2015甘肃省高考数学填空题的解法
- 格式:ppt
- 大小:1.05 MB
- 文档页数:29
第2讲 五种策略搞定所有填空题[题型解读] 填空题是高考三大题型之一,主要考查基础知识、基本方法以及分析问题、解决问题的能力,试题多数是教材例题、习题的改编或综合,体现了对通性通法的考查.该题型的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型,要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.近几年出现了定性型的具有多重选择的填空题.方法一 直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例1 已知直线x =a (0<a <π2)与函数f (x )=sin x 和函数g (x )=cos x 的图象分别交于M ,N 两点,若MN =15,则线段MN 中点的纵坐标为________. 答案 710解析 由题意,知M (a ,sin a ),N (a ,cos a ),则MN 的中点为P (a ,12(sin a +cos α)). 而|MN |=|sin a -cos a |=15.① 设sin a +cos a =t ,②①②两式分别平方,相加,得2=125+t 2,解得t =±75. 又0<a <π2,所以t =sin a +cos a >0,故t 取75. 所以线段MN 中点的纵坐标为12×75=710.故填710.拓展训练1 已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2014x 1+log 2014x 2+…+log 2014x 2013的值为________. 答案 -1解析 由题意知f ′(x )=(n +1)x n ,设点P 处切线的斜率为k ,则k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1. 设a n =log 2014x n =log 2014n n +1=log 2014n -log 2014(n +1),则a 1+a 2+…+a 2013=(log 20141-log 20142)+(log 20142-log 20143)+…+(log 20142013-log 20142014)=-log 20142014=-1.故填-1.方法二 特殊值法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,我们只需把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论.例2 如图,在△ABC 中,点M 是BC 的中点,过点M 的直线与直线AB 、AC 分别交于不同的两点P 、Q ,若AP →=λAB →,AQ →=μAC →,则1λ+1μ=________. 答案 2解析 由题意可知,1λ+1μ的值与点P 、Q 的位置无关,而当直线BC 与直线PQ 重合时,则有λ=μ=1,所以1λ+1μ=2. 拓展训练2 在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C=________. 答案 45解析 令a =3,b =4,c =5,则△ABC 为直角三角形,且cos A =45,cos C =0,代入所求式子,得cos A +cos C 1+cos A cos C =45+01+45×0=45,故填45. 方法三 排除法填空题中的排除法主要用于多选题,判断正确命题的标号类的题目,解决办法是根据条件和相关的知识来逐个验证排除,从而确定出正确的命题或说法.例3 设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.答案 ①②解析 在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,则f (x )在[-1,0]上是减函数,根据函数的周期性知,函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;在区间[-1,1]上,f (x )的最大值为f (1)=f (-1)=2,f (x )的最小值为f (0)=1,故③错误.拓展训练3 在实数集R 中,定义的大小关系“>”为全体实数排了一个“序”,类似地,在平面向量集D ={a |a =(x ,y ),x ∈R ,y ∈R }上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意的两个向量a 1=(x 1,y 1),a 2=(x 2,y 2),当且仅当“x 1>x 2”或“x 1=x 2且y 1>y 2”时,a 1>a 2成立.按上述定义的关系“>”,给出下列四个命题:①若e 1=(1,0),e 2=(0,1),0=(0,0),则e 1>e 2>0;②若a 1>a 2,a 2>a 3,则a 1>a 3;③若a 1>a 2,则对于任意a ∈D ,a 1+a >a 2+a ;④对于任意向量a >0,0=(0,0),若a 1>a 2,则a ·a 1>a ·a 2.其中是真命题的有________.(写出所有真命题的编号)答案 ①②③解析 对于①,e 1=(1,0),e 2=(0,1),因为横坐标1>0,由定义可知e 1>e 2,e 2=(0,1),0=(0,0),由横坐标0=0且纵坐标1>0可知e 2>0,所以e 1>e 2>0,故①正确;对于②,a 1>a 2当且仅当“x 1>x 2”或“x 1=x 2且y 1>y 2”,a 2>a 3当且仅当“x 2>x 3”或“x 2=x 3且y 2>y 3”,可得“x 1>x 3”或“x 1=x 3且y 1>y 3”,故可得a 1>a 3,故②正确;对于③,设a =(x ,y ),则a 1+a =(x 1+x ,y 1+y ),a 2+a =(x 2+x ,y 2+y ),又a 1>a 2时,“x 1>x 2”或“x 1=x 2且y 1>y 2”,所以有“x 1+x >x 2+x ”或“x 1+x =x 2+x 且y 1+y >y 2+y ”,即a 1+a >a 2+a ,故③正确;对于④,举反例,设a =(0,1),满足a >0,若a 1=(2,0),a 2=(1,0),a 1>a 2,但a ·a 1=0×2+1×0=0,a ·a 2=0×1+1×0=0,此时,a ·a 1=a ·a 2,故④错误.方法四 数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性迅速作出判断,简捷地解决问题,得出正确的结果.Venn 图、三角函数线、函数图象,以及方程的曲线等都是常用的图形.例4 在△ABC 中,∠B =π3,O 为△ABC 的外心,P 为劣弧AC 上一动点,且OP →=xOA →+yOC →(x ,y ∈R ),则x +y 的取值范围为________.答案 [1,2]解析 如图是建立直角坐标系,设圆O 的半径为1,∵∠B =π3, ∴A (-32,-12),C (32,-12). 设P (cos θ,sin θ),则θ∈[7π6,11π6], ∵sin θ=-x +y 2,∴x +y =-2sin θ∈[1,2]. 拓展训练4 若不等式4x -x 2>(a -1)x 的解集为A ,且A ⊆{x |0<x <2},则实数a 的取值范围是________.答案 [2,+∞)解析 在同一坐标系中作出函数y =4x -x 2和函数y =(a -1)x 的图象(如图),由图可知斜率a -1≥1,即a ≥2.所以实数a 的取值范围是[2,+∞).方法五 估算法当题目中的条件有时不能很好地进行转化,或者条件中涉及的量在变化时,我们不方便很好地定量计算,这时往往采用估算法来解决.例5 已知点G 是△ABC 的重心,点P 是△GBC 内一点,若AP →=λAB →+μAC →,则λ+μ的取值范围是________.答案 (23,1) 解析 当P 点在G 点位置时,λ=μ=13, 所以λ+μ=23, 当P 点位于B 点位置时λ=1,μ=0,λ+μ=1,当P 点位于C 点位置时,λ=0,μ=1,λ+μ=1,综上,λ+μ范围为(23,1). 拓展训练5 不等式1+lg x >1-lg x 的解集为________.答案 (1,+∞)解析 先求x 的取值范围得x ≥110, 若x >1则1+lg x >1,1-lg x <1不等式成立.若110≤x ≤1, 则1+lg x ≤1-lg x ,原不等式不成立.故正确答案为x >1.1.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且B =60°,2b 2=3ac ,则角A 的大小为________.答案 π6或π2解析 由2b 2=3ac 及正弦定理可知,2sin 2B =3sin A sin C ,故sin A sin C =12, cos(A +C )=cos A cos C -sin A sin C=cos A cos C -12, 即cos A cos C -12=-12, cos A cos C =0,故cos A =0或cos C =0,可知A =π6或π2.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.答案 18解析 方法一 ∵AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC →=AP →·AB →+AP →·(BD →+DC →)=AP →·BD →+2AP →·AB →,∵AP ⊥BD ,∴AP →·BD →=0.又∵AP →·AB →=|AP →||AB →|cos ∠BAP =|AP →|2,∴AP →·AC →=2|AP →|2=2×9=18.方法二 把平行四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18.3.已知x ,y 满足约束条件⎩⎪⎨⎪⎧ 2x +y ≤4,x +2y ≤4,x ≥0,y ≥0,则z =x +y 的最大值为________.答案 83解析 作出不等式组对应的可行域,如图中阴影部分所示,由z =x +y得y =-x +z ,平移直线y =-x ,由图象可知当直线y =-x +z 经过点B时,直线y =-x +z 的截距最大,此时z 最大.由⎩⎪⎨⎪⎧ 2x +y =4,x +2y =4,解得⎩⎨⎧ x =43,y =43,即B (43,43),代入z =x +y 得z =43+43=83. 4.在△ABC 中,角A =60°,M 是AB 的中点,若AB =2,BC =23,D 在线段AC 上运动,则DB →·DM →的最小值为________.答案 2316解析 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,根据余弦定理得a 2=b 2+c 2-2bc cos A ,即12=b 2+4-2b ,即b 2-2b -8=0,解得b =4.设AD →=λAC →(0≤λ≤1),则DB →·DM →=(AB →-AD →)·(AM →-AD →)=(AB →-λAC →)·(12AB →-λAC →) =λ2|AC →|2-32λAB →·AC →+12|AB →|2 =16λ2-6λ+2,当λ=316时,16λ2-6λ+2最小, 最小值为2316. 5.定义:min{a 1,a 2,a 3,…,a n }表示a 1,a 2,a 3,…,a n 中的最小值.已知f (x )=min{x,5-x ,x 2-2x -1},且对于任意的n ∈N *,均有f (1)+f (2)+…+f (2n -1)+f (2n )≤kf (n )成立,则常数k 的取值范围是________.答案 [-12,0] 解析 ∵f (x )=min{x,5-x ,x 2-2x -1},∴f (1)=-2,f (2)=-1,∴f (1)+f (2)≤kf (1),即-3≤-2k ,解得k ≤32;同理,f (3)=2,f (4)=1,∴f (1)+f (2)+f (3)+f (4)≤kf (2),即-2-1+2+1≤k ×(-1),解得k ≤0.由以上可知k 为非正数.当n ≥3时,{f (n )}是以2为首项,-1为公差的等差数列,f (1)+f (2)+…+f (2n -1)+f (2n )≤kf (n ),即-2-1+2+5-2n 2×(2n -2)≤k (5-n ), 2n 2-9n +10≥k (n -5),又2n 2-9n +10≥2×32-9×3+10=1,k (n -5)≤k (3-5)=-2k ,∴k ≥-12. 综上所述,常数k 的取值范围是[-12,0]. 6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________. 答案 57解析 如图,设|BF |=m ,由题知,m 2+100-2×10m cos ∠ABF =36,解得m =8,所以△ABF 为直角三角形,所以|OF |=5,即c =5,由椭圆的对称性知|BF |=|AF ′|=8,(F ′为右焦点)所以a =7,所以离心率e =57. 7.已知f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若同时满足条件:①∀x ∈R ,f (x )>0或g (x )>0;②∃x ∈(-∞,-4),f (x )g (x )<0.则实数m 的取值范围是________.答案 (0,8)解析 当f (x ),g (x )满足条件①时,m ≤0显然不合题意;当m >0时,f (0)=1>0,若对称轴x =4-m 2m≥0, 即0<m ≤4,结论显然成立,若对称轴x =4-m 2m<0,即m >4, 只要方程2mx 2-2(4-m )x +1=0的判别式Δ=4(4-m )2-8m =4(m -8)(m -2)<0即可, 又m >4,可得4<m <8,所以m ∈(0,8).当f (x ),g (x )满足条件②时,对于m ∈(0,8),x ∈(-∞,-4),g (x )<0恒成立,由①可知,必存在x 0∈(-∞,-4),使得f (x 0)>0成立,故可得m ∈(0,8).8.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+6x +e 2-5e -2,x ≤e ,x -2ln x ,x >e (其中e 为自然对数的底数,且e ≈2.718).若f (6-a 2)>f (a ),则实数a 的取值范围是________.答案 -3<a <2解析 ∵f ′(x )=⎩⎪⎨⎪⎧-2x +6,x ≤e ,1-2x ,x >e ,当x ≤e 时,f ′(x )=6-2x =2(3-x )>0,当x >e 时,f ′(x )=1-2x =x -2x>0, ∴f (x )在R 上单调递增.又f (6-a 2)>f (a ),∴6-a 2>a ,解之得-3<a <2.9.已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________.答案 [-1,+∞)解析 函数y =f (x )的图象如图,由不等式f (2-x )≤f (1)知,2-x ≤2+1,从而得到不等式f (2-x )≤f (1)的解集为[-1,+∞).10.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则0≤x ≤12,0≤y ≤23的概率是________. 答案 13解析 由平面向量基本定理及点P 为ABCD 内部或边界上任意一点,可知0≤x ≤1且0≤y ≤1,又满足条件的x ,y 满足0≤x ≤12,0≤y ≤23,所以P (A )=23×121×1=13. 11.(2013·辽宁)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 12.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)答案 DM ⊥PC解析 易得BD ⊥PC .∴当DM ⊥PC ,即有PC ⊥平面MBD .而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y2=16x 的焦点相同,则双曲线的方程为________.答案 x 24-y 212=1 解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x 得b a =3,∴b =3a . ∵抛物线y 2=16x 的焦点F (4,0),∴c =4.又∵c 2=a 2+b 2,∴16=a 2+(3a )2,∴a 2=4,b 2=12,∴所求双曲线的方程为x 24-y 212=1. 14.e 416,e 525,e 636(其中e 为自然对数的底数)的大小关系是________. 答案 e 416<e 525<e 636解析 由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e x x 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636. 而f ′(x )=(e xx 2)′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636. 15.定义区间[x 1,x 2] (x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________. 答案 3解析 如图,f (1)=0,f ⎝⎛⎭⎫14=f (4)=2,(b -a )max =4-14=154, (b -a )min =1-14=34,则154-34=3.。
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g (x )的图象性质类似如图:数形结合可得,不等式f (x )>0⇔x•g (x )>0⇔或,⇔0<x <1或x <﹣1. 故选:A .【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O :定义法;5A :平面向量及应用. 【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行, ∴λ+=t (+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x ,y 满足约束条件,则z=x +y 的最大值为 .【考点】7C :简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值. 【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D 点时,z 最大,由得D (1,),所以z=x +y 的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n =﹣.【考点】8H :数列递推式.【专题】54:等差数列与等比数列.【分析】通过S n+1﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.【解答】解:∵a n+1=S n+1S n,∴S n+1﹣S n=S n+1S n,∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.祝福语祝你考试成功!。
2015高考数学专题十二:解填空题技巧、方法(教师版含13、14年高考题)一、考纲要求:新课标一卷高考数学试题4个选择题,共20分.考查基本知识和基本运算.抓住“双基”是关键! 当然,得有1个难题或较新颖题的心理准备.解填空题的基本原则解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填空题的常用方法:直接法、特例法、数形结合法、构造法、归纳推理法等.二、例题讲解:方法一 直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例1 已知椭圆C :x 24+y 23=1的左,右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( ) 解析 由椭圆方程知c =4-3=1,所以F 1(-1,0),F 2(1,0),因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32.设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0),所以F 1P →·F 2A →=y 1y 0,因为点P 是椭圆C 上的动点,所以-3≤y 1≤3,F 1P →·F 2A →的最大值为332.答案332思维升华 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.已知复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,则复数z i 在复平面上所对应的点的坐标为________. 答案 (0,1)解析 因为复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数, 所以a -1=0, 解得a =1.所以复数z =1,所以z i =i.所以复数z i 在复平面上所对应的点的坐标为(0,1). 方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程. 例2 如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.解析 方法一 ∵AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC → =AP →·AB →+AP →·(BD →+DC →)=AP →·BD →+2AP →·AB →, ∵AP ⊥BD ,∴AP →·BD →=0.又∵AP →·AB →=|AP →||AB →|cos ∠BAP =|AP →|2, ∴AP →·AC →=2|AP →|2=2×9=18.方法二 把平行四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18. 答案 18思维升华 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.本题中的方法二把平行四边形看作正方形,从而减少了计算量.(1)如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1,则AC →·AD →=________.(2)cos 2α+cos 2(α+120°)+cos 2(α+240°)的值为________________. 答案 (1)3 (2)32解析 (1)不妨取|BD →|=2, 则|BC →|=23,∠ADB =π3,∴AC →·AD →=(BC →-BA →)·AD →=BC →·AD →-BA →·AD → =23×1×cos π3+0= 3.(2)令α=0°,则原式=cos 20°+cos 2120°+cos 2240°=32.训练2 设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A ,B 两点,则OA →·OB →=________.[解析]方法一:如图,可取过焦点的直线为x =12,求出交点A (12,1),B (12,-1),所以OA →·OB→=12×12+1×(-1)=-34. 方法二:设点A (x A ,y A ),点B (x B ,y B ), 由题意,知p =1.则OA →·OB →=(x A ,y A )·(x B ,y B )=x A x B +y A y B =p 24-p 2=-34p 2=-34.[答案] -34方法三 数形结合法(图解法)对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,Venn 图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.例3 已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________.解析 函数y =f (x )的图象如图,由不等式f (2-x )≤f (1)知,2-x ≤2+1,从而得到不等式f (2-x )≤f (1)的解集为[-1,+∞).答案 [-1,+∞)思维升华 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.训练3(1) (2013·北京)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域.区域D 上的点与点(1,0)之间的距离的最小值为________. 答案255解析 作不等式组表示的平面区域,如图所示(△OAB 及其内部),易观察知,所求最小值为点P (1,0)到2x -y =0的距离d =|2×1-0|22+(-1)2=255 . (2) 设方程1x +1=|lg x |的两个根为x 1,x 2,则x 1·x 2的取值范围________. [解析] 分别作出函数y =1x +1和y =|lg x |的图象如图,不妨设0<x 1<1<x 2,则|lg x 1|>|lg x 2|, ∴-lg x 1>lg x 2,即lg x 1+lg x 2<0,∴0<x 1x 2<1. [答案] (0,1)(3)如图所示,过抛物线y =14x 2的焦点F 的直线交抛物线与圆x 2+(y -1)2=1于A 、B 、C 、D 四点,则|AB |·|CD |=________.[解析] 设A (x 1,y 1),B (x 2,y 2), 则|AB |·|CD |=(|AF |-1)(|DF |-1) =(y 1+1-1)·(y 2+1-1)=y 1y 2.又由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得y 2-(2+4k 2)y +1=0,∴y 1y 2=1.[答案] 1 方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决. 例4 (1)如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.(2)e 416,e 525,e 636(其中e 为自然对数的底数)的大小关系是________. 解析 (1)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.(2)由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e x x 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636.而f ′(x )=(e xx 2)′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.答案 (1)6π (2)e 416<e 525<e 636思维升华 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.第(1)题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决. 训练4 (1)已知a =ln12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.(2)已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的投影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). 答案 (1)a >b >c (2)①②④解析 (1)令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x .当0<x <1时,f ′(x )>0, 即函数f (x )在(0,1)上是增函数. ∵1>12 013>12 014>12 015>0,∴a >b >c . (2)用正方体ABCD —A 1B 1C 1D 1实例说明A 1D 1与BC 1在平面ABCD 上的投影互相平行,AB 1与BC 1在平面ABCD 上的投影互相垂直,BC 1与DD 1在平面ABCD 上的投影是一条直线及其外一点.故①②④正确.(3) 在数列{a n }中,若a 1=1,a n +1=2a n +3(n ≥1),则该数列的通项a n =________.[解析] 由a n +1=2a n +3, 则有a n +1+3=2(a n +3),即a n +1+3a n +3=2. 所以数列{a n +3}是以a 1+3=4为首项,公比为2的等比数列,即a n +3=4·2n -1=2n +1.所以a n =2n +1-3.[答案] 2n +1-3方法五 归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想. 例5 观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,若某数m 3按上述规律展开后,发现等式右边含有“2 015”这个数,则m =________.解析 由题意可得第n 个算式的左边是n 3,右边是n 个连续奇数的和,设第n 个算式的第一个数为a n ,则有a 2-a 1=3-1=2,a 3-a 2=7-3=4,…,a n -a n -1=2(n -1),以上n -1个式子相加可得a n -a 1=(n -1)[2+2(n -1)]2,故a n =n 2-n +1,可得a 45=1 981,a 46=2 071,故可知2 015在453的展开式中,故m =45. 答案 45思维升华 归纳推理主要用于与自然数有关的等式或不等式的问题中,一般在数列的推理中常涉及.即通过前几个等式或不等式出发,找出其规律,即找出一般的项与项数之间的对应关系,一般的有平方关系、立方关系、指数变化关系或两个相邻的自然数或奇数相乘基本关系,需要对相应的数字的规律进行观察、归纳,一般对等式或不等式中的项的结构保持一致.(1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. (2)用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为________. 答案 (1)1 000 (2)6n +2解析 (1)由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.(2)观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第n 个“金鱼”图需要火柴棒的根数为6n +2.三、高考试题精析2013年高考数学试题13、已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____. 【命题意图】本题主要考查平面向量的数量积,是容易题.【解析】b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2.14、若数列{a n }的前n 项和为S n =23a n +错误!未找到引用源。
2015年高考数学答题策略技巧及答题模板一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15不等式题目注意绝对值的几何意义;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学填空题解题方法填空题是一种传统的题型,也是高考试卷中罕见题型.查字典数学网为大家引荐了高考数学填空题解题方法,请大家细心阅读,希望你喜欢。
一、直接法这是解填空题的基本方法,它是直接从题设条件动身、应用定义、定理、性质、公式等知识,经过变形、推理、运算等进程,直接失掉结果。
它是解填空题的最基本、最常用的方法。
运用直接法解填空题,要擅长经过现象看实质,熟练运用解方程和解不等式的方法,自觉地、无看法地采取灵敏、简捷的解法。
二、特殊化法当填空题的结论独一或题设条件中提供的信息暗示答案是一个定值时,而条件中含有某些不确定的量,可以将题中变化的不定量选取一些契合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)停止处置,从而得出探求的结论。
这样可大大地简化推理、论证的进程。
三、数形结合法"数缺形时少直观,形缺数时难入微。
"数学中少量数的效果前面都隐含着形的信息,图形的特征上也表达着数的关系。
我们要将笼统、复杂的数量关系,经过形的笼统、直观提醒出来,以到达"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻觅处置形的方法,来到达"数促形"的目的。
关于一些含有几何背景的填空题,假定能数中思形,以形助数,那么往往可以简捷地处置效果,得出正确的结果。
四、等价转化法经过"化复杂为复杂、化生疏为熟习",将效果等价地转化成便于处置的效果,从而得出正确的结果。
数学里常用的几种经典解题方法引见:1、配方法所谓配方,就是把一个解析式应用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和方式。
经过配方处置数学效果的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的运用十分十分普遍,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
填空题的解法【题型特点概述】1.填空题的特征填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活.从历年高考成绩看,填空题得分率一直不是很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.2.解填空题的基本原则解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填空题的常用方法:直接法、特例法、数形结合法、构造法、归纳推理法等.方法一直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例1已知椭圆C :x 24+y23=1的左,右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为()解析由椭圆方程知c =4-3=1,所以F 1(-1,0),F 2(1,0),因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A(1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32.设P(x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0),所以F 1P →·F 2A →=y 1y 0,因为点P 是椭圆C 上的动点,所以-3≤y 1≤3,F 1P →·F 2A →的最大值为332.答案332思维升华直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.已知复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,则复数zi 在复平面上所对应的点的坐标为________.答案(0,1)解析因为复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,所以a -1=0,解得a =1.所以复数z =1,所以zi =i.所以复数zi 在复平面上所对应的点的坐标为(0,1).方法二特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.例2如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________. 解析方法一∵AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC→=AP →·AB →+AP →·(BD →+DC →)=AP →·BD →+2AP →·AB →,∵AP ⊥BD ,∴AP →·BD →=0.又∵AP →·AB →=|AP →||AB →|cos ∠BAP =|AP →|2,∴AP →·AC →=2|AP →|2=2×9=18. 方法二把平行四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18.答案18思维升华求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.本题中的方法二把平行四边形看作正方形,从而减少了计算量.(1)如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1,则AC →·AD→=________.(2)cos 2α+cos 2(α+120°)+cos 2(α+240°)的值为________________.答案(1)3(2)32解析(1)不妨取|BD →|=2,则|BC →|=23,∠ADB =π3,∴AC →·AD →=(BC →-BA →)·A D →=BC →·AD →-BA →·AD →=23×1×cos π3+0= 3.(2)令α=0°,则原式=cos 20°+cos 2120°+cos 2240°=32.方法三数形结合法(图解法)对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,Venn 图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.例3已知函数f(x)=x|x -2|,则不等式f(2-x)≤f(1)的解集为________.解析函数y =f(x)的图象如图,由不等式f(2-x)≤f(1)知,2-x ≤2+1,从而得到不等式f(2-x)≤f(1)的解集为[-1,+∞).答案[-1,+∞)思维升华图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.(2013·北京)设D 为不等式组x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域.区域D 上的点与点(1,0)之间的距离的最小值为________.答案255解析作不等式组表示的平面区域,如图所示(△OAB 及其内部),易观察知,所求最小值为点P(1,0)到2x -y =0的距离d =|2×1-0|22+-12=255. 方法四构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.例4(1)如图,已知球O的球面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB =BC=2,则球O的体积等于________.(2)e416,e525,e636(其中e为自然对数的底数)的大小关系是________.解析(1)如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以|CD|=22+22+22=2R,所以R=62,故球O的体积V=4πR33=6π.(2)由于e416=e442,e525=e552,e636=e662,故可构造函数f(x)=e xx2,于是f(4)=e416,f(5)=e525,f(6)=e636.而f′(x)=(e xx2)′=e x·x2-e x·2xx4=e x x2-2xx4,令f′(x)>0得x<0或x>2,即函数f(x)在(2,+∞)上单调递增,因此有f(4)<f(5)<f(6),即e416<e525<e636.答案(1)6π(2)e416<e525<e636思维升华构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.第(1)题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.(1)已知a=ln12 013-12 013,b=ln12 014-12 014,c=ln12 015-12 015,则a,b,c的大小关系为________.(2)已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的投影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号).答案(1)a>b>c(2)①②④解析(1)令f(x)=ln x-x,则f′(x)=1x-1=1-xx.当0<x<1时,f′(x)>0,即函数f(x)在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a>b>c.(2)用正方体ABCD—A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.方法五归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想.例5观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,,,若某数m3按上述规律展开后,发现等式右边含有“ 2 015”这个数,则m=________.解析由题意可得第n个算式的左边是n3,右边是n个连续奇数的和,设第n个算式的第一个数为a n,则有a2-a1=3-1=2,a3-a2=7-3=4,,,a n-a n-1=2(n-1),以上n-1个式子相加可得a n-a1=n-1[2+2n-1]2,故a n=n2-n+1,可得a45=1 981,a46=2 071,故可知2 015在453的展开式中,故m=45.答案45思维升华归纳推理主要用于与自然数有关的等式或不等式的问题中,一般在数列的推理中常涉及.即通过前几个等式或不等式出发,找出其规律,即找出一般的项与项数之间的对应关系,一般的有平方关系、立方关系、指数变化关系或两个相邻的自然数或奇数相乘基本关系,需要对相应的数字的规律进行观察、归纳,一般对等式或不等式中的项的结构保持一致.(1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,,,第n个三角形数为n n+12=12n2+12n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=12n2+12n,正方形数N(n,4)=n2,五边形数N(n,5)=32n2-12n,六边形数N(n,6)=2n2-n ,,,,,,,,,,,,,,,可以推测N(n,k)的表达式,由此计算N(10,24)=____________.(2)用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为________.答案(1)1 000(2)6n+2解析(1)由N(n,4)=n2,N(n,6)=2n2-n,可以推测:当k为偶数时,N(n,k)=k-22n2+4-k2n,∴N(10,24)=24-22×100+4-242×10=1 100-100=1 000.(2)观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第n个“金鱼”图需要火柴棒的根数为6n+2.1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验及书写的规范性.。
高考数学填空题的解题方法一、直接法:直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的,称为直接法.它是解填空题的最基本、最常用的方法.使用直接法解填空题,要善于通过现象看本质,自觉地、有意识地采取灵活、简捷的解法.1.在△ABC 中,B =60 0,AC则AB +2BC 的最大值为 .2.已知函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则实数a 的取值范围是 。
3.若,1,1,x y R a b ∈>>,且212,4,___x y a b a x y==+=+则的最大值 4.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值是 。
5.已知向量a =)sin ,(cos θθ,向量b =)1,3(-,则|2a -b |的最大值是6.已知数列}{n a 的前n 项和为1232++=n n S n ,则通项公式n a = .二、特殊化法:当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论.这样可大大地简化推理、论证的过程.7.在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点,M N ,若,AB mAM AC nAN == ,则m n +的值为 .8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。
若a 、b 、c 成等差数列,则=++CA C A cos cos 1cos cos 。
9.设函数(1)()()x x a f x x++=为奇函数,则a = . 10.如果函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么._____=a 11.求值=++++)240(cos )120(cos cos 222 a a a 。