空间两条直线是异面直线方法(1)判定定理:平面外一点A 与平面内一点B 连线和平面内不经过点B 直线是异面直线.(2)反证法:证明两直线平行、相交不可能或证明两直线共面不可能,从而可得两直线异面.(1)(2014·大纲全国,4)已知正四面体ABCD 中,E 是AB 中点,则异面直线CE 与BD 所成角余弦值为( )A.16B.36C.13D.33(2)如图,已知二面角α-MN -β大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD =60°,E 是AB 中点,DO ⊥面α,垂足为O .①证明:AB⊥平面ODE;②求异面直线BC与OD所成角余弦值.【解析】(1)如图,取AD中点F,连接CF,EF,则EF∥BD,∴∠CEF即为异面直线CE与BD所成角.设正四面体棱长为2,则CE=CF=3,EF=12BD=1.由余弦定理得cos∠CEF=CE2+EF2-CF22CE·EF=36.∴CE与BD所成角余弦值为36.故选B.(2)①证明:如图,∵DO⊥α,AB⊂α,∴DO⊥AB.连接BD,由题设知,△ABD是正三角形.又E是AB中点,∴DE⊥AB.而DO∩DE=D,故AB⊥平面ODE.②因为BC∥AD,所以BC与OD所成角等于AD与OD所成角,即∠ADO是异面直线BC与OD所成角.由①知,AB⊥平面ODE,所以AB⊥OE.又DE⊥AB,于是∠DEO是二面角α-MN-β平面角,从而∠DEO=60°.不妨设AB=2,则AD=2.易知DE=3.在Rt△DOE中,DO=DE·sin 60°=32.连接AO,在Rt△AOD中,cos∠ADO=DOAD=322=34.故异面直线BC与OD所成角余弦值为34.【点拨】解题(1)关键是选取合适点作出异面直线平行线.解题(2)时应注意异面直线所成角归结到一个三角形里.特别为直角三角形.求异面直线所成角方法(1)作:利用定义转化为平面角,对于异面直线所成角,可固定一条、平移一条,或两条同时平移到某个特殊位置,顶点选在特殊位置上.(2)证:证明作出角为所求角.(3)求:把这个平面角置于一个三角形中,通过解三角形求空间角.两异面直线所成角归结到一个三角形内角时,容易忽视这个三角形内角可能等于两异面直线所成角,也可能等于其补角.考向3线面平行判定与性质直线与平面平行判定定理与性质定理文字语言图形语言符号语言判定定理不在平面内一条直线与此平面内一条直线平行,则该直线与此平面平行(简记为线线平行⇒线面平行)⎭⎪⎬⎪⎫l⊄αa⊂αl∥a⇒l∥α性质定理一条直线与一个平面平行,则过这条直线任一平面与此平面交线与该直线平行(简记为线面平行⇒线线⎭⎪⎬⎪⎫a∥αa⊂βα∩β=b⇒a∥b- 5 - / 21平行)直线与平面平行判定定理和性质定理中三个条件缺一不可;线面平行性质定理可以作为线线平行判定方法.(2014·北京,17,14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC体积.【思路导引】(1)利用已知条件转化为证明AB⊥平面B1BCC1;(2)取AB中点G,构造四边形FGEC1,证明其为平行四边形,从而得证;(3)根据题中数据代入公式计算即可.【解析】(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB 1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:如图,取AB中点G,连接EG,FG.因为G,F分别是AB,BC中点,所以FG∥AC,且FG=12AC.因为AC∥A1C1,且AC=A1C1,E为A1C1中点,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2=3.所以三棱锥E-ABC体积V=13S△ABC·AA1=13×12×3×1×2=33.1.证明线面平行问题思路(一)(1)作(找)出所证线面平行中平面内一条直线;(2)证明线线平行;(3)根据线面平行判定定理证明线面平行.2.证明线面平行问题思路(二)(1)在多面体中作出要证线面平行中线所在平面;(2)利用线面平行判定定理证明所作平面内两条相交直线分别与所证平面平行;(3)证明所作平面与所证平面平行;(4)转化为线面平行.(2013·江苏,18,13分)如图①,在边长为1等边三角形ABC中,D,E分别是AB,AC上点,AD=AE,F 是BC中点,AF与DE交于点G.将△ABF沿AF折起,得到如图②所示三棱锥A-BCF,其中BC=2 2.(1)证明:DE∥平面BCF;- 7 - / 21(2)证明:CF⊥平面ABF;(3)当AD=23时,求三棱锥F-DEG体积.解:(1)证明:在等边三角形ABC中,AD=AE,∴ADDB=AEEC,在折叠后三棱锥A-BCF中也成立,∴DE∥BC.∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.(2)证明:由图①,在等边三角形ABC中,F是BC中点,∴AF⊥BC,在三棱锥中仍有AF⊥CF,BF=CF=1 2.∵在三棱锥A-BCF中,BC=2 2,∴BC2=BF2+CF2,∴CF⊥BF.又∵BF∩AF=F,∴CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.∴V FDEG=V EDFG=13×12·DG·FG·EG=13×12×13×⎝⎛⎭⎪⎫13×32×13=3324.考向4面面平行判定与性质平面与平面平行判定定理与性质定理文字语言图形语言符号语言判定定理一个平面内两条相交直线与另一个平面平行,则这两个平面平行(简记为线面平行⇒面面平行)⎭⎪⎬⎪⎫a⊂αb⊂αa∩b=Pa∥βb∥β⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b平面与平面平行性质定理实际上给出了判定两条直线平行一种方法,注意一定是第三个平面与两平行平面相交,其交线平行.如图,四棱柱ABCD-A1B1C1D1底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1体积.- 9 - / 21【解析】 (1)证明:由题设知,BB 1綊DD 1, ∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C . 又A 1B ⊄平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B , ∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1高. 又∵AO =12AC =1,AA 1=2, ∴A 1O =AA21-AO 2=1. 又∵S △ABD =12×2×2=1, ∴VABD -A 1B 1D 1=S △ABD ·A 1O =1.【点拨】 解题(1)需将面面平行关系转化为线面平行,再转化为线线平行,通过取特殊四边形来完成证明;解题(2)关键是选易求高底面,利用线面垂直判定找高.1.判定面面平行四个方法(1)利用定义:即判断两个平面没有公共点.(2)利用面面平行判定定理.(3)利用垂直于同一条直线两平面平行.(4)利用平面平行传递性,即两个平面同时平行于第三个平面,则这两个平面平行.2.平行问题转化关系(2014·十校联考,18,12分)如图,在三棱柱ABC-A1B1C1中,D是BC上一点,且A1B∥平面AC1D,D1是B1C1中点,求证:平面A1BD1∥平面AC1D.证明:如图,连接A1C交AC1于点E,连接ED.∵四边形A1ACC1是平行四边形,∴E是A1C中点.∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED.∵E是A1C中点,∴D是BC中点.又D1是B1C1中点,∴D1C1綊BD,∴四边形BDC1D1为平行四边形,∴BD1∥C1D.又A1B∩BD1=B,DE∩DC1=D,∴平面A1BD1∥平面AC1D.考向5线面垂直判定与性质直线与平面垂直判定定理及性质定理文字语言图形语言符号语言判定定理一条直线与平面内两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b如图,四棱锥P-ABCD中,底面是以O为中心菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12.(1)证明:BC⊥平面POM;(2)若MP ⊥AP ,求四棱锥P -ABMO 体积.【思路导引】 (1)由余弦定理、勾股定理等知识先证OM ⊥BM ,再由线面垂直判定定理证明;(2)将底面四边形ABMO 分为△ABO 与△MBO 来求面积,根据(1)中结果,利用勾股定理、余弦定理求出PO ,代入棱锥体积公式求解.【解析】 (1)证明:如图,连接OB ,因为四边形ABCD 为菱形,O 为菱形中心,所以AO ⊥OB . 因为∠BAD =π3,故OB =AB ·sin ∠OAB =2sin π6=1. 又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =12+⎝ ⎛⎭⎪⎫122-2×1×12×cos π3=34.所以OB 2=OM 2+BM 2,故OM ⊥BM . 又PO ⊥底面ABCD ,所以PO ⊥BC .又OM ⊂平面POM ,PO ⊂平面POM ,OM ∩PO =O , 所以BC ⊥平面POM .(2)由(1)可得,OA =AB ·cos ∠OAB =2·cos π6=3.设PO =a ,由PO ⊥底面ABCD 知,△POA 为直角三角形, 故P A 2=PO 2+OA 2=a 2+3. 由△POM 也是直角三角形, 故PM 2=PO 2+OM 2=a 2+34.如图,连接AM .在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝ ⎛⎭⎪⎫122-2×2×12×cos 2π3=214.由已知MP ⊥AP ,故△APM 为直角三角形, 则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214, 得a =32,a =-32(舍去),即PO =32. 此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32=538. 所以四棱锥P -ABMO 体积V P ABMO =13·S 四边形ABMO ·PO =13×538×32=516.1.证明直线与平面垂直一般步骤(1)找与作:在已知平面内找或作两条相交直线与已知直线垂直. (2)证:证明所找到或所作直线与已知直线垂直. (3)用:利用线面垂直判定定理,得出结论. 2.判定线面垂直四种方法 (1)利用线面垂直判定定理.(2)利用“两平行线中一条与已知平面垂直,则另一条也与这个平面垂直”. (3)利用“一条直线垂直于两平行平面中一个,则与另一个平面也垂直”. (4)利用面面垂直性质定理.考向6 面面垂直判定与性质平面与平面垂直判定定理及性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊂βl⊥α⇒α⊥β性质定理两个平面互相垂直,则一个平面内垂直于交线直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α(2014·江苏,16,14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【思路导引】(1)利用三角形中位线性质找到线线平行,再运用直线与平面平行判定定理进行求证;(2)要证面面垂直可考虑寻找线面垂直,要证线面垂直可考虑寻找线线垂直,利用勾股定理可证线线垂直.【证明】(1)因为D,E分别为棱PC,AC中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB中点,P A=6,BC=8,所以DE∥P A,DE=12P A=3,EF=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又P A⊥AC,DE∥P A,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,- 15 - / 21所以平面BDE⊥平面ABC.1.面面垂直证明两种思路(1)用面面垂直判定定理,即先证明其中一个平面经过另一个平面一条垂线;(2)用面面垂直定义,即证明两个平面所成二面角是直二面角,把证明面面垂直问题转化为证明平面角为直角问题.2.垂直问题转化关系考向7线面角、二面角求法1.线面角(1)当l⊥α时,线面角为90°.(2)当l∥α或l⊂α时,线面角为0°.(3)线面角θ范围:0°≤θ≤90°.2.二面角(1)如图,二面角α-l-β,若①O∈l,②OA⊂α,OB⊂β,③OA⊥l,OB⊥l,则∠AOB就叫作二面角α-l-β平面角.(2)二面角θ范围:0°≤θ≤180°.如图,四棱锥P-ABCD底面ABCD是平行四边形,BA=BD=2,AD=2,P A=PD=5,E,F分别是棱AD,PC中点.(1)证明:EF∥平面P AB.(2)若二面角P-AD-B为60°,①证明:平面PBC⊥平面ABCD;②求直线EF与平面PBC所成角正弦值.【思路导引】(1)因为E,F分别是所在棱中点,可取PB中点M,证明四边形AMFE是平行四边形,然后利用线面平行判定定理证明.(2)①连接PE,BE,由题意知∠PEB=60°,在△PEB中利用余弦定理证出BE⊥PB.又BE⊥AD,然后利用线面垂直和面面垂直判定定理证明;②由①知BE⊥平面PBC,则∠EFB即为直线EF与平面PBC所成角.【解析】(1)证明:如图,取PB中点M,连接MF,AM.因为F为PC中点.故MF∥BC且MF=12BC.由已知有BC∥AD,BC=AD.又由于E为AD中点,因而MF∥AE且MF=AE,故四边形AMFE为平行四边形,所以EF∥AM.又AM⊂平面P AB,而EF⊄平面P AB,所以EF∥平面P AB.(2)①证明:如图,连接PE,BE.因为P A=PD,BA=BD,而E为AD中点,故PE⊥AD,BE⊥AD,所以∠PEB为二面角P-AD-B平面角.在△P AD中,由P A=PD=5,AD=2,可解得PE=2.在△ABD中,由BA=BD=2,AD=2,可解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60°,由余弦定理,可解得PB=3,从而∠PBE=90°,即BE⊥PB.又BC∥AD,BE⊥AD,从而BE⊥BC,因此BE⊥平面PBC.又BE⊂平面ABCD,所以平面PBC⊥平面ABCD.②如图,连接BF.由①知,BE⊥平面PBC,所以∠EFB为直线EF与平面PBC所成角.由PB=3及已知,得∠ABP为直角.- 17 - / 21而MB=12PB=32,可得AM=112,故EF=112.又BE=1,故在Rt△EBF中,sin∠EFB=BEEF=21111.所以直线EF与平面PBC所成角正弦值为211 11.1.求空间角三个步骤(1)找:即找出相关角;(2)证:即证明找出角即为所求角;(3)计算:即通过解三角形方法求出所求角.2.空间角找法(1)线面角找出斜线在平面上射影,关键是作出垂线,确定垂足.(2)二面角二面角大小用它平面角来度量,平面角常见作法有:①定义法;②垂面法.其中定义法是最常用方法.课堂练习巩固练习:1.如图,在四棱锥P-ABCD中底面ABCD是矩形,P A⊥平面ABCD,P A=AD=2,AB=1,BM⊥PD于点M.(1)求证:AM⊥PD;(2)求直线CD与平面ACM所成角余弦值.2.如图所示,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥平面ABCD,M,N分别为SA,CD中点.(1)证明:直线MN∥平面SBC;(2)证明:平面SBD⊥平面SAC.3.如图①,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AB=BC.把△BAC沿AC折起到△P AC位置,使得P点在平面ADC上正投影O恰好落在线段AC上,如图②所示,点E,F分别为棱PC,CD中点.(1)求证:平面OEF∥平面APD;(2)求证:CD⊥平面POF;(3)若AD=3,CD=4,AB=5,求四棱锥E-CFO体积错题- 19 - / 21回顾1.解:(1)证明:∵P A⊥平面ABCD,AB⊂平面ABCD,∴P A⊥AB.∵AB⊥AD,AD∩P A=A,AD⊂平面P AD,P A⊂平面P AD,∴AB⊥平面P AD.∵PD⊂平面P AD,∴AB⊥PD.∵BM⊥PD,AB∩BM=B,AB⊂平面ABM,BM⊂平面ABM,∴PD⊥平面ABM.∵AM⊂平面ABM,∴AM⊥PD.(2)由(1)知,AM⊥PD,又P A=AD,则M是PD中点.在Rt△P AD中,AM=2,在Rt△CDM中,MC=MD2+DC2=3,∴S△ACM=12AM·MC=62.设点D到平面ACM距离为h,由V DACM=V MACD,得13S△ACM·h=13S△ACD·12P A.解得h=63.设直线CD与平面ACM所成角为θ,则sin θ=hCD=63,∴cos θ=33.∴直线CD与平面ACM所成角余弦值为33.2.证明:(1)如图所示,取SB中点E,连接ME,CE.∵M为SA中点,故ME∥AB,且ME=12AB.∵N为CD中点,故CN=12AB,从而ME∥CN,且ME=CN,∴四边形MECN是平行四边形,∴MN∥EC.又EC⊂平面SBC,MN⊄平面SBC,∴直线MN∥平面SBC.(2)如图,连接AC,BD相交于点O.∵SA⊥底面ABCD,故SA⊥BD.∵四边形ABCD是菱形,∴AC⊥BD.又SA∩AC=A,故BD⊥平面SAC.又BD⊂平面SBD,∴平面SBD⊥平面SAC.3.解:(1)证明:因为点P在平面ADC上正投影O恰好落在线段AC上,所以PO⊥平面ADC,所以PO⊥AC.教研组长签字:- 21 - / 21。