人教版高中数学必修一《对数函数及其性质》练学案(含答案)
- 格式:doc
- 大小:370.50 KB
- 文档页数:7
4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。
第二章基本初等函数(Ⅰ)2.2 对数函数2.2.2 对数函数及其性质(第三课时)学习目标①了解反函数的概念,加深对函数思想的理解;②加深对对数函数和指数函数的性质的理解及函数图象变化规律的理解,培养学生的数学交流能力;③培养学生用辩证的观点观察问题、分析问题、解决问题的能力.合作学习一、设计问题,创设情境我们知道,物体做匀速直线运动的位移s是时间t的函数,即s=vt,其中速度v是常量,定义域t≥0,值域s≥0;反过来,也可以由位移s和速度v(常量)确定物体做匀速直线运动的时间,即t=,这时,位移s是自变量,时间t是位移s的函数,定义域s≥0,值域t≥0.问题1:函数s=vt的定义域、值域分别是什么?问题2:函数t=中,谁是谁的函数?问题3:函数s=vt与函数t=之间有什么关系?二、自主探索,尝试解决问题4:在指数函数y=2x中,x为自变量,y为因变量.如果把y当成自变量,x当成因变量,那么x是y的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.问题5:请同学仿照解决问题4的过程,探讨函数x=log a y(a>0,且a≠1)是否为指数函数y=a x(a>0,且a≠1)的反函数?三、信息交流,揭示规律问题6:由问题5,我们总结了函数x=log a y(y∈(0,+∞))是函数y=a x(x∈R)的反函数,但是总感觉函数x=log a y(y∈(0,+∞))有些怪怪的,不舒服,到底是哪里的问题呢?又怎样解决呢?问题7:由问题6知对数函数y=log a x(x∈(0,+∞))是指数函数y=a x(x∈R)的反函数,那么反过来,指数函数y=a x(x∈R)是否也是对数函数y=log a x(x∈(0,+∞))的反函数呢?(1)反函数概念:指数函数y=a x(x∈R)与对数函数y=log a x(x∈(0,+∞))互为反函数.即同底的指数函数与对数函数互为反函数.问题8:通过前面的学习,我们知道研究一个新函数其过程往往是:定义—解析式—图象—性质.反函数的定义与解析式都研究完了,那么,互为反函数的两个函数的图象具有怎样的特点呢?问题9:根据问题8,我们是否能说互为反函数的两个函数都关于直线y=x对称呢?通过几何画板我们发现有如下规律:(2)反函数的性质:互为反函数的两个函数的图象关于直线y=x对称.四、运用规律,解决问题【例1】求下列函数的反函数.(1)y=4x(x∈R);(2)y=0.25x(x∈R);(3)y=()x(x∈R);(4)y=()x(x∈R);(5)y=lg x(x>0);(6)y=2log4x(x>0).【例2】函数y=3x的图象与函数y=log3x的图象关于( )A.y轴对称B.x轴对称C.原点对称D.直线y=x对称【例3】若点(1,2)既在函数y=的图象上,又在其反函数的图象上,求m,n 的值.五、反思小结,观点提炼1.;2.;3..六、作业精选,巩固提高阅读课本P73.参考答案一、设计问题,创设情境问题1:定义域为(0,+∞),值域为(0,+∞).问题2:时间t是位移s的函数.问题3:一个解析式的两种不同形式,都是函数解析式,自变量和函数值恰好互换.二、自主探索,尝试解决问题4:指数函数y=2x中,x是自变量,y是x的函数,定义域为x∈R,值域为y∈(0,+∞).由指数式与对数式的互化有:x=log2y对于y在(0,+∞)中任何一个值,通过式子x=log2y,x在R中都有唯一的值和它对应.因此,它也确定了一个函数:x=log2y,y为自变量,x为y的函数,定义域是y∈(0,+∞),值域是x∈R.由于函数x=log2y与函数y=2x是一个解析式的两种不同形式,都是函数解析式,而且自变量与函数值恰好相反,故我们引入一个新的概念,称函数x=log2y(y∈(0,+∞))是函数y=2x(x∈R)的反函数.问题5:指数函数y=a x中,x是自变量,y是x的函数,定义域为x∈R,值域为y∈(0,+∞).由指数式与对数式的互化有:x=log a y对于y在(0,+∞)中任何一个值,通过式子x=log a y,x在R中都有唯一的值和它对应.因此,它也确定了一个函数:x=log a y,y为自变量,x为y的函数,定义域是y∈(0,+∞),值域是x∈R.由于,函数x=log a y与函数y=a x是一个解析式的两种不同形式,都是函数解析式,而且自变量与函数值恰好相反,故我们引入一个新的概念,称函数x=log a y(y∈(0,+∞))是函数y=a x(x∈R)的反函数.三、信息交流,揭示规律问题6:在函数x=log a y中,y是自变量,x是函数.但习惯上,我们通常用x表示自变量,y 表示函数.为此,我们常常对调函数x=log a y中的字母x,y,把它写成y=log a x.这样,对数函数y=log a x(x∈(0,+∞))是指数函数y=a x(x∈R)的反函数.问题7:由上述讨论可知,对数函数y=log a x(x∈(0,+∞))是指数函数y=a x(x∈R)的反函数;同时,指数函数y=a x(x∈R)也是对数函数y=log a x(x∈(0,+∞))的反函数.因此,指数函数y=a x(x∈R)与对数函数y=log a x(x∈(0,+∞))互为反函数.问题8:利用几何画板在同一个坐标系中依次画出函数y=2x,y=log2x,y=3x,y=log3x的图象.发现,y=2x与y=log2x的图象关于直线y=x对称,y=3x与y=log3x的图象也关于直线y=x对称.问题9:利用几何画板在同一个坐标系中依次画出指数函数y=a x(x∈R)与对数函数y=log a x(x∈(0,+∞))的图象,并观察,两图象关于直线y=x对称.四、运用规律,解决问题【例1】解:(1)所求反函数为y=log4x(x>0);(2)所求反函数为y=log0.25x(x>0);(3)所求反函数为y=lo x(x>0);(4)所求反函数为y=lo x(x>0);(5)所求反函数为y=10x(x∈R);(6)所求反函数为y==2x(x∈R).【例2】D【例3】解:由已知得:故m,n的值分别是-3,7.五、反思小结,观点提炼1.反函数的定义2.掌握同底的指数函数与对数函数互为反函数3.互为反函数的函数图象关于直线y=x对称。
高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。
2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。
4.4.2 对数函数的图象和性质第1课时对数函数的图象和性质(一)学习目标 1.初步掌握对数函数的图象和性质.2.会类比指数函数研究对数函数的性质.3.掌握对数函数的图象和性质的简单应用.4.了解反函数的概念及它们的图象特点.知识点一对数函数的图象和性质对数函数y=log a x(a>0,且a≠1)的图象和性质如下表y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈『1,+∞)时,y∈『0,+∞)x∈(0,1)时,y∈(0,+∞);x∈『1,+∞)时,y∈(-∞,0』对称性函数y=log a x与y=1logax的图象关于x轴对称思考对数函数图象的“上升”或“下降”与谁有关?『答案』底数a与1的关系决定了对数函数图象的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点二反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.它们的定义域与值域正好互换.1.若函数y =f (x )是函数y =3x 的反函数,则f ⎝⎛⎭⎫12的值为________. 『答 案』 -log 32『解 析』 y =f (x )=log 3x ,∴f ⎝⎛⎭⎫12=log 312=-log 32. 2.函数y =lg(x +1)的图象大致是________.(填序号)『答 案』 ③『解 析』 由底数大于1可排除①,②,y =lg(x +1)可看作是y =lg x 的图象向左平移1个单位长度(或令x =0得y =0,而且函数为增函数).3.已知函数y =a x (a >0,且a ≠1)在R 上是增函数,则函数y =log a x 在(0,+∞)上是________函数.(填“增”或“减”) 『答 案』 增『解 析』 因为函数y =a x 在R 上是增函数, 所以a >1,所以y =log a x 在(0,+∞)上是增函数.4.函数y =log a x +1(a >0,且a ≠1)的图象过定点________. 『答 案』 (1,1)『解 析』 因为对数函数y =log a x 的图象过定点(1,0), 所以函数y =log a x +1的图象过定点(1,1).一、对数函数的图象及应用例1 (1)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 『答 案』 B『解 析』 作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. (2)若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b =________,c =________.『答 案』 -2 2『解 析』 ∵函数的图象恒过定点(3,2), ∴将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,且a ≠1时,log a 1=0恒成立, ∴c =2,3+b =1,∴b =-2,c =2.(3)已知f (x )=log a |x |(a >0,且a ≠1)满足f (-5)=1,试画出函数f (x )的图象. 解 因为f (-5)=1,所以log a 5=1,即a =5,故f (x )=log 5|x |=⎩⎪⎨⎪⎧log 5x ,x >0,log 5(-x ),x <0.所以函数y =log 5|x |的图象如图所示.(教师) 延伸探究1.在本例中,若条件不变,试画出函数g (x )=log a |x -1|的图象. 解 因为f (x )=log 5|x |,所以g (x )=log 5|x -1|,如图,g (x )的图象是由f (x )的图象向右平移1个单位长度得到的.2.在本例中,若条件不变,试画出函数h (x )=|log a x |的图象. 解 因为a =5,所以h (x )=|log 5x |.h (x )的图象如图所示.反思感悟对数函数图象的变换方法(1)作y=f(|x|)的图象时,保留y=f(x)(x≥0)图象不变,x<0时y=f(|x|)的图象与y=f(x)(x>0)的图象关于y轴对称.(2)作y=|f(x)|的图象时,保留y=f(x)的x轴及上方图象不变,把x轴下方图象以x轴为对称轴翻折上去即可.(3)有关对数函数平移也符合“左加右减,上加下减”的规律.(4)y=f(-x)与y=f(x)关于y轴对称,y=-f(x)与y=f(x)关于x轴对称,y=-f(-x)与y=f(x)关于原点对称.跟踪训练1(1)函数f(x)=log a|x|+1(a>1)的图象大致为()『答案』 C『解析』∵函数f(x)=log a|x|+1(a>1)是偶函数,∴f(x)的图象关于y轴对称,当x>0时,f(x)=log a x+1是增函数;当x<0时,f(x)=log a(-x)+1是减函数,又∵图象过(1,1),(-1,1)两点,结合选项可知选C.(2)画出函数y=|log2(x+1)|的图象,并写出函数的值域及单调区间.解函数y=|log2(x+1)|的图象如图所示.由图象知,其值域为『0,+∞),单调减区间是(-1,0』,单调增区间是(0,+∞).二、比较大小例2(1)若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<c B.a<b<cC.c<b<a D.b<c<a『答案』 D『解析』因为函数y=log4x在(0,+∞)上是增函数,a=log23=log49>log46>1,log32<1,所以b<c<a.(2)比较下列各组中两个值的大小:①log31.9,log32;②log23,log0.32;③log aπ,log a3.14(a>0,a≠1);④log50.4,log60.4.解①因为y=log3x在(0,+∞)上是增函数,所以log31.9<log32.②因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.③当a>1时,函数y=log a x在(0,+∞)上是增函数,则有log aπ>log a3.14;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,则有log aπ<log a3.14.综上所得,当a>1时,log aπ>log a3.14;当0<a<1时,log aπ<log a3.14.④在同一直角坐标系中,作出y=log5x,y=log6x的图象,再作出直线x=0.4(图略),观察图象可得log50.4<log60.4.反思感悟比较对数值大小时常用的四种方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练2 比较大小:(1)log a 5.1,log a 5.9(a >0,且a ≠1); (2)log 3π,log 23,log 3 2.解 (1)当a >1时,y =log a x 在(0,+∞)上是增函数, 又5.1<5.9,所以log a 5.1<log a 5.9;当0<a <1时,y =log a x 在(0,+∞)上是减函数, 又5.1<5.9,所以log a 5.1>log a 5.9. 综上,当a >1时,log a 5.1<log a 5.9; 当0<a <1时,log a 5.1>log a 5.9. (2)∵log 23=12log 23,又1<log 23<2,∴12<log 23<1.又log 32=12log 32<12,log 3π>1,∴log 3π>log 23>log 3 2.1.函数y =log a (x -1)(0<a <1)的图象大致是( )『答 案』 A『解 析』 ∵0<a <1,∴y =log a x 在(0,+∞)上单调递减,故排除C ,D ;又函数y =log a (x -1)的图象是由y =log a x 的图象向右平移一个单位长度得到的,故A 正确. 2.若a =20.2,b =log 43.2,c =log 20.5,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a『答 案』 A『解 析』 ∵a =20.2>1>b =log 43.2>0>c =-1,∴a >b >c .3.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 67『答 案』 D『解 析』 因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x 为增函数,所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错,log 76<1<log 67,D 正确.4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎪⎫32,23,则a =________.『答 案』2『解 析』 因为点⎝ ⎛⎭⎪⎫32,23在y =f (x )的图象上,所以点⎝ ⎛⎭⎪⎫23,32在y =a x 的图象上,则有32=23a ,所以a 2=2,又因为a >0,a = 2.5.设a >1,函数f (x )=log a x 在区间『a,2a 』上的最大值与最小值之差为12,则a =________.『答 案』 4『解 析』 ∵a >1,∴f (x )=log a x 在『a,2a 』上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴12a =2,∴a =4.1.知识清单:(1)对数函数的图象及性质.(2)利用对数函数的图象及性质比较大小. 2.方法归纳:图象变换、数形结合法. 3.常见误区:作对数函数图象易忽视底数a >1与0<a <1两种情况.。
2.2 对数函数解读对数概念及运算对数是中学数学中重要的内容之一,理解对数的定义,掌握对数的运算性质是学习对数的重点内容.现梳理这部分知识,供同学们参考.一、对数的概念对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .例1 计算:log 22+log 51+log 3127+9log 32. 分析 根据定义,再结合对数两个恒等式即可求值.解 原式=1+0+log 33-3+(3log 32)2=1-3+4=2.点评 解决此类问题关键在于根据幂的运算法则将指数式和对数式化为同底数.二、对数的运算法则常用的对数运算法则有:对于M >0,N >0.(1)log a (MN )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M .例2 计算:lg 14-2lg 73+lg 7-lg 18. 分析 运用对数的运算法则求解.解 由已知,得原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.点评 对数运算法则是进行对数运算的根本保证,同学们必须能从正反两方面熟练应用.三、对数换底公式根据对数的定义和运算法则 可以得到对数换底公式:log a b =log c b log c a(a >0且a ≠1,c >0且c ≠1,b >0). 由对数换底公式又可得到两个重要结论:(1)log a b ·log b a =1;(2)log an b m =m nlog a b . 例3 计算:(log 25+log 4125)×log 32log 35. 分析 在利用换底公式进行化简求值时,一般是根据题中对数式的特点选择适当的底数进行换底,也可选择以10为底进行换底. 解 原式=(log 25+32log 25)×log 322log 35=52log 25×12log 52=54. 点评 对数的换底公式是“同底化”的有力工具,同学们要牢记.通过上面讲解,同学们可以知道对数的定义是对数式和指数式互化的依据,正确进行它们之间的相互转换是解题的有效途径.对数的运算性质,同学们要熟练掌握,在应用过程中避免错误,将公式由“正用”“逆用”逐步达到“活用”的境界.数换底公式的证明及应用设a >0,c >0且a ≠1,c ≠1,N >0,则有log a N =log c N log c a,这个公式称为对数的换底公式,它在对数的运算中有着重要的应用,课本中没有给出证明,现证明如下:证明 记p =log a N ,则a p =N .**式两边同时取以c 为底的对数(c >0且c ≠1)得log c a p =log c N ,即p log c a =log c N .所以p =log c N log c a ,即log a N =log c N log c a. 推论1:log a b ·log b a =1.推论2:log an b m =m nlog a b (a >0且a ≠1,b >0). 例4 (1)已知log 189=a,18b =5,求log 3645的值;(2)求log 23·log 34·log 45·…·log 6364的值.解 (1)因为log 189=a,18b =5,所以lg 9lg 18=a . 所以lg 9=a lg 18,lg 5=b lg 18.所以log 3645=lg (5×9)lg 1829=lg 5+lg 92lg 18-lg 9 =b lg 18+a lg 182lg 18-a lg 18=b +a 2-a. (2)log 23·log 34·log 45·…·log 6364=lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg 64lg 63=lg 64lg 2=6lg 2lg 2=6. 点评 对数运算法则中,对数式都是同底的,凡不同底的对数运算,都需要用换底公式将底统一,一般统一成常用对数.例5 已知12log 8a +log 4b =52,log 8b +log 4a 2=7,求ab 的值. 解 由已知可得⎩⎨⎧16log 2a +12log 2b =52,13log 2b +log 2a =7, 即⎩⎪⎨⎪⎧ log 2a +3log 2b =15,3log 2a +log 2b =21.解得⎩⎪⎨⎪⎧log 2a =6,log 2b =3. 所以a =26,b =23.故ab =26·23=512.点评 发现底数“4”,“8”与“2”的关系,将底数统一成“2”,解决问题比较简单.此外还有下面的关系式:log N M =log a M log a N =log b M log b N; log a M ·log b N =log a N ·log b M ;log a M log b M =log a N log b N=log a b ;N log a M =M log a N .数函数图象及性质的简单应用对数函数图象是对数函数的一种表达形式,形象显示了函数的性质,为研究它的数量关系提供了“形”的直观性.它是探求解题思路、获得问题结果的重要途径.能准确地作出对数函数的图象是利用平移、对称的变换来研究复杂函数的性质的前提,而数形结合是研究与对数函数的有关问题的常用思想.一、求函数的单调区间例6 画出函数y =log 2x 2的图象,并根据图象指出它的单调区间.解 当x ≠0时,函数y =log 2x 2满足f (-x )=log 2(-x )2=log 2x 2=f (x ),所以y =log 2x 2是偶函数,它的图象关于y 轴对称.当x >0时,y =log 2x 2=2log 2x ,因此先画出y =2log 2x (x >0)的图象为C 1,再作出C 1关于y 轴对称的图象C 2,C 1与C 2构成函数y =log 2x 2的图象,如图所示.由图象可以知道函数y =log 2x 2的单调减区间是(-∞,0),单调增区间是(0,+∞). 点评 作图象时一定要考虑定义域,否则会导致求出错误的单调区间,同时在确定单调区间时,要注意增减区间的分界点,特别要注意区间的开与闭问题.二、利用图象求参数的值例7 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13 B. 2 C.22 D .2 解析 当a >1时,f (x )=log a (x +1)的图象如图所示.f (x )在[0,1]上是单调增函数,且值域为[0,1],所以f (1)=1,即log a (1+1)=1,所以a =2,当0<a <1时,其图象与题意不符,故a 的值为2,故选D.答案 D点评 (1)当对数的底数不确定时要注意讨论;(2)注意应用函数的单调性确定函数的最值(值域).三、利用图象比较实数的大小例8 已知log m 2<log n 2,m ,n >1,试确定实数m 和n 的大小关系.解 在同一直角坐标系中作出函数y =log m x 与y =log n x 的图象如图所示,再作x =2的直线,可得m >n .点评 不同底的对数函数图象的规律是:(1)底都大于1时,底大图低(即在x >1的部分底越大图象就越接近x 轴);(2)底都小于1时,底大图高(即在0<x <1的部分底越大图象就越远离x 轴).四、利用图象判断方程根的个数例9 已知关于x 的方程|log 3x |=a ,讨论a 的值来确定方程根的个数.解 因为y =|log 3x |=⎩⎪⎨⎪⎧log 3x , x >1,-log 3x , 0<x <1, 在同一直角坐标系中作出函数与y =a 的图象,如图可知:(1)当a <0时,两个函数图象无公共点,所以原方程根的个数为0;(2)当a =0时,两个函数图象有一个公共点,所以原方程根有1个;(3)当a >0时,两个函数图象有两个公共点,所以原方程根有2个.点评 利用图象判断方程根的个数一般都是针对不能将根求出的题型,与利用图象解不等式一样,需要先将方程等价转化为两端对应的函数为基本函数(最好一端为一次函数),再作图象.若含有参数,要注意对参数的讨论,参数的取值不同,函数图象的位置也就不同,也就会引起根的个数不同. 三类对数大小的比较 一、底相同,真数不同 例10 比较log a 2与log a 33的大小.分析 底数相同,都是a ,可借助于函数y =log a x 的单调性比较大小.解 由(2)6=8<(33)6=9,得2<33.当a >1时,函数y =log a x 在(0,+∞)上是增函数,故log a 2<log a 33;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,故log a 2>log a 33.点评 本题需对底数a 的范围进行分类讨论,以确定以a 为底的对数函数的单调性,从而应用函数y =log a x 的单调性比较出两者的大小.二、底不同,真数相同例11 比较log 0.13与log 0.53的大小.分析 底数不同但真数相同,可在同一坐标系中画出函数y =log 0.1x 与y =log 0.5x 的图象,借助于图象来比较大小;或应用换底公式将其转化为同底的对数大小问题.解 方法一 在同一坐标系中作出函数y =log 0.1x 与y =log 0.5x 的图象,如右图.在区间(1,+∞)上函数y =log 0.1x 的图象在函数y =log 0.5x 图象的上方,故有log 0.13>log 0.53.方法二 log 0.13=1log 30.1,log 0.53=1log 30.5. 因为3>1,故y =log 3x 是增函数,所以log 30.1<log 30.5<0.所以1log 30.1>1log 30.5. 即log 0.13>log 0.53.方法三 因为函数y =log 0.1x 与y =log 0.5x 在区间(0,+∞)上都是减函数,故log 0.13>log 0.110=-1,log 0.53<log 0.52=-1,所以log 0.13>log 0.53.点评 方法一借助于对数函数的图象;方法二应用换底公式将问题转化为比较两个同底数的对数大小;方法三借助于中间值来传递大小关系.三、底数、真数均不同例12 比较log 323与log 565的大小. 分析 底数、真数均不相同,可通过考察两者的范围来确定中间值,进而比较大小. 解 因为函数y =log 3x 与函数y =log 5x 在(0,+∞)上都是增函数,故log 323<log 31=0,log 565>log 51=0, 所以log 323<log 565. 点评 当底数、真数均不相同时,可找中间量(如1或0等)传递大小关系,从而比较出大小.综上所述,比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论,如例10;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小,如例11;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较,如例12.学对数给你提个醒对数函数是函数的重要内容之一,由于同学们对概念、定义域、值域、图象等知识点掌握得不够好,经常出现解题错误,现将这些错误进行归纳并举例说明.一、忽视0没有对数例13 求函数y =log 3(1+x )2的定义域.错解 对于任意的实数x ,都有(1+x )2≥0,所以原函数的定义域为R .剖析 只考虑到负数没有对数.事实上,由对数的定义可知,零和负数都没有对数. 正解 {x |x ≠-1}二、忽视1的对数为0例14 求函数y =1log 2(2x +3)的定义域. 错解 由2x +3>0,得x >-32, 所以定义域为{x |x >-32}. 剖析 当2x +3=1时,log 21=0,分母为0没有意义,上述解法忽视了这一点.正解 {x |x >-32且x ≠-1}三、忽视底数的取值范围例15 已知log (2x +5)(x 2+x -1)=1,则x 的值是( )A .-4B .-2或3C .3D .-4或5错解 由2x +5=x 2+x -1,化简得x 2-x -6=0,解得x =-2或x =3.故选B.剖析 忽视了底数有意义的条件:2x +5>0且2x +5≠1.当x =-2时,2x +5=1,应舍去,只能取x =3.正解 C四、忽视真数大于零例16 已知lg x +lg y =2lg(x -2y ),求log 2x y的值. 错解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,即x y =1或x y =4, 所以log 2x y =0,或log 2x y=4. 剖析 错误的原因在于忽视了原式中的三个对数式隐含的条件,x >0,y >0,x -2y >0,所以x >2y >0,所以x =y 不成立.正解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,因为x >0,y >0,x -2y >0,所以x =y 应舍去,所以x =4y ,即x y=4, 所以log 2x y=4. 五、对数运算性质混淆例17 下列运算:(1)log 28log 24=log 284; (2)log 28=3log 22;(3)log 2(8-4)=log 28-log 24;(4)log 243·log 23=log 2(43×3).其中正确的有( ) A .4个 B .3个C .2个D .1个错解 A剖析 (1)log 28log 24真数8与4不能相除;(3)中log 2(8-4)不能把log 乘进去运算,没有这种运算的,运算log 284=log 28-log 24才是对的;(4)错把log 提出来运算了,也没有这种运算,正确的只有(2).正解 D六、忽视对含参底数的讨论例18 已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,求a 的值.错解 由题意得log a 4-log a 2=log a 2=1,所以a =2.剖析 对数函数的底数含有参数a ,错在没有讨论a 与1的大小关系而直接按a >1解题. 正解 (1)若a >1,函数y =log a x (2≤x ≤4)为增函数,由题意得log a 4-log a 2=log a 2=1,所以a =2,又2>1,符合题意.(2)若0<a <1,函数y =log a x (2≤x ≤4)为减函数,由题意得log a 2-log a 4=log a 12=1, 所以a =12,又0<12<1,符合题意, 综上可知a =2或a =12.巧借对数函数图象解题数形结合思想,就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合.通过对图形的认识、数形转化,来提高思维的灵活性、形象性、直观性,使问题化难为易、化抽象为具体.它包含“以形助数”和“以数辅形”两个方面.一、利用数形结合判断方程解的范围方程解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.例1 方程lg x+x=3的解所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)答案 C解在同一平面直角坐标系中,画出函数y=lg x与y=-x+3的图象(如图所示).它们的交点横坐标x0显然在区间(1,3)内,由此可排除选项A、D.实际上这是要比较x0与2的大小.当x0=2时,lg x0=lg 2,3-x0=1.由于lg 2<1,因此x0>2,从而判定x0∈(2,3).点评本题是通过构造函数用数形结合法求方程lg x+x=3的解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算x0的邻近两个函数值,通过比较其大小进行判断.二、利用数形结合求解的个数例2 已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lg x的根的个数是________.解析构造函数g(x)=lg x,在同一坐标系中画出f(x)与g(x)的图象,如图所示,易知有4个根.答案 4点评本题学生极易填3,其原因是学生作图不标准,尤其是在作对数函数的图象时没有考虑到当x=10时,y=1.因此,在利用数形结合法解决问题时,要注意作图的准确性.三、利用数形结合解不等式例3 使log2x<1-x成立的x的取值范围是______________________________________.解析构造函数f(x)=log2x,g(x)=1-x,在同一坐标系中作出两者的图象,如图所示,直接从图象中观察得到x∈(0,1).答案(0,1)点评用数形结合的方法去分析解决问题,除了会读图外,还要会画图,绘制图形既是利用数形结合方法的需要,也是培养我们动手能力的需要.数函数常见题型归纳一、考查对数函数的定义例4 已知函数f (x )为对数函数,且满足f (3+1)+f (3-1)=1,求f (5+1)+f (5-1)的值.解 设对数函数f (x )=log a x (a >0,a ≠1),由已知得log a (3+1)+log a (3-1)=1,即log a [(3+1)×(3-1)]=1⇒a =2.所以f (x )=log 2x (x >0).从而得f (5+1)+f (5-1)=log 2[(5+1)×(5-1)]=2.二、考查对数的运算性质例5 log 89log 23的值是( ) A.23 B .1 C.32D .2 解析 原式=log 29log 28·1log 23=23·log 23log 22·1log 23=23. 答案 A三、考查指数式与对数式的互化例6 已知log a x =2,log b x =3,log c x =6,求log abc x 的值.解 由已知,得a 2=x ,b 3=x ,c 6=x ,所以a =x 12,b =x 13,c =x 16. 于是,有abc =x 12+13+16=x 1, 所以x =abc ,则log abc x =1.四、考查对数函数定义域和值域(最值)例7 (江西高考)若f (x )=1log 12(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎦⎤-12,0 C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 答案 A解析 要使f (x )有意义,需log 12(2x +1)>0=log 121, ∴0<2x +1<1,∴-12<x <0. 例8 已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________,最小值为________.解析 由已知,得函数g (x )的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3.且g (x )=f 2(x )+f (x 2) =(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6.则当log 3x =0,即x =1时,g (x )有最小值g (1)=6;当log 3x =1,即x =3时,g (x )有最大值g (3)=13.答案 13 6五、考查单调性例9 若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 为( )A.24B.22C.14D.12解析 由于0<a <1,所以f (x )=log a x (0<a <1)在区间[a,2a ]上递减,在区间[a,2a ]上的最大值为f (a ),最小值为f (2a ),则f (a )=3f (2a ),即log a a =3log a (2a )⇒a =24. 答案 A 六、考查对数函数的图象例10 若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是________. 解析 由已知,不等式可化为x 2<log a x .所以不等式x 2<log a x 在(0,12)内恒成立,可转化为当x ∈(0,12)时, 函数y =x 2的图象在函数y =log a x 图象的下方,如图所示.答案 [116,1) 点评 不等式x 2<log a x 左边是一个二次函数,右边是一个对数函数,不可能直接求解,充分发挥图象的作用,则可迅速达到求解目的.巧比对数大小一、中间值法若两对数底数不相同且真数也不相同时,比较其大小通常运用中间值作媒介进行过渡. 理论依据:若A >C ,C >B ,则A >B .例11 比较大小:log 932,log 8 3. 解 由于log 932<log 93=14=log 822<log 83, 所以log 932<log 8 3. 点评 以14为纽带,建立起放缩的桥梁,解题时常通过观察确定中间值的选取. 二、比较法比较法是比较对数大小的常用方法,通常有作差和作商两种策略.理论依据:(1)作差比较:若A -B >0,则A >B ;(2)作商比较:若A ,B >0,且A B>1,则A >B . 例12 比较大小:(1)log 47,log 1221;(2)log 1.10.9,log 0.91.1.解 (1)log 47-log 1221=(log 47-1)-(log 1221-1)=log 474-log 1274=1log 744-1log 7412, 由于0<log 744<log 7412,所以1log 744>1log 7412,即log 47>log 1221. (2)由于log 1.10.9,log 0.91.1都小于零,所以|log 1.10.9||log 0.91.1|=(log 1.10.9)2=(-log 1.10.9)2 =(log 1.1109)2>(log 1.11110)2=1, 故|log 1.10.9|>|log 0.91.1|,所以log 1.10.9<log 0.91.1.点评 将本例(1)推广延伸为:若1<A <B ,C >0,则log A B >log AC (BC ),进而可比较形如此类对数的大小.三、减数法将对数值的大概范围确定后,两边同减去一个数,通过局部比较大小.理论依据:若A -C >B -C ,则A >B .例13 比较大小:log n +2(n +1),log n +1n (n >1).解 因为log n +2(n +1)-1=log n +2n +1n +2>log n +2n n +1>log n +1n n +1=log n +1n -1.所以log n +2(n +1)>log n +1n .点评 将本例推广延伸为:若1<A <B ,C >0,则log A +C (B +C )>log A B ,进而可比较形如此类对数的大小.四、析整取微法将对数的整数部分分别析取出来,通过比较相应小数部分的大小使得问题获解. 理论依据:若A =log a M =k +x ,B =log b N =k +y ,且x >y ,则A >B .例14 比较大小:log 123,log 138. 解 令log 123=-2+x ,log 138=-2+y , 于是2-(-2+x )=3,3-(-2+y )=8,则2-x -3-y =34-89<0,故2-x <3-y . 两边同时取对数,化简得x lg 2>y lg 3,则x y >lg 3lg 2>1,即x >y ,故log 123>log 138. 点评 这种方法便于操作,容易掌握,并且所涉及的知识又都是通性通法,有利于“回归课本,夯实基础”,此法值得深思.例15 对于函数y =f (x ),x ∈D ,若存在一常数c ,对任意x 1∈D ,存在惟一的x 2∈D ,使f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .已知f (x )=lg x ,x ∈[10,100],则函数f (x )=lg x 在[10,100]上的均值为( )A.32B.34C.110D .10 分析 该题通过定义均值的方式命题,以定义给出题目信息,是当前的一种命题趋势.其本质是考查关于对数和指数的运算性质和对定义的理解与转化.解析 首先从均值公式可得lg (x 1x 2)=2c ,所以x 1x 2=102c =100c .因为x 1,x 2∈[10,100],所以x 1x 2∈[100,10 000].所以100≤100c ≤ 10 000.所以1≤c ≤2.从选项看可知成为均值的常数可为32.故选A.答案 A例16 函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A .3 B.34 C .2 D.23分析 对函数的性质的分析研究一直是高中数学的重点,尤其是二次函数、指数函数和对数函数等重点函数的形态研究.本题正是以函数y =log 2x 为基础而编制,从定性分析和定量的计算中刻划a ,b 的关系.结合函数的图象(图象是函数性质的立体显示)数形结合易于寻找、确定二者的关系.解析 画出函数图象如图所示.由log 2a =-2得a =14.由log 2b =2得b =4.数形结合知a ∈[14,1],b ∈[1,4].考虑函数定义域,满足值域[0,2]的取值情况可知,当b =1,a =14时,b -a 的最小值为1-14=34.故选B.答案 B解题要学会反思解题中的反思是完善解题思路的有效方法,面对一道较为综合的题,寻找解题思路时,想一步到位,往往不太现实;边解边反思,逐步产生完善、正确的解题思路,却是可行的,请看:题目:已知函数f (x )=log m x -3x +3,试问:是否存在正数α,β,使f (x )在[α,β]上的值域为[log m (β-4),log m (α-4)]?若存在,求出α,β的值;若不存在,说明理由.甲:在[α,β]上的值域为[log m (β-4),log m (α-4)],也就是⎩⎪⎨⎪⎧log mα-3α+3=log m (β-4),log mβ-3β+3=log m(α-4)⇒⎩⎪⎨⎪⎧αβ-5α+3β=9,αβ-5β+3α=9⇒α=β,与α<β矛盾,故不存在.乙:你的解答不全面,你的求解建立在一个条件的基础上,就是函数f (x )是增函数,而题目并没有说明这个函数是增函数呀!丙:没错,应该对m 进行讨论. 设0<α≤x 1<x 2≤β,由于x 1-3x 1+3-x 2-3x 2+3=6(x 1-x 2)(x 1+3)(x 2+3)<0,那么0<x 1-3x 1+3<x 2-3x 2+3.讨论:(1)若0<m <1,则log m x 1-3x 1+3>log m x 2-3x 2+3,即f (x 1)>f (x 2),得f (x )为减函数.(2)若m >1,则log m x 1-3x 1+3<log m x 2-3x 2+3,即f (x 1)<f (x 2),得f (x )为增函数. 若m 存在,当0<m <1时,则 ⎩⎪⎨⎪⎧log mβ-3β+3=log m(β-4),log mα-3α+3=log m(α-4)⇒⎩⎪⎨⎪⎧β2-2β-9=0,α2-2α-9=0. 显然α,β是方程x 2-2x -9=0的两根,由于此方程的两根中一根为正,另一根为负,与0<α<β不符,因此m 不存在;当m >1时,就是甲的解题过程,同样满足条件的α,β不存在.老师:乙和丙实质上是对甲的解法做了个反思.通过你们的讨论可以看出,反思的作用相当大,它可以使思路逐步完善,最终形成完美的解题过程.对数函数高考考点例析对数函数是高中数学函数知识的重要组成部分,关于对数函数的考查在高考中一直占有重要的地位.下面我们针对近几年高考中考查对数函数知识的几个着眼点作一一剖析,希望对大家的学习有所帮助.考点一 判断图象交点个数1.(湖南高考)函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .1B .2C .3D .4解析 作出函数f (x )与g (x )的图象,如图所示,由图象可知:两函数图象的交点有3个. 答案 C考点二 函数单调性的考查2.(江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝⎛⎭⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝⎛⎭⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝⎛⎭⎫-12,+∞. 答案 ⎝⎛⎭⎫-12,+∞考点三 求变量范围3.(辽宁高考)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).答案 D考点四 比较大小(一)图象法4.(天津高考)设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c=log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析由2a>0,∴log 12a >0,∴0<a <1.同理0<b <1,c >1, ∴c 最大在同一坐标系中作出y =2x ,y =⎝⎛⎭⎫12x ,y =log 12x 的图象如图所示, 观察得a <b .∴a <b <c . 答案 A (二)排除法当我们面临的问题不易从正面入手直接挑选出正确的答案或解题过程繁琐时,可以从反面入手,因为选择题的正确答案已在选项中列出,从而逐一考虑所有选项,排除其中不正确的,则剩下的就是正确的答案.5.(全国高考)若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析 首先比较a ,b , 即比较3ln 2,2ln 3的大小, ∵3ln 2=ln 8<ln 9=2ln 3, ∴a <b .故排除B 、D. 同理可得c <a . 答案 C (三)媒介法对于直接比较困难时,常插入媒介,以此为桥梁进行比较,常插入0或1.6.(山东高考)下列大小关系正确的是( ) A .0.43>30.4<log 40.3 B .0.43<log 40.3<30.4 C .log 40.3<0.43<30.4 D .log 40.3<30.4<0.43 解析 分析知0<0.43<1,30.4>30=1, log 40.3<log 41=0,故log 40.3<0.43<30.4.故选C. 答案 C (四)特值法对于有些有关对数不等式的选择题,通过取一些符合条件的特殊值验证,往往也能简便求解.7.(青岛模拟)已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2解析 取x =18,y =14,a =12,代入log a (xy )检验即可得D.答案 D。
对数的运算性质(学案)一、学习目标1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点)3.会运用运算性质进行一些简单的化简与证明(易混点).二、自主学习教材整理1对数的运算性质阅读教材P 64至P 65“例3”以上部分,完成下列问题.对数的运算性质:如果a >0,且a ≠1,M>0,N >0,那么:(1)log a (M·N )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =nlog a M__(n ∈R ).教材整理2 换底公式阅读教材P 65至P 66“例5”以上部分,完成下列问题.对数换底公式:log a b =log c b log c a(a >0,且a ≠1,b >0,c>0,且c≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).三、合作探究例1.求下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)2lg 2+lg 32+lg 0.36+2lg 2; (3)log 34273+lg 25+lg 4+7log 72;(4)2log 32-log 3329+log 38-52log 53. 【自主解答】(1)法一; 原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二; 原式=lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)原式=2lg 2+lg 32+lg 36-2+2lg 2=2lg 2+lg 32lg 2+lg 3+2lg 2=2lg 2+lg 34lg 2+2lg 3=12. (3)原式=log 33343+lg (25×4)+2=log 33-14+lg 102+2=-14+2+2=154. (4)原式=2log 32-(log 325-log 39)+3log 32-5log 532=2log 32-5log 32+2log 33+3log 32-9=2-9=-7.归纳总结:1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系.2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.例2.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1) 【自主解答】 设物质的原有量为a ,经过t 年,该物质的剩余量是原来的13,由题意可得a ·0.75t =13a , ∴⎝⎛⎭⎫34t =13,两边取以10为底的对数得lg ⎝⎛⎭⎫34t =lg 13,∴t(lg 3-2lg 2)=-lg 3, ∴t =-lg 3lg 3-2lg 2≈0.477 12×0.301 0-0.477 1≈4(年). 归纳总结:解对数应用题的步骤例3. (1)已知log 1227=a ,求log 616的值; (2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.【自主解答】(1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a 2a lg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a 1+3-a 2a=43-a 3+a . (2)法一; 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28·log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13. 法二; 原式=⎝⎛⎭⎫lg 125lg 2+lg 25lg 4+lg 5lg 8lg 2lg 5+lg 4lg 25+lg 8lg 125 =⎝⎛⎭⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝⎛⎭⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎫13lg 53lg 2⎝⎛⎭⎫3lg 2lg 5=13.法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝⎛⎭⎫3log 25+log 25+13log 25(log 52+log 52+log 52)=3×⎝⎛⎭⎫3+1+13log 25·log 52=3×133=13. 归纳总结:1.在利用换底公式进行化简求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.2.在运用换底公式时,还可结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c·log c d =log a d ,log a m b n =n mlog a b ,log a a n =n ,等,将会达到事半功倍的效果. 四、学以致用1.求下列各式的值:(1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25. 【解】(1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1.(2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5 =2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.2.地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).根据英国天空电视台报道,英格兰南部2007年4月28日发生地震,欧洲地震监测站称,地震的震级为5.0级,而2011年3月11日,日本本州岛发生9.0级地震,那么此次地震释放的能量是5.0级地震释放能量的________倍.【解】 设9.0级地震所释放的能量为E 1,5.0级地震所释放的能量为E 2.由9.0=23(lg E 1-11.4), 得lg E 1=32×9.0+11.4=24.9.同理可得lg E 2=32×5.0+11.4=18.9, 从而lg E 1-lg E 2=24.9-18.9=6.故lg E 1-lg E 2=lg E 1E 2=6,则E 1E 2=106=1 000 000, 即9.0级地震释放的能量是5.0级地震释放能量的1 000 000倍.3.求值:log 225·log 3116·log 519=________. 【解析】 原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-4lg 2lg 3·-2lg 3lg 5=16. 【答案】16五、自主小测1.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是()①log a x 2=2log a x ;②log a x 2=2log a |x |;③log a (xy )=log a x +log a y ;④log a (xy )=log a |x |+log a |y |.A .②④B .①③C .①④D .②③ 2.lg 2516-2lg 59+lg 3281等于() A .lg 2 B .lg 3C .lg 4D .lg 5 3.已知log a 2=m ,log a 3=n ,则log a 18=________.(用m ,n 表示)4.计算(lg 2)2+lg 2·lg 50+lg 25=________.5.已知log 189=a ,18b =5,求log 3645.参考答案1.【解析】 ∵xy >0,∴①中,若x <0,则不成立;③中,若x <0,y <0也不成立,故选B .【答案】 B2.【解析】 lg 2516-2lg 59+lg 3281=lg ⎝⎛⎭⎫2516÷2581×3281=lg 2.故选A .【答案】 A3.【解析】 log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n .【答案】 m +2n4.【解析】 原式=(lg 2)2+lg 2·(1+lg 5)+2lg 5=lg 2(1+lg 5+lg 2)+2lg 5=2lg 2+2lg 5=2.【答案】 25.【解】 法一 ∵log 189=a ,18b =5,即log 185=b ,于是log 3645=log 1845log 1836=log 189×5log 1818×2=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a . 法二 ∵log 189=a ,18b =5,即log 185=b .于是log 3645=log 189×5log 181829=log 189+log 1852log 1818-log 189=a +b 2-a . 法三 ∵log 189=a ,18b =5,∴lg 9=alg 18,lg 5=blg 18.∴log 3645=lg 45lg 36=lg 9×5lg 1829=lg 9+lg 52lg 18-lg 9=alg 18+b lg 182lg 18-alg 18=a +b 2-a .。
2.2.3对数函数的性质(性质的应用)A (1)进一步熟练掌握对数函数的概念、图象和性质,设计对数型函数的定义域、值域、单调性等问题。
(2)对于反函数,知道同底的对数函数与指数函数互为反函数B 通过问题的探究研讨,体会函数与方程的思想、体会类比的方法解题、体会数形结合的思想、体会对数函数的模型功能。
C 进一步增强函数与方程意识,培养运用联系发展、变化的观点认识事物的本质,提高数学思维品质。
一、 函数性质应用例1、已知函数)10)(1(log )(),1(log )(≠>-=+=a a x x g x x f a a 且,(1)求函数)()(x g x f +的定义域;(2)判断)()(x g x f +的奇偶性,并说明理由;(3)探究)()(x g x f +在其定义域内的单调性。
解:例2、已知函数)32(log )(24x x x f -+=,(1)求)(x f 的定义域;(2)求)(x f 的单调区间;(3)求)(x f 的最大值,并求取得最大值时的x 的值。
例3已知0.70.7log (2)log (1)m m <-,求m 的取值范围例4求函数])8,1[(4log 2log 22∈⋅=x x x y 的最大值和最小值。
二、反函数对数函数)10(log ≠>=a a x y a 且与指数函数)10(≠>=a a a y x 且互为反函数,它们的图象关于直线y = x对称。
试举例说明哪些函数是互为反函数并画出它们的图像三、函数图像的应用例5:画出y = lg x的图象,作出y = | lg x | 和y = lg | x | 的图象,并解答以下问题:函数y = lg | x |()(A)是偶函数,在区间(0,+∞)上单调递增(B)是偶函数,在区间(0,+∞)上单调递减(C)是奇函数,在区间(0,+∞)上单调递增(D)是奇函数,在区间上(0,+∞)单调递减练习:将y = 2 x的图象()(A)先向左平移1个单位(B)先向右平移1个单位(C)先向上平移1个单位(D)先向下平移1个单位再作关于直线y = x的对称图象,可得到y = log 2 (x + 1) 的图象。
第2课时对数函数及其性质的应用[学习目标] 1.掌握对数函数的单调性,会进行同底对数和不同底对数大小的比较.(重点)2.了解反函数的概念,知道互为反函数的两个函数之间的联系及两个图象的特征.(难点)3.通过指数函数、对数函数的学习,加深理解分类讨论、数形结合这两种重要数学思想的意义和作用.(重点)(1)(2014·辽宁高考)已知a=2-13,b=log213,c=log1213,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a(2)比较下列各组中两个值的大小:①ln0.3,ln2;②log a3.1,log a5.2(a>0,且a≠1);③log30.2,log40.2;④log3π,logπ3.【解析】(1)0<a=2-13<20=1,b=log213<log2 1=0,c=log1213>log1212=1,即0<a<1,b<0,c>1,所以c>a>b.【答案】 C(2)①因为函数y=ln x是增函数,且0.3<2,所以ln0.3<ln2.②当a>1时,函数y=log a x在(0,+∞)上是增函数,又3.1<5.2,所以log a3.1<log a5.2;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,又3.1<5.2,所以log a3.1>log a5.2.③方法一 因为0>log 0.23>log 0.24,所以1log 0.23<1log 0.24,即log 30.2<log 40.2.方法二 如图所示由图可知log 40.2>log 30.2.④因为函数y =log 3x 是增函数,且π>3,所以log 3π>log 33=1. 同理,1=log ππ>log π3,所以log 3π>log π3.对数值比较大小的常用方法.(1)如果同底, 则可直接利用单调性求解.如果底数为字母,则要分类讨论. (2)如果不同底,一种方法是化为同底,另一种方法是寻找中间量.(3)如果不同底但同真,可利用图象的高低与底数的大小解决或利用换底公式化为同底后再进行比较.(4)若底数和真数都不相同,则常借助中间量1,0,-1等进行比较.(1)已知log a 12>1,求a 的取值范围;(2)已知log 0.72x <log 0.7(x -1),求x 的取值范围.【思路探究】 (1)变量字母在底数位置,需对a 进行分类讨论,利用对数的单调性列出不等式求解.(2)利用函数的单调性和真数大于零列出不等式组求解. 【解】 (1)由log a 12>1,得log a 12>log a a .①当a >1时,y =log a x 在(0,+∞)上为增函数,有a <12,此时无解.②当0<a <1时,y =log a x 在(0,+∞)上为减函数,有12<a ,从而12<a <1.∴a 的取值范围是⎝ ⎛⎭⎪⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数, ∴由log 0.72x <log 0.7(x -1) 得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.常见的对数不等式有三种类型:(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底的对数式的形式,再借助y =log a x 的单调性求解.(3)形如log a x >log b x 的不等式,可利用图象求解.将(1)中“log a 12>1”改为“log a 12<1”,求a 的取值范围.【解】 由log a 12<1,得log a 12<log a a .(1)当a >1时,y =log a x 在(0,+∞)上为增函数,有12<a ,从而a >1;(2)当0<a <1时,y =log a x 在(0,+∞)上为减函数,有12>a ,从而0<a <12.综上,a 的取值范围是⎝ ⎛⎭⎪⎫0,12∪(1,+∞).小值为________.(2)函数y =log 12(1-x )+log 12(x +3)的值域为________.【思路探究】 (1)利用对数的运算法则及性质对函数解析式进行化简,通过换元化归为二次函数求最值.(2)利用对数的运算法则对函数解析式进行化简,运用换元法结合对数函数的单调性求值域.【解析】 (1)f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R),则原函数可以化为y =t (t +1)=⎝ ⎛⎭⎪⎫t +122-14(t ∈R),故该函数的最小值为-14.故f (x )的最小值为-14.(2)要使函数有意义应满足⎩⎪⎨⎪⎧1-x >0x +3>0所以-3<x <1,又y =log 12[(1-x )(x +3)]=log 12[4-(x +1)2],x ∈(-3,1).令u =4-(x +1)2(-3<x <1),则当x =-1时,u max =4,得u ∈(0,4],又因为y =log 12u 是减函数,所以y min =-2,即函数的值域为[-2,+∞).【答案】 (1)-14 (2)[-2,+∞)求函数值域或最大(小)值的常用方法:(1)直接法:根据函数的解析式,结合函数的定义域利用函数的性质直接求解;(2)配方法:二次函数或化为二次函数形式的(形如y=a[f(x)]2+bf(x)+c)可用配方法求解;(3)单调性法:利用函数的单调性求解;(4)换元法:形如y=log a f(x)的函数可用换元法求解,但应注意元的范围以及函数的单调性.若函数f(x)=a x+log a(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为________.【解析】当a>1时,函数f(x)为增函数,f(x)max=f(1)=a+log a2,f(x)min =f(0)=1,故a+log a2+1=a,即log a2=-1,解得a=12,与a>1矛盾;当0<a<1时,函数f(x)为减函数,f(x)max=f(0)=1,f(x)min=f(1)=a+log a2,故a+log a2+1=a,即log a2=-1,解得a=12.【答案】1 21.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性.若对数的底数是字母且范围不明确,一般要分a >1和0<a <1两类分别求解.2.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.换元法在求函数值域中的应用(12分)(2014·济宁高一检测)设函数f (x )=log 2(4x )·log 2(2x ),14≤x≤4.若t =log 2x .(1)求t 的取值范围. (2)求f (x )的值域.【思路探究】 (1)利用函数的单调性求解;(2)利用t =log 2x ,14≤x ≤4,将所求函数的值域问题转化为二次函数的值域问题求解.【满分样板】 (1)因为t =log 2x ,14≤x ≤4,所以log 214≤t ≤log 24,即-2≤t ≤2.5分(2)函数f (x )=log 2(4x )·log 2(2x ),即f (x )=(log 2x )2+3log 2x +2,又t =log 2x ,则 y =t 2+3t +2=⎝ ⎛⎭⎪⎫t +322-14(-2≤t ≤2).7分当t =-32时,即log 2x =-32,x =2-32时,f (x )min =-14;当t =2时,即log 2x =2,x =4时,f (x )max =12.11分 综上可得,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-14,12.12分在解与对数函数有关的最值或值域问题,常用换元法来解决,但必须注意元的范围既不能扩大,又不能缩小,以确保换元后的等价性.——[类题尝试]————————————————— 求函数y =(log 14x )2-log 14x 2+5,2≤x ≤4的值域.【解】 函数y =(log 14x )2-log 14x 2+5=(log 14x )2-2log 14x +5=(log 14x -1)2+4,令t =log 14x ,所以y =(t -1)2+4.因为2≤x ≤4,所以-1≤t ≤-12,当t =-1时,y 取最大值为8, 当t =-12时,y 取最小值254.故所求函数的值域为⎣⎢⎡⎦⎥⎤254,8.。
学习目标1.巩固和深化对于对数及其运算的理解和运用.2.掌握简单的对数函数的图象变换及其应用.3.会综合应用对数函数性质与其他有关知识解决问题.知识点一 对数概念及其运算1.当a >0,且a ≠1时,由指数式对数式互化可得恒等式:⎭⎪⎬⎪⎫a b =Nlog a N =b ⇒a log a N =____. 2.对数log a N (a >0,且a ≠1)具有下列性质(1)0和负数没有对数,即N ____0;(2)log a 1=____;(3)log a a =____.3.运算公式已知a >0,且a ≠1,M 、N >0.(1)log a M +log a N =____________;(2)log a M -log a N =____________;(3)log n a M m =____log a M ;(4)log a M =log c M log c a =1log Ma(c >0,且c ≠1). 知识点二 对数函数及其图象、性质函数________________________叫做对数函数.(1)对数函数y =log a x (a >0,且a ≠1)的定义域为______;值域为____;(2)对数函数y =log a x (a >0,且a ≠1)的图象过点______;(3)当a >1时,y =log a x 在(0,+∞)上单调递________;当0<a <1时,y =log a x 在(0,+∞)上单调递________;(4)直线y =1与函数y =log a x (a >0,且a ≠1)的图象交点为________.(5)y =log a x 与y =a x 的图象关于____对称.y =log a x 与y =log 1ax 的图象关于______对称.类型一 对数式的化简与求值例1(1)计算:log (2+3)(2-3);(2)已知2lg x -y 2=lg x +lg y ,求log (3-22)x y.反思与感悟 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底,指数与对数互化.跟踪训练1(1) (lg 3)2-lg 9+1(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2=________. (2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.类型二 对数函数图象的应用例2 已知函数f (x )=⎩⎪⎨⎪⎧|ln x |,0<x ≤e ,2-ln x ,x >e ,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),求abc 的取值范围.反思与感悟 函数的图象直观形象地显示了函数的性质,因此涉及方程解的个数及不等式的解集等问题都可以通过函数的图象解决,即利用数形结合思想,使问题简单化.跟踪训练2 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a 的取值范围.类型三 对数函数的综合应用例3 已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点对称的点Q 在函数f (x )的图象上.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.跟踪训练3 已知函数f (x )的定义域是(-1,1),对于任意的x ,y ∈(-1,1),有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,且当x <0时,f (x )>0.(1)验证函数g (x )=ln 1-x 1+x,x ∈(-1,1)是否满足上述这些条件; (2)你发现这样的函数f (x )还具有其他什么样的性质?试将函数的奇偶性、单调性方面的结论写出来,并加以证明.1.若log x 7y =z ,则()A .y 7=x zB .y =x 7zC .y =7x zD .y =z 7x2.当0<x ≤12时,4x <log a x ,则a 的取值范围是() A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)3.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为()A .[-1,1]B .[12,2] C .[1,2] D .[2,4] 4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为()A.14B.12C .2D .4 5.已知a 23=49(a >0),则log 23a =________.1.指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键.2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.3.注意对数恒等式、对数换底公式及等式log am b n =n m ·log a b ,log a b =1log b a在解题中的灵活应用.4.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N +,且n 为偶数).5.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.6.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.答案精析知识梳理知识点一1.N2.(1)>(2)0(3)13.(1)log a (MN )(2)log a M N (3)m n知识点二y =log a x (a >0,且a ≠1)(1)(0,+∞)R (2)(1,0)(3)增 减 (4)(a,1)(5)y =xx 轴题型探究例1解 (1)利用对数定义求值:设log (2+3)(2-3)=x ,则(2+3)x =2-3=12+3=(2+3)-1, ∴x =-1. (2)由已知得lg(x -y 2)2=lg xy , ∴(x -y 2)2=xy ,即x 2-6xy +y 2=0. ∴(x y )2-6(x y)+1=0. ∴x y=3±2 2. ∵⎩⎪⎨⎪⎧ x -y >0,x >0,y >0,∴x y >1,∴x y=3+22, ∴log (3-22)x y =log (3-22)(3+22) =log (3-22)13-22 =-1.跟踪训练1(1)-32(2)2 例2解 f (x )的图象如图:设f (a )=f (b )=f (c )=m ,不妨设a <b <c ,则直线y =m 与f (x )交点横坐标从左到右依次为a ,b ,c , 由图象易知0<a <1<b <e<c <e 2,∴f (a )=|ln a |=-ln a ,f (b )=|ln b |=ln b .∴-ln a =ln b ,ln a +ln b =0,ln ab =ln 1,∴ab =1. ∴abc =c ∈(e ,e 2).跟踪训练2 解 ∵f (x )=log a x ,则y =|f (x )|的图象如图.由图示,要使x ∈[13,2]时恒有|f (x )|≤1, 只需|f (13)|≤1,即-1≤log a 13≤1, 即log a a -1≤log a 13≤log a a , 所以当a >1时,得a -1≤13≤a , 即a ≥3;当0<a <1时,a ≤13≤a -1, 得0<a ≤13. 综上所述,a 的取值范围是(0,13]∪[3,+∞). 例3解 (1)设P (x ,y )为g (x )图象上任意一点,则Q (-x ,-y )是点P 关于原点的对称点,∵Q (-x ,-y )在f (x )的图象上,∴-y =log a (-x +1),即y =g (x )=-log a (1-x ).(2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x 1-x =log a (-1+21-x),x ∈[0,1), 由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0.故m ≤0即为所求.跟踪训练3 解(1)因为g (x )+g (y )=ln 1-x 1+x +ln 1-y 1+y=ln ⎝ ⎛⎭⎪⎫1-x 1+x ·1-y 1+y =ln 1-x -y +xy 1+x +y +xy , g ⎝ ⎛⎭⎪⎫x +y 1+xy =ln 1-x +y 1+xy 1+x +y 1+xy=ln 1-x -y +xy 1+x +y +xy, 所以g (x )+g (y )=g ⎝ ⎛⎭⎪⎫x +y 1+xy 成立. 又当x <0时,1-x >1+x >0,所以1-x 1+x>1, 所以g (x )=ln 1-x 1+x>0成立. 综上g (x )=ln 1-x 1+x满足这些条件. (2)发现这样的函数f (x )在(-1,1)上是奇函数.因为x =y =0代入条件,得f (0)+f (0)=f (0),所以f (0)=0.将y =-x 代入条件得f (x )+f (-x )=f (0)=0⇒f (-x )=-f (x ), 所以函数f (x )在(-1,1)上是奇函数.又发现这样的函数f (x )在(-1,1)上是减函数.因为f (x )-f (y )=f (x )+f (-y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy , 当-1<x <y <1时,x -y 1-xy <0,由条件知f ⎝ ⎛⎭⎪⎫x -y 1-xy >0, 即f (x )-f (y )>0⇒f (x )>f (y ),所以函数f (x )在(-1,1)上是减函数.当堂训练1.B2.B3.D4.B5.3。
2.2.2 对数函数及其性质(练学案)课前回顾:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土的时候 碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代。
碳14的残余量约占原始含量的百分比P 与死亡时间t 年的指数关系式为: 把t 用P 来表示得到: 新课内容: 一、新知生成对于指数式(0,1)nm a a a =>≠,我们知道当a 的值确定时,把n 看成是自变量,那么对任意的n R ∈能够由上式得到唯一的m 与之对应,从而有我们刚刚学习过的指数函数。
那么,如果把m 看成是自变量,能否有唯一的n 与之对应,并建立相应的新的函数呢 注意此时的m 和n 的取值范围有什么要求? 二、新知探究对数函数的概念:类比指数函数学习过程,借助图形计算器探究对数函数的图像和性质,并完成下面表格: 请同学们在探究过程中注意以下几个问题:(1)先用描点法在草稿纸上作出2log y x =和12log y x =的图像草图,(2)用描点法做2log y x =和12log y x =的图像时,你准备选哪些特殊点?(3)对于你通过描点法作出的图像草图,你能得出2log y x =和12log y x =有哪些性质?(4)用图形计算器验证图像草图是否正确,将正确的图像画到表格中。
(5)现在你已经用计算器验证了你画的图像,和你用描点法得出的图像一致吗?如果不一致,请思考描点作图的过程中什么地方出现了问题?三、例题解析例题1:求下列函数的定义域(1)2log a y x = (2)log (4)a y x =- (3)y =例题2:定点问题函数log (21)(0,1)a y x a a =->≠的图像过定点______________类比题目:函数1()1(0,1)x f x aa a -=+>≠过定点________________例题3:比较下列各组数中两个值的大小(1)22log 3.4,log 8.5 (2) 0.30.3log 1.8,log 2.7 (3)0.3 1.5log 2.1,log 1.7类比题目:比较大小(1) 1.31.72,2 (2) 1.21.30.3,0.3-- (3) 2.1 1.10.7,34四、知识拔高思考:在学习指数函数()x f x a =的图像和性质的过程中,我们还研究了()xf x a =的哪些性质?对于对数函数的图像和性质,你还能提出什么问题:在同一个坐标系中作出(先用描点法在草稿纸上做,再用图形计算器验证,最后把答案作在下面坐标系中)(1)2()log f x x =和3()log f x x =的图像 (2)1()log f x x =和1()log f x x =的图像例题4:如图所示的是对数函数1log a x ,2:log b C y x =,3:log c C y x =,4:log d C y x =的图像,则,,,a b c d 与1的大小关系是:A. 1a b c d <<<<B. 1b a d c <<<<C. 1a b c d <<<< C. 1c d a b <<<< 类比题目:你自己能举出指数函数类似的问题吗?必修1—2.2.2对数函数及其性质 练习一、单项选择题:每题只有一个正解答案。
(1)以下四个命题中是真命题的是①若log 5x =3,则x =15 ②若log 25x =21,则x =5 ③log x 5=0,则x =5④若log 5x =-3,则x =1251 (A)②③ (B)①③ (C)②④ (D)③④ (2)已知log a (3a -1)恒为正数,则a 的取值范围是(A)31>a (B)3231≤<a (C)a >1 (D)3231<<a 或a >1二、填空题:(3)22925log (lg 21)log (lg0.52)35--+等于_____________。
(4)函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为_____________。
(5)函数(f x ______________。
(6)定义在R 上的奇函数f (x ),当x >0时,()lg f x x =-f (x )在定义域上的解析式为__________。
三、解答题:写出必要的步骤。
(7)解不等式()2124log 22-≤--x x 。
(8)解关于x 的不等式:]12)([log 2221+--x x x b ab a <0(a >0,b >0)。
(9)解不等式:21122log (2)log (1)1x x x -->--。
(10)已知二次函数f (x )的二次项系数为负数,且对任意x 恒有f (2-x )=f (2+x )成立,解不等式f [21log (x 2+x +21)]>f [21log (2x 2-x +85)]。
(11)已知函数f (x )=x x ax 122-+的定义域恰为不等式log 2(x +3)+21log x ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围。
(12)已知函数y =A ,函数y =lg(k -2x -x 2)的定义域为B ,若A B ⊆,求实数k 的取值范围。
必修1—2.2.2对数函数及其性质练习1答案(1)C 提示:①若log 5x =3,则x =53≠15,①错误;②若log 25x =21,则x =2125=5,正确;③若log x 5=0,则x 不存在,错误; ④若log 5x =-3,则x =5-3=1251,正确。
(2)D 提示:()01log 3100310a a a a <<⎧->⇔⎨<-<⎩,或1311a a >⎧⎨->⎩(3)3提示:22925log (lg 21)log (lg0.52)35--+=22529)25.0(lg log 21)12(lg log 21259-•-•+=925log (1lg2)log (2lg0.5)925--+=1-lg2+2-lg0.5=3-lg(2×0.5)=3。
(4)32,12 (5)1(0,)(100,)10+∞(6)f (x )=lg 000lg()0x x x x x ⎧>⎪=⎨⎪--+>⎩,(7)解:原不等式⇔2221240--≤-<x x ,由222124--≤-x x ⇔()()0423222≤-+--x x ⇔0422≤--x ⇔x ≤4; 由12402-<-x ,有12log 24+>x ; 所以原不等式的解集是(]412log 24,+。
(8)解:原不等式⇔a 2x -(a b)x -2b 2x >0⇔2)()(2--x x b a b a >0x b a )(⇔>2或xba)(<-1(舍去) 当b a>1,即a >b >0时,x >2log ba ; 当ba=1,即a =b >0时,x ∈Φ; 当0<b a<1,即0<a <b 时,x <2log ba ; 综上所述,当a >b >0,原不等式解集为{x |x >2log ba }当a =b >0,x ∈Ø;当0<a <b ,原不等式解集为{x |x <2log ba }。
(9)解:原不等式变形为)22(log )2(log 21221->--x x x 。
所以,原不等式22220,(2)(1)0,2,1010,230322230x x x x x x x x x x x x x x ⎧⎧-->-+>>⎧⎪⎪⇔->⇔->⇔⇔<<⎨⎨⎨<<⎩⎪⎪--<--<⎩⎩。
故原不等式的解集为}32|{<<x x 。
(10)解:因为对任意x ,恒有f (2-x )=f (2+x )成立,可得二次函数f (x )的对称轴是x =2。
∵x 2+x +21=(x +21)2+41≥41,2x 2-x +85=2(x -41)2+21≥21∴21log (x 2+x +21)≤21log 41=2,21log (2x 2-x +85)≤21log (21)=1∵二次函数f (x )的二次项系数为负数,∴在对称轴左侧f (x )为增函数。
∴21log (x 2+x +21)>21log (2x 2-x +85)x 2+x +21<2x 2-x +85x 2-2x +81>0x <-4144-或x >4144+。
故不等式的解集为(-∞,4414-)∪(4144+,+∞)。
(11)解:由log 2(x +3)+21log x ≤3得log 2(x +3)≤3+log 2x =log 28x ,∴833x x x ≥+⎧⎨>-⎩,∴x ≥73。
设x 2>x 1≥73,f (x 2)-f (x 1)=112122221212x x ax x x ax -+--+=212121))(1(x x x x x ax -+。
∵f (x )在[73,+∞)上单调递减,∴f (x 2)<f (x 1),即212121))(1(x x x x x ax -+<0。
∵x 1x 2>0,x 1-x 2<0,∴ax 1x 2+1>0,即a >-211x x 。
由x 2>x 1≥73知x 1x 2>499,∴-211x x <-949,∴a ≥-949。
(12)解:由(2)(3)y x x =+-可得(2+x )(3-x )≥0,即-2≤x ≤3,∴A ∈[-2,3];由y =lg(k -2x -x 2)可得k -2x -x 2>0,即x 2+2x -k <0;构造函数f (x )=x 2+2x -k ,由A B ⊆可知函数f (x )=x 2+2x -k 的图象与x轴的两个交点,横坐标一个小于-2,另一个大于3,如下图所示。
从而有(-2)0(3)0f f <⎧⎨<⎩,即220(-2)2(-2)-015323-0k k k k ⎧+⨯<⎧⇒⎨⎨+⨯<⎩⎩>>,∴k 的取值范围是k >15。