材料力学习题(5)第十章 哈工业大材料力学本科生试卷和课后题目
- 格式:doc
- 大小:230.00 KB
- 文档页数:3
《材料力学》课后习题答案详细在学习《材料力学》这门课程时,课后习题是巩固知识、检验理解程度的重要环节。
一份详细准确的课后习题答案不仅能够帮助我们确认自己的解题思路是否正确,还能进一步加深对知识点的理解和掌握。
材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它对于工程领域的学生来说至关重要,无论是机械工程、土木工程还是航空航天工程等,都离不开材料力学的知识支撑。
对于课后习题的解答,我们首先要明确每个问题所涉及的核心概念和原理。
比如,在研究杆件的拉伸和压缩问题时,需要清楚胡克定律的应用条件和计算公式。
胡克定律指出,在弹性限度内,杆件的伸长或缩短量与所受的拉力或压力成正比。
以一道常见的拉伸习题为例:一根直径为 20mm 的圆杆,受到100kN 的拉力,材料的弹性模量为 200GPa,求杆的伸长量。
解题思路如下:首先,根据圆杆的直径计算出横截面积 A =π×(d/2)^2 ,其中 d 为直径。
然后,根据胡克定律ΔL = FL/EA ,其中F 为拉力,L 为杆长,E 为弹性模量,A 为横截面积,代入已知数据进行计算。
在计算过程中,要注意单位的统一。
拉力的单位通常为牛顿(N),长度的单位要与弹性模量的单位相匹配,面积的单位要为平方米(m²)。
再来看一个关于梁的弯曲问题。
梁在受到横向载荷作用时,会产生弯曲变形。
在解答这类习题时,需要运用到弯矩方程、挠曲线方程等知识。
例如:一简支梁,跨度为 L,承受均布载荷 q,求梁的最大弯矩和最大挠度。
解题时,首先要根据梁的支座情况列出弯矩方程。
然后,通过积分求出挠曲线方程,再根据边界条件确定积分常数。
最后,求出最大弯矩和最大挠度的位置及数值。
在求解过程中,要理解弯矩和挠度的物理意义,以及它们与载荷、梁的几何形状和材料性质之间的关系。
对于扭转问题,要掌握扭矩的计算、切应力的分布规律以及扭转角的计算方法。
比如,一根轴受到扭矩 T 的作用,已知轴的直径和材料的剪切模量,求轴表面的最大切应力和扭转角。
材料⼒学练习题及答案-全学年第⼆学期材料⼒学试题(A 卷)⼀、选择题(20分)1、图⽰刚性梁AB 由杆1和杆2⽀承,已知两杆的材料相同,长度不等,横截⾯积分别为A 1和A 2,若载荷P 使刚梁平⾏下移,则其横截⾯⾯积()。
A 、A 1〈A 2B 、A 1 〉A 2C 、A 1=A 2D 、A 1、A 2为任意 2、建⽴圆轴的扭转应⼒公式τρ=M ρρ/I ρ时需考虑下列因素中的哪⼏个?答:()(1)扭矩M T 与剪应⼒τρ的关系M T =∫A τρρdA(2)变形的⼏何关系(即变形协调条件)(3)剪切虎克定律(4)极惯性矩的关系式I T =∫A ρ2dAA 、(1)B 、(1)(2)C 、(1)(2)(3)D 、全部 3、⼆向应⼒状态如图所⽰,其最⼤主应⼒σ1=() A 、σ B 、2σ C 、3σ D 、4σ4、⾼度等于宽度两倍(h=2b)的矩形截⾯题⼀、3图题⼀、1图梁,承受垂直⽅向的载荷,若仅将竖放截⾯改为平放截⾯,其它条件都不变,则梁的强度()A 、提⾼到原来的2倍B 、提⾼到原来的4倍C 、降低到原来的1/2倍D 、降低到原来的1/4倍5. 已知图⽰⼆梁的抗弯截⾯刚度EI 相同,若⼆者⾃由端的挠度相等,则P 1/P 2=() A 、2 B 、4C 、8D 、16⼆、作图⽰梁的剪⼒图、弯矩图。
(15分)三、如图所⽰直径为d 的圆截⾯轴,其两端承受扭转⼒偶矩m 的作⽤。
设由实验测的轴表⾯上与轴线成450⽅向的正应变,试求⼒偶矩m 之值、材料的弹性常数E 、µ均为已知。
(15分)题⼀、5图三题图四、电动机功率为9kW ,转速为715r/min ,⽪带轮直径D =250mm ,主轴外伸部分长度为l =120mm ,主轴直径d =40mm ,〔σ〕=60MPa ,⽤第三强度理论校核轴的强度。
(15分)五、重量为Q 的重物⾃由下落在图⽰刚架C 点,设刚架的抗弯刚度为EI ,试求冲击时刚架D 处的垂直位移。
材料力学习题第13章13-1 冲床的最大冲力为400kN ,被冲剪钢板的剪切极限应力MPa 360=b τ,冲头材料的M P a 440][=σ,试求在最大冲力作用下所能冲剪的圆孔的最小直径和板的最大厚度。
13-2 图示凸缘联轴节传递扭矩m kN 35M ⋅=,直径为mm 121=d 的螺栓分布在mm 150=d 的圆周上。
材料的MPa 90][=τ,试校核螺栓的剪切强度。
习题13-1图 习题13-2图13-3 两块钢板用七个铆钉联接如图所示。
已知钢板的厚度,m m 6=δ宽度mm 200=b ,铆钉直径mm 18=d 。
材料的许用应力,MPa 160][=σ,MPa 100][=τMPa 240][=bs σ载荷F 的=150kN ,试校核此接头强度。
13-4 图示装置中,键的长度l =35mm ,许用切应力MPa 100][=τ,许用挤压应力MPa 220][=bs σ,试求允许作用在手柄上的力F 的最大值。
13-5 夹剪如图,销钉C 的直径d =5mm ,剪断一根与销钉直径相同的铜丝时,需加力F =0.5kN ,求铜丝与销钉横截面上的平均切应力各为多少?习题13-3图习题13-4图 习题13-5图13-6 图示摇臂,承受载荷F 1与F 2作用。
试确定轴销B 的直径d 。
已知载荷F 1=50kN ,F 2=35.4kN ,许用切应力MPa 100][=τ,许用挤压应力MPa 240][=bs σ。
习题13-6图13-7 试校核图示铆接接头的强度。
铆钉与板件的材料相同,许用正应力MPa 160][=σ,许用切应力MPa 120][=τ,许用挤压应力MPa 340][=bs σ,载荷k N 230=F 。
习题13-7图13-8 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷F =45kN 作用。
已知木杆的截面宽度b =250mm ,沿木纹方向的许用拉应力MPa 6][=σ,许用挤压应力MPa 10][=bs σ,许用切应力MPa 1][=τ。
资料力学-学习指导及习题谜底之迟辟智美创作第一章绪论1-1 图示圆截面杆,两端接受一对方向相反、力偶矩矢量沿轴线且年夜小均为M的力偶作用.试问在杆件的任一横截面m-m上存在何种内力分量,并确定其年夜小.解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其年夜小即是M.1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ.解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零.试问杆件横截面上存在何种内力分量,并确定其年夜小.图中之C点为截面形心.解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示.试求棱边AB与AD的平均正应变及A 点处直角BAD的切应变.解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最年夜值.解:(a) F N AB=F,F N BC=0,F N,max=F=F(b) F N AB=F,F N BC=-F,F N,max(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N=3 kN,max(d) F N AB=1 kN,F N BC=-1 kN,F N=1 kN,max2-2 图示阶梯形截面杆AC,接受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm.如欲使BC与AB段的正应力相同,试求BC段的直径.解:因BC与AB段的正应力相同,故2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN.试求图示斜截面m-m上的正应力与切应力,以及杆内的最年夜正应力与最年夜切应力.解:2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A接受载荷F=80kN作用.杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的资料相同,屈服极限σ=320MPa,平安因数n s.试校核桁架的强度.s解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件.2-5(2-14)图示桁架,接受载荷F作用.试计算该载荷的许用值[F].设各杆的横截面面积均为A,许用应力均为[σ].解:由C点的平衡条件由B点的平衡条件1杆轴力为最年夜,由其强度条件2-6(2-17)图示圆截面杆件,接受轴向拉力F作用.设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值.已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa.解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d::12-7(2-18)图示摇臂,接受载荷F1与F2作用.试确定轴销B的直径d.已知载荷F1=50kN,F2,许用切应力[τ]=100MPa,许用挤压应力[σ]=240MPa.bs解:摇臂ABC受F1、F2及B点支座反力F B三力作用,根据三力平衡汇交定理知F B的方向如图(b)所示.由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径第三章轴向拉压变形3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm.在轴向拉F=6kN的作用下,测得试验段伸长Δl,板宽缩短Δb.试计算硬铝的弹性模量E与泊松比μ.解:由胡克定律3-2(3-5) 图示桁架,在节点A处接受载荷F作用.从试验中测得杆1与杆2的纵向正应变分别为ε1×10-4与ε2×10-4.试确定载荷F及其方位角θ之值.已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa.解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得3-3(3-6) 图示变宽度平板,接受轴向载荷F作用.试计算板的轴向变形.已知板的厚度为δ,长为l,左、右真个宽度分别为b1与b2,弹性模量为E.解:3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持.设钢丝绳的轴向刚度(即发生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移.解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移.设各杆各截面的拉压刚度均为EA.解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移即是B点铅垂位移加2杆的伸长量,即(b)点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)3-6(3-14) 图a所示桁架,资料的应力-应变关系可用方程σn=Bε暗示(图b),其中n和B为由实验测定的已知常数.试求节点C的铅垂位移.设各杆的横截面面积均为A.(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与资料均相同.在梁的中点C接受集中载荷F作用.试计算该点的水平与铅垂位移.已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm.解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等3-8(3-17) 图示桁架,在节点B和C作用一对年夜小相等、方向相反的载荷F.设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C.解:根据能量守恒定律,有3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2.复合杆接受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形.解:设杆、管接受的压力分别为F N1、F N2,则F N1+F N2=F (1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σc]=110MPa.试确定各杆的横截面面积.解:设杆1所受压力为F N1,杆2所受拉力为F N2,则由梁BC的平衡条件得变形协调条件为杆1缩短量即是杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa.若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积.解:设杆1、杆2、杆3的轴力分别为F N1(压)、F N2(拉)、F N3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移即是杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件 A1=A2=2A3,取A1=A2=2A3=2448mm2.3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起.铆接后,温度升高40°,试计算铆钉剪切面上的切应力.钢与铜的弹性模量分别为E s=200GPa与E c=100GPa,线膨胀系数分别为αl s×10-6℃-1与αl c=16×10-6℃-1.解:钢杆受拉、铜管受压,其轴力相等,设为F N,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F].为了提高许用载荷之值,现将杆3的设计长度l酿成l+Δ.试问当Δ为何值时许用载荷最年夜,其值[F max]为何.解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2年夜,由杆3的强度条件若将杆3的设计长度l酿成l+Δ,要使许用载荷最年夜,只有三杆的应力都到达[σ],此时变形协调条件为第四章扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m.试计算横截面上的最年夜、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力.解:因为τ与ρ成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接.已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[τ]=80MPa,d1/d2.试确定实心轴的直径d,空心轴的内、外径d1和d2.解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW.(1) 试求轴内的最年夜扭矩;(2) 若将轮1与轮3的位置对换,试分析对轴的受力是否有利.解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最年夜扭矩若将轮1与轮3的位置对换,则最年夜扭矩酿成最年夜扭矩变小,固然对轴的受力有利.4-4(4-21) 图示两端固定的圆截面轴,接受扭力矩作用.试求支反力偶矩.设扭转刚度为已知常数.解:(a) 由对称性可看出,M A=M B,再由平衡可看出M A=M B=M(b)显然M A=M B,变形协调条件为解得(c)(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起.设作用在刚性平板上的扭力矩为M=2kN·m,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa.试求套管与芯轴的扭矩及最年夜扭转切应力.解:设套管与芯轴的扭矩分别为T1、T2,则T1+T2 =M=2kN·m (1)变形协调条件为套管与芯轴的扭转角相等,即联立求解式(1)、(2),得套管与芯轴的最年夜扭转切应力分别为4-6(4-28) 将截面尺寸分别为φ100mm×90mm 与φ90mm×80mm的两钢管相套合,并在内管两端施加扭力矩M0=2kN·m后,将其两端与外管相焊接.试问在去失落扭力矩M0后,内、外管横截面上的最年夜扭转切应力.解:去失落扭力矩M0后,两钢管相互扭,其扭矩相等,设为T,设施加M0后内管扭转角为φ0.去失落M0后,内管带动外管回退扭转角φ1(此即外管扭转角),剩下的扭转角(φ0-φ1)即为内管扭转角,变形协调条件为内、外管横截面上的最年夜扭转切应力分别为4-7(4-29) 图示二轴,用突缘与螺栓相连接,各螺栓的资料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为δ=10mm,轴所接受的扭力矩为M=5.0 kN·m,螺栓的许用切应力[τ]=100MPa,许用挤压应力 [σbs]=300MPa.试确定螺栓的直径d.解:设每个螺栓接受的剪力为F S,则由切应力强度条件由挤压强度条件故螺栓的直径第五章弯曲应力1(5-1)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示.试分析下列平衡微分方程中哪一个是正确的.解:B正确.平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定.截面弯矩和剪力的方向是不随坐标变动的,我们在处置这类问题时都按正方向画出.可是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程式时就有所分歧,参考下图.当Ox坐标取向相反,向右时,相应(b),A是正确的.但无论A、B弯矩的二阶导数在q向上时,均为正,反之,为负.2(5-2)、对接受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种谜底中哪一种是毛病的.解:A是毛病的.梁截面上的弯矩的正负号,与梁的坐标系无关,该梁上的弯矩为正,因此A是毛病的.弯矩曲线和一般曲线的凸凹相同,和y轴的方向有关,弯矩二阶导数为正时,曲线开口向着y轴的正向.q(x)向下时,无论x轴的方向如何,弯矩二阶导数均为负,曲线开口向着y轴的负向,因此B、C、D都是正确的.3(5-3)、应用平衡微分方程画出下列各梁的剪力图和弯矩图,并确定|F Q|max和|M|max.(本题和下题内力图中,内力年夜小只标注相应的系数.)解:4(5-4)、试作下列刚架的弯矩图,并确定|M|max.解:5(5-5)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知A端弯矩M(0)=0,试确定梁上的载荷(包括支座反力)及梁的弯矩图.解:6(5-6)、已知静定梁的剪力图和弯矩图,试确定梁上的载荷(包括支座反力).解:7(5-7)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知E端弯矩为零.请:(1)在Ox坐标中写出弯矩的表达式;(2)试确定梁上的载荷及梁的弯矩图.解:8(5-10) 在图示梁上,作用有集度为m=m(x)的分布力偶.试建立力偶矩集度、剪力及弯矩间的微分关系.解:用坐标分别为x与x+d x的横截面,从梁中切取一微段,如图(b).平衡方程为9(5-11) 对图示杆件,试建立载荷集度(轴向载荷集度q或扭力矩集度m)与相应内力(轴力或扭矩)间的微分关系.解:(a) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(c).平衡方程为(b) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(d).平衡方程为10(5-18) 直径为d的金属丝,环绕在直径为D的轮缘上.试求金属丝内的最年夜正应变与最年夜正应力.已知资料的弹性模量为E.解:11(5-23) 图示直径为d的圆木,现需从中切取一矩形截面梁.试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极年夜值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极年夜值,为此令12(5-24) 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A底边的纵向正应变ε×10-4,试计算梁内的最年夜弯曲正应力.已知钢的弹性模量E=200GPa,a=1m.解:梁的剪力图及弯矩图如图所示,从弯矩图可见:13(5-32) 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa.试校核梁的强度. 解:先求形心坐标,将图示截面看成一年夜矩形减去一小矩形惯性矩弯矩图如图所示,C 截面的左、右截面为危险截面. 在 C 左截面,其最年夜拉、压应力分别为夜拉、压应力分别为在 C 右截面,其最年 故14(5-35) 图示简支梁,由四块尺寸相同的木板胶接而成,试校核其强度. 已 知 载 荷 F=4kN , 梁 跨 度 l=400mm , 截 面 宽 度 b=50mm , 高 度 h=80mm,木板的许用应力[σ]=7MPa,胶缝的许用切应力[τ]=5MPa.解:从内力图可见木板的最年夜正应力由剪应力互等定理知:胶缝的最年夜切应力即是横截面上的最年夜切 应力 可见,该梁满足强度条件.15(5-41) 图示简支梁,接受偏斜的集中载荷 F 作用,试计算梁内的最年 夜弯曲正应力.已知 F=10kN,l=1m,b=90mm,h=180mm.解: 16(5-42) 图示悬臂梁,接受载荷 F1 与 F2 作用,已知 F1=800N,F2,l=1m,许用应力[σ]=160MPa.试分别按下列要求确定截面尺寸: (1) 截面为矩形,h=2b; (2) 截面为圆形.解:(1) 危险截面位于固定端(2)17(5-45) 一铸铁梁,其截面如图所示,已知许用压应力为许用拉应力 的 4 倍,即[σc]=4 [σt].试从强度方面考虑,宽度 b 为何值最佳. 解: 又因 y1+y2=400 mm,故 y1=80 mm,y2=320 mm.将截面对形心轴 z 取静 矩,得18(5-54) 图示直径为 d 的圆截面铸铁杆,接受偏心距为 e 的载荷 F 作用. 试证明:当 e≤d/8 时,横截面上不存在拉应力,即截面核心为 R=d/8 的圆形区域. 解: 19(5-55) 图示杆件,同时接受横向力与偏心压力作用,试确定 F 的许用 值.已知许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa. 解:故 F 的许用值为.第 七 章 应力、应变状态分析7-1(7-1b) 已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;MPa7-2(7-2b)已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;7-3(7-2d)已知应力状态如图所示(应力单位为 ),试用图解法计算 图中指定截面的正应力与切应力.解:如图,得: 指定截面的正应力 切应力7-4(7-7) 已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 ),试用图解法求主应力的年夜小及所在截面的方位.解:由图,根据比例尺,可以获得:,,最年夜切应力.7-5(7态如图 向应力 力、最10c)已知应力状 所示,试画三 圆,并求主应 年夜正应力与解:对图示应力状态, 是主应力状态,其它两个主应力由 、 、 确定.在 平面内,由坐标( , )与( , )分别确定 和 点,以 为直径画 圆与 轴相交于 和 .再以 及 为直径作圆,即得三向应力圆.由上面的作图可知,主应力为,,,7-6(7-12)已知应力状态如图所示(应力单位为 ),试求主应力的年 夜小.解: 与 截面的应力分别为:;;;在 截面上没有切应力,所以是主应力之一.;;;7-7(7-13)已知构件概况某点处的正应变,,切应变,试求该概况处 方位的正应变 与最年夜应变 及其所在方位.解:得:7-8(7-20)图示矩形截面杆,接受轴向载荷 F 作用,试计算线段 AB 的正 应变.设截面尺寸 b 和 h 与资料的弹性常数 E 和μ均为已知.解:,,,AB 的正应酿成7-9(7-21)在构件概况某点 O 处,沿 , 与 方位,粘贴三个应变片,测得该三方位的正应变分别为,与,该概况处于平面应力状态,试求该点处的应力 , 与 .已知资料的弹性模量,泊松比解:显然,,并令,于是得切应变:7-10(7-6)图示受力板件,试证明 A 点处各截面的正应力与切应力均为零.证明:若在尖点 A 处沿自由鸿沟取三角形单位体如图所示,设单位体 、 面上的应力分量为 、 和 、 ,自由鸿沟上的应力分量为 ,则有由于、,因此,必有 、 、.这时,代表 A 点应力状态的应力圆缩为 坐标的原点,所以 A 点为零应力状态.7-11(7-15)构件概况某点 处,沿 , , 与 方位粘贴四个应变片,并测得相应正应变依次为,,与,试判断上述测试结果是否可靠.解:很明显,,得:又得:根据实验数据计算获得的两个 结果纷歧致,所以,上述丈量结果不 成靠.第 八 章应力状态与强度理论 1、 (8-4)试比力图示正方形棱柱体在下列两中情况下的相当应力 , 弹性常数 E 和μ均为已知. (a) 棱柱体轴向受压; (b) 棱柱体在刚性方模中轴向受压.解:对图(a)中的情况,应力状态如图(c) 对图(b)中的情况,应力状态如图(d)所以,,2、 (8-6)图示钢质拐轴,接受集中载荷 F 作用.试根据第三强度理论确 定轴 AB 的直径.已知载荷 F=1kN,许用应力[σ]=160Mpa. 解:扭矩弯矩 由 得:所以,3、 (8-10)图示齿轮传动轴,用钢制成.在齿轮Ⅰ上,作用有径向力、切向力;在齿轮Ⅱ上,作用有切向力、径向力.若许用应力[σ]=100Mpa,试根据第四强度理论确定轴径.解:计算简图如图所示,作 、 、 图.从图中可以看出,危险截面为 B 截面.其内力分量为: 由第四强度理论 得:4、8-4 圆截面轴的危险面上受有弯矩My、扭矩Mx 和轴力FNx 作 用,关于危险点的应力状态有下列四种.试判断哪一种是正确的. 请选择正确谜底. (图中微元上平行于纸平面的面对应着轴的横截面) 答:B5、 (8-13)图示圆截面钢杆,接受载荷 , 与扭力矩 作用.试根据第三强度理论校核杆的强度.已知载荷N,,扭力矩,许用应力[σ]=160Mpa.解:弯矩满足强度条件.6、 (8-25)图示铸铁构件,中段为一内径 D=200mm、壁厚δ=10mm 的圆筒,圆筒内的压力p=1Mpa,两真个轴向压力F=300kN,资料的泊松比μ,许用拉应力[σt]=30Mpa.试校核圆筒部份的强度.解:,,由第二强度理论:满足强度条件.7、(8-27)图薄壁圆筒,同时接受内压p与扭力矩M作用,由实验测得筒壁沿轴向及与轴线成方位的正应变分别为和.试求内压p与扭力矩M之值.筒的内径为D、壁厚δ、资料的弹性模量E与泊松比μ均为已知.解:,,,很显然,8、(8-22)图示油管,内径D=11mm,壁厚δ,内压p,许用应力[σ]=100Mpa.试校核油管的强度.解:,,由第三强度理论,满足强度条件.9、(8-11)图示圆截面杆,直径为d,接受轴向力F与扭矩M作用,杆用塑性资料制成,许用应力为[σ].试画出危险点处微体的应力状态图,并根据第四强度理论建立杆的强度条件.解:危险点的应力状态如图所示.,由第四强度理论,,可以获得杆的强度条件:10、(8-17)图示圆截面圆环,缺口处接受一对相距极近的载荷作用.已知圆环轴线的半径为,截面的直径为,资料的许用应力为,试根据第三强度理论确定的许用值.解:危险截面在A或B截面A:,,截面B:,由第三强度理论可见,危险截面为A截面.,得:即的许用值为:11、(8-16)图示等截面刚架,接受载荷与作用,且.试根据第三强度理论确定的许用值.已知许用应力为,截面为正方形,边长为,且.解:危险截面在A截面或C、D截面,C截面与D截面的应力状态一样. C截面:由第三强度理论,得:A截面:由第三强度理论,得:比力两个结果,可得:的许用值:12、(8-25)球形薄壁容器,其内径为,壁厚为,接受压强为p之内压.试证明壁内任一点处的主应力为,.证明:取球坐标,对球闭各点,以球心为原点.,,由于结构和受力均对称于球心,故球壁各点的应力状态相同.且由于球壁很薄.,对球壁上的任一点,取通过该点的直径平面(如图),由平衡条件对球壁内的任一点,因此,球壁内的任一点的应力状态为:,证毕.。
材料力学习题第9章9-1 1)用图9-9c )的平衡外力系和图9-9b 的容许变形验证虚功原理;2)用图9-9c 的平衡外力系和图9-9a 的容许变形验证虚功原理;3)用图9-9b 的平衡外力系和图9-9a 的容许变形验证虚功原理;4)用图9-9a 的平衡外力系和图9-9b 的容许变形验证虚功原理。
9-2 求梁中央截面的挠度和A 端转角。
9-3 图示变截面梁,弹性模量为E ,求截面B 的挠度和截面A 的转角。
9-4 开口圆环,δ<<R ,抗弯刚度EI ,求截面A ,B 的相对转角θAB9-5 等截面曲杆BC 的轴线为四分之三的圆周,抗弯刚度EI ,若AB 杆可视为刚性杆,试求在F 力作用下,截面B 的水平位移和垂直位移。
9-6 图示刚架,各段长为L ,受力如图,试求A 截面转角和水平位移。
9-7 图示简支梁的上、下两表面温度分别为t 1和t 2,如果t 2>t 1,且顶面和底面间的温度按直线规律变化,材料的膨胀系数为α,试求A 截面的转角和跨中截面C 的挠度。
9-8 由简支梁在A 端受集中力偶的挠曲线方程)2)((6x L x L EIL Mxv M ---=,求在简支梁受集中力时A 端转角θA 和集中力F 的作用点坐标x 的关系。
9-9 桁架每根杆的横截面面积为A ,弹性模量为E ,试用能量法求力F 作用点的水平位移。
习题9-3图习题9-2图习题9-5图习题9-4图q习题9-6图习题9-7图9-10 对图示悬臂梁和载荷,求点D 处的挠度和转角。
9-11 对图示外伸梁和载荷,求点D 处的挠度和转角。
9-12 对图示简支梁,求:1)A 端转角;2)B 端转角;3)C 截面转角。
9-13 桁架由7根杆组成,弹性模量E =70GPa 杆AB ,AC ,AD ,CE 的横截面面积为500mm 2,其他杆的横截面面积均为100mm 2,求铰D 的垂直位移。
9-14 刚架和载荷如图,各段杆的刚度均为EI ,求C 端的位移和转角。
材料力学习题第14章14-1 简易吊车架,结构与尺寸如图所示。
BD 为刚性杆;两斜杆AB 、AC 的截面面积均为A ,且材料也相同。
若材料的屈服强度为s σ,试求该吊车架所能承受的极限载荷u F 。
14-2 杆件结构如图所示,杆1、杆2、杆3的横截面面积均为A ,材料均相同。
若材料拉、压时的屈服强度均为s σ,试求极限载荷u F 。
14-3 由三根截面面积为2cm 5.1=A 的钢杆组成的结构如图所示。
已知三根杆的材料相同,GPa 210=E ,MPa 360=s σ;m 1=l , 45=α。
试求该结构的极限载荷u F ,并画出点B 的位移与外力F 间的关系曲线。
14-4 两端固定横截面面积为A 的等截面杆AC 如图所示,在截面B 处承受轴向载荷F 作用。
若材料拉、压时的屈服强度均为s σ,试求极限载荷u F ,并绘制截面B 的轴向位移δ与载荷F 间的关系曲线。
14-5 一刚性水平杆由三根拉杆悬吊。
已知拉杆为钢杆,GPa 210=E ,MPa 240=s σ;m 5.0=l ,m 3.0=a ,2cm 2=A 。
若取安全系数0.2=n ,试按极限载荷法确定该结构的许可载荷。
14-6 两等长的圆筒套在一起如图所示(图中尺寸单位为mm )。
内筒材料为铝镁合金,MPa 1901=s σ,G Pa 681=E ;外筒为钢,MPa 2402=s σ,G Pa 2002=E 。
载荷F 通过一刚性平板作用在两筒上。
若选取的安全系数0.2=n ,试按极限载荷法确定该结构的许可载荷。
14-7 变截面杆两端固定,试由极限载荷法计算F 的允许值。
已知各段杆的横截面面积分别为2001=A mm 2,1002=A mm 2,2003=A mm 2,材料的屈服强度MPa 300=s σ,安全系数0.3=n 。
14-8 实心圆轴直径60=dmm ,空心圆轴内、外径分别为400=d mm 、800=D mm 。
若材料的剪切屈服强度MPa 160=s τ,试求两轴的极限扭矩。
材料力学习题第11章11-1 已知应力状态如图(图中应力单位为MPa )。
若3.0=ν,试分别计算出第一到第四强度理论的相当应力。
11-2 构件中危险点的应力状态如图所示,试选择合适的强度理论对以下两种情况作强度校核(3.0=ν):1.构件材料为Q235钢,160][=σMPa ;危险点的应力状态为45=x σMPa ,135=y σMPa ,0==xy z τσ。
2.构件材料为铸铁,30][=σMPa ;危险点的应力状态为20=x σMPa ,25-=y σMPa ,30=z σMPa ,0=xy τ。
11-3 由单向应力状态和纯切应力状态组成的平面应力状态如图所示,试证明:不论正应力是拉应力还是压应力,不论切应力是正还是负,总有0 , 0 , 0min 32max 1<==>=σσσσσ。
因而2234xy x r τσσ+=2243xy x r τσσ+=11-4 已知应力状态如图(应力单位为MPa )所示,试按第三与第四强度理论计算其相当应力。
11-5 某结构上危险点处应力状态如图所示,其中MPa 3.46 , MPa 7.116-==xy x τσ。
材料为钢,许用应力MPa 160][=σ。
试校核此结构的强度。
11-6 已知应力状态如图(应力单位为MPa )所示,按第三、第四强度理论考察,图中三个应力状态是否等价?三个应力状态的平均应力m σ彼此是否相等?试分别画出应力圆,并观察它们的特点。
11-7 试说明或证明,第三、第四强度理论与平均应力m σ无关。
11-8 钢轨上与车轮接触点处为三向压应力状态,已知,6501-=σMPa ,7002-=σMPa ,9003-=σMPa 。
如钢轨材料的许用应力300][=σMPa ,试按第三与第四强度理论校核其强度。
11-9 由№28a 号工字钢制成的外伸梁受力如图所示,已知,130=F kN ,170][=σMPa ,试按第三强度理论校核该梁危险截面上腹板与翼缘交界点处的强度。
材料力学习题第7章7-1 试求图示各梁中指定截面(标有细线者)上的剪力及弯矩,其中1-1、2-2、3-3截面无限接近于截面B 或截面C 。
习题7-1图7-2 试列图示各梁的剪力方程及弯矩方程,并作剪力图和弯矩图。
习题7-2图7-3 利用q 、y s F 及M z 间的微分关系作y s F 、M z 图。
习题7-3图7-4 已知简支梁的弯矩图如图所示。
试作该梁的剪力图和载荷图。
习题7-4图7-5 试利用载荷、剪力和弯矩间的关系检查下列剪力图和弯矩图,并将错误处加以改正。
习题7-5图7-6 作图示刚架的F s 、M z 图(M z 图画在受压侧)。
习题7-6图7-7等截面梁在纵向对称面内受力偶作用发生平面弯曲,试对图示各种不同形状的横截面,定性绘出正应力沿截面竖线1-1及2-2的分布图。
习题7-7图7-8直径为d为金属丝,绕在直径为D的缘上,已知材料的弹性模量为E,试求金属丝内的最大弯曲正应力。
习题7-8图7-9简支梁受均布载荷如图所示。
若分别采用截面面积相等的实心和空心圆截面,且D1=40mm,d2/D2 = 3/5。
试分别计算它们的最大弯曲正应力。
并问空心截面比实心截面的最大弯曲正应力减少百分之几?习题7-9图7-10 T字形截面梁如图所示,试求梁横截面上的最大拉应力。
习题7-10图7-11由钢板焊接组成的箱式截面梁,尺寸如图所示。
试求梁内的最大正应力及最大切应力,并计算焊缝上的最大切应力,画出它们所在点的应力状态。
习题7-11图7-12图示悬臂梁,已知F =20kN,h =60mm, b =30mm。
要求画出梁上A、B、C、D、E各点的应力状态图,并求各点的主应力。
习题7-12图7-13 试绘出图示悬臂梁中性层以下部分的受力图,并说明该部分如何平衡?习题7-13图7-14 汽车前桥如图所示。
通过电测试验测得汽车满载时,横梁中间截面上表面压应变610360-⨯-=x ε。
已知材料弹性模量E = 210GPa 。
材料力学习题
第10章
10-1 试判断下列平面结构的静不定次数。
10-2 如图所示结构,已知梁AB的抗弯刚度为EI,BC杆的抗拉刚度为EA,试求BC杆所受的拉力及B
点沿铅垂方向的位移。
10-3 图示悬臂梁AD和BE的抗弯刚度皆为26mN1024EI,连接
杆DC的截面面积24m103A,材料弹性模量2GN/m200E;若外力
kN50F
,试求梁AD在D点的挠度。
10-4 木梁ACB两端铰支,中点C处为弹簧支承。若弹簧刚度
kN/m500k,且已知m4l,mm60b,mm80h
,
MPa100.14E
,均布载荷
kN/m10q
,试求弹簧的约束反
力。
10-5 抗弯刚度为EI的直梁ABC在承受载荷前安装在
支座A、C上,梁与支座B间有一间隙。承受均布载荷后,梁
发生弯曲变形并与支座B接触。若要使三个支座的约束反力均相
等,则间隙应为多大?
10-6 若刚架各部分的抗弯刚度均为常量EI,FaM0,
试作刚架的弯矩图。
10-7 图示圆弧形小曲率杆,抗弯刚度EI为常量。试求约束
反力。对于题b),并计算A的水平位移。
10-8 图(a)所示在任意载荷作用下的对称结构,若选用对称的基本结构时(如图(b)所示),试证其
正则方程为
0 00333322221211212111FFFX
XX
XX
10-9 图示刚架各部分的抗弯刚度皆为EI(常量),试作各刚架的弯矩图。
10-10 图示正方形桁架,各杆的抗拉刚度均为EA。试求杆BC的轴力。
10-11 图示结构,试求:1)杆BC的轴力;2)对于a)题求节点B的水平位移;对于b)题求节点B
的铅垂位移。
10-12 图示杆件结构,各杆的抗拉刚度均为EA。试用力法求各杆的内力。
10-13 图中所示两梁相互交叉,在中点互相接触。已知两梁截面的形心主惯性矩分别为I1、I2,材料
相同,求两梁各自所承受的载荷大小。
10-14 图示平面桁架中,所有杆件材料的弹性模量E均相同,AB、BC、CD三杆的横截面面积
301Acm2,其余各杆的横截面面积152A
cm2,若6am,
130F
kN,试求BC杆的内力。
10-15 图示刚架,各部分抗弯刚度均为常量EI,试作其弯矩图。
10-16 图示刚架,各部分抗弯刚度均为常量EI,试作其弯矩图并计算截面A与B沿 AB连线方向的
相对线位移。
10-17 图示为小曲率圆杆组成的结构,若抗弯刚度EI为常量,试计算截面A与B沿 AB连线方向的
相对线位移。
10-18 横截面为圆形的等截面刚架如图所示,材料的弹性模量为E,泊松比3.0。试作刚架的弯
矩与扭矩图。
10-19 抗弯刚度EI为常量,试用三弯矩方程求解,作图示梁的弯矩图。
10-20 图示梁,抗弯刚度EI为常量,若支座B下沉 ,试用三弯矩方程求约束反力并作梁的弯矩图。