江苏矢江市2017__2018学年八年级数学下学期第一次独立作业试题新人教版20180427123
- 格式:wps
- 大小:324.50 KB
- 文档页数:9
1初三年级数学学科阶段性检测(一) 本卷满分:130分,考试时间:120分钟一.选择题(共10小题,每小题3分,共30分)1.tan45°的值为…………………………………………………………………( ) A . B .1 C .D .2.方程的解为………………………………………………………( ) A .x=2 B .x=﹣2C .x=3D .x=﹣33.圆锥的底面半径为2,母线长为4,则它的侧面积为………………………( ) A .8π B .16π C .D .4π4.关于x 的一元二次方程x 2﹣4x+k=0有两个相等的实数根,则k 的值是…( ) A .2 B .﹣2 C .4D .﹣45.某厂1月份生产原料a 吨,以后每个月比前一个月增产x%,3月份生产原料的吨数是……………………………………………………………………………………( ) A .a (1+x )2B .a (1+x%)2C .a+a•x%D .a+a•(x%)26.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为…( ) A .30°B .50°C .60°D .70°第6题图第8题图第9题图7.如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为…( )A .B .C .D .8.如图,已知等边△ABC 的面积为4,P 、Q 、R 分别为边AB 、BC 、AC 上的动点,则PR+QR 的最小值是……………………………………………………………( ) A .3 B .2 C .D .4…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________9.如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1,AB:BC=2:1,则tan∠AHE的值为……………………………………………………………………()A .B .C .D .10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是…………………………()A . B.2﹣ C.2﹣ D.4﹣第10题图第16题图第17题图二.填空题(共8小题,每小题2分,共16分)11.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为辆.12.分解因式:4a2﹣1= .13.已知双曲线y=经过点(﹣1,2),那么k的值等于.14.数据5,6,7,4,3的方差是.15.一个多边形的内角和为1080°,则这个多边形的边数是.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.17.如图,△ABC中AB=AC=13,BC=10,点D在边AB上,以D为圆心作⊙D,当⊙D 恰好同时与边AC、BC相切时,此时⊙D的半径长为.18.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.第18题图三.解答题(共10小题,共84分)19.(本题满分8分)计算:(1)(2).220.(本题满分8分)(1)解方程:x2﹣4x+2=0(2)解不等式组:.21.(本题满分8分)九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有人。
江西省高安市 2017-2018学年八年级数学下学期第一次月考试题一.选择题:(每小题 3分,共 18分)1.下列根式中不是最简二次根式的是( )A. 10B. 8C. 6D. 22.下列计算正确的是( )A. 2 3 + 4 2 =6 5B. 8 =4 23C. 27 3 =3 D. 2 =-33.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A. 3 , 4 , 5B.1, 2 , 3C.6,7,8D.2,3,44.平行四边形 ABCD 中,∠A:∠B:∠C:∠D 的值可以是( )A.4:3:3:4B.7:5:5:7C.4:3:2:1D.7:5:7:55. 如图,在周长为 20cm 的□ABCD 中,ABAD ,AC ,BD 相交于点 O ,OE⊥BD 交 AD 于 E ,则△ABE 的周长为( )A.4cmB.6cmC.8cmD.10cm 6.2002年 8月在北京召开的国际数学家大会会标如上图所示,它是由四个相同的直角三角形 与中间的小正方形拼成的一个大正方形。
若大正方形的面积是 13,小正方形的面积是 1,直角三角形的较长直角边为 a,较短直角边为 b ,则 a 3 +b 4 的值为( )A.35B.43C.89D.97二.填空题:(每小题 3分,共 24分)7.计算: 8 + 18 = .8.已 知x= 3 + 2 ,y= 3 - 2 ,则 x 3 y+x y 3 = .9.函数y= 2 1 x + 1 x中,自变量x的取值范围是 . 10 .如下图,平行四边形 OABC 的顶点 O ,A ,C 的坐标分别是(0,0),(3,0),(1,2),则顶 点 B 的坐标是 .111.如下图,若□ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,□ABCD的面积为cm2.12.如上图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm.13.在△ABC中,D,E分别是AB,AC的中点,若BC=12,则DE= .14.如右图,在正方形网格中,以AB为边画Rt△ABC,使点C在格点上,满足这样条件的点C共有个.三.(共3小题,每小题6分,共18分)15.计算1(1)322(5 218)(2)273(5+3)(53)16.如图,正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN= 17(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△ABC2117.先化简,再求值:1x 2÷x2x2x21,其中x= 31四.(共5小题,每小题8分,共40分)18.如图,已知AC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部分的面积.1 9.如图所示,四边形ABCD是长方形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=5,DC=3,求BE的长.320.如图,△ABC中,AB=AC,D为BC上任一点,作DE//AC交AB于点E,DF//AB交AC于点F. (1)若D点在BC上运动时,∠EDF的大小是否变化?为什么?(2)当AB=12cm时,求□AEDF的周长.21.如图,已知BE//DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.422.如图1.有一组平行线l//l//l//l,正方形ABCD的4个顶点A、B、C、D分别在1234l、,1l、l、l上,过点D作DE⊥l1于E点.已知相邻两条平行线之间的距离为2. 234(1)求AE及正方形ABCD的边长;(2)如图2,延长AD交l于点G,求CG的长度.45。
2017-2018学年八年级(下)期中数学试卷一、选择题1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列调查中,适宜采用普查方式的是()A.调查市场上酸奶的质量情况B.调查我市中小学生的视力情况C.调查某品牌圆珠笔芯的使用寿命D.调查乘坐飞机的旅客是否携带危禁物品3.如图,在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.AC=BD C.AB=AD D.AO=CO4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,收入在1200~1240元的频数是()A.12 B.13 C.14 D.156.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.7.某商场今年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.4月份商场的商品销售总额是75万元B.1月份商场服装部的销售额是22万元C.5月份商场服装部的销售额比4月份减少了D.3月份商场服装部的销售额比2月份减少了8.如图,Rt△ABC中,∠C=90°,AC=12,BC=5,分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,则图中阴影部分的面积之和()A.60 B.90 C.144 D.169二、填空题9.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有人.10.一个不透明的袋子中装有3个黑球,2个白球,1个红球,(除颜色外其余均相同),请写出一个随机事件.11.在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB=.12.在下列图形,等边三角形、平行四边形、矩形、菱形、圆中选择一个图形,选择的图形既是轴对称图形,又是中心对称图形的概率是.13.若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是.14.写一条正方形具有而菱形不一定具有的性质:.15.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,OH的长为3,则菱形ABCD的周长等于.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人数7 10 14 1917.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为.18.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.三、操作解释(本题12分)19.如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别是A(1,3),B(3,1).(1)画出△AOB绕点O逆时针旋转180°后得到△A′OB′;(2)点A关于点O中心对称的点A′的坐标为;(3)连接AB′、BA′,四边形ABA′B′是什么四边形:.20.课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果制成了如下的统计表.等级人数/名百分比优秀200 20%良好600 60%及格150 15%不及格50 a(1)a的值为;(2)请你从表格中任意选取一列数据,绘制合理的统计图来表示.(绘制一种即可)(3)说一说你选择此统计图的理由.四、计算与说理(本题共2小题,共14分)21.一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数200 300 400 500 600 700 800 1000 摸到红球次数m 151 221 289 358 429 497 568 701 摸到红球频率0.75 0.74 0.72 0.72 0.72 0.71 a b (1)表格中a=,b=;(2)估计从袋子中摸出一个球恰好是红球的概率约为;(精确到0.1)(3)如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?22.为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.五、证明与说理(本题共5小题,共20分)23.如图,BD是▱ABCD的一条对角线,AE⊥BD,CF⊥BD,试猜想AE和CF的数量关系,并对称的猜想进行证明.24.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.26.如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCD′=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,图③中的四边形ODCB是“完美筝形”吗?说明理由.27.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与c轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,符合题意;C、是轴对称图形,是中心对称图形,不符合题意;丁、是轴对称图形,是中心对称图形,符合题意.故选B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.下列调查中,适宜采用普查方式的是()A.调查市场上酸奶的质量情况B.调查我市中小学生的视力情况C.调查某品牌圆珠笔芯的使用寿命D.调查乘坐飞机的旅客是否携带危禁物品【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、数量较多,调查具有破坏性,适合抽查;B、人数较多,适合抽查;C、数量较多,调查具有破坏性,适合抽查;D、事关重大,必须进行全面调查,选项正确.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.AC=BD C.AB=AD D.AO=CO【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,分别分析得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,无法得出AC⊥BD,AC=BD,AB=AD,故选:D.【点评】此题考查了平行四边形的性质,注意掌握数形结合思想的应用.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】模拟实验.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验,熟知概率的定义是解答此题的关键.5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,收入在1200~1240元的频数是()A.12 B.13 C.14 D.15【考点】频数(率)分布直方图.【分析】从图中得出1200以下和1400以上的频数,则收入在1200~1240元的频数=30﹣1200以下的频数﹣1400以上的频数.【解答】解:根据题意可得:共30户接受调查,其中1200以下的有3+7=10户,1240以上的有4+1+1=6户;那么收入在1200~1240元的频数是30﹣6﹣10=14,故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.【考点】生活中的旋转现象.【分析】根据旋转的意义,找出图中阴影三角形3个关键处按顺时针方向旋转60°后的形状即可选择答案.【解答】解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.【点评】考查了生活中的旋转现象,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.7.某商场今年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.4月份商场的商品销售总额是75万元B.1月份商场服装部的销售额是22万元C.5月份商场服装部的销售额比4月份减少了D.3月份商场服装部的销售额比2月份减少了【考点】折线统计图;条形统计图.【分析】用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断A;用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断B;分别求出4月份与5月份商场服装部的销售额,即可判断C;分别求出2月份与3月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;B、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;D、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.故选:C.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.8.如图,Rt△ABC中,∠C=90°,AC=12,BC=5,分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,则图中阴影部分的面积之和()A.60 B.90 C.144 D.169【考点】勾股定理;正方形的性质.【分析】过D作BF的垂线交BF于N,连接DI,通过证明S1+S2+S3+S4=Rt△ABC的面积×3,依此即可求解.【解答】解:过D作BF的垂线交BF于N,连接DI,∵图中S2=S Rt△DOI,S△BOC=S△MND,∴S2+S4=S Rt△ABC.可证明Rt△AGE≌Rt△ABC,Rt△DNB≌Rt△BHD,∴S1+S2+S3+S4=S1+S3+(S2+S4),=Rt△ABC的面积+Rt△ABC的面积+Rt△ABC的面积=Rt△ABC的面积×3=12×5÷2×3=90.故选:B.【点评】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.二、填空题9.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有5人.【考点】频数与频率.【分析】由公式:频率=,得:频数=总人数×频率.【解答】解:根据题意,得该班在这个分数段的学生有50×0.1=5(人).【点评】能够灵活运用频率=这一公式是解决本题的关键.10.一个不透明的袋子中装有3个黑球,2个白球,1个红球,(除颜色外其余均相同),请写出一个随机事件摸出一个球是黑球(答案不唯一).【考点】随机事件.【分析】根据随机事件的定义举出一个随机事件即可.【解答】解:例如:摸出一个球是黑球.故答案为:摸出一个球是黑球(答案不唯一).【点评】本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.11.在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB=40°.【考点】矩形的性质.【分析】根据矩形的性质得出AC=2OA,BD=2BO,AC=BD,求出OB=0A,推出∠OAB=∠OBA,根据三角形内角和定理求出即可.【解答】解:∵四边形ABCD是矩形,∴AC=2OA,BD=2BO,AC=BD,∴OB=0A,∵∠AOB=100°,∴∠OAB=∠OBA=(180°﹣100°)=40°故答案为:40°.【点评】本题考查了三角形内角和定理,矩形的性质,等腰三角形的性质的应用,注意:矩形的对角线互相平分且相等.12.在下列图形,等边三角形、平行四边形、矩形、菱形、圆中选择一个图形,选择的图形既是轴对称图形,又是中心对称图形的概率是.【考点】概率公式;轴对称图形;中心对称图形.【分析】首先找出既是中心对称图形,又是轴对称图形的图形个数,直接利用概率公式求解即可求得答案.【解答】解:∵等边三角形、平行四边形、矩形、菱形、圆中,其中卡片正面的图形既是轴对称图形又是中心对称图形的有:矩形、菱形和圆,∴这些图形中既是轴对称图形又是中心对称图形的概率是,故答案为.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是抽取50名学生的数学成绩.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是抽取50名学生的数学成绩,故答案为:抽取50名学生的数学成绩.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.写一条正方形具有而菱形不一定具有的性质:每一个角都是直角.【考点】正方形的性质;菱形的性质.【分析】根据正方形既是矩形也是菱形,写出矩形的性质即可.【解答】解:正方形具有而菱形不一定具有的性质为:每一个角都是直角(或对角线相等),二者任写其一.故答案为:每一个角都是直角(或对角线相等).【点评】本题考查了正方形的性质,熟练掌握菱形、矩形、正方形三者之间的关系是解题的关键.15.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,OH的长为3,则菱形ABCD的周长等于24.【考点】菱形的性质;直角三角形斜边上的中线.【分析】首先利用菱形的对角线互相垂直得出∠AOD=90°,进而利用直角三角形斜边上的中线等于斜边的一半得出AD的长,即可得出菱形的周长.【解答】解:∵菱形ABCD中,对角线AC,BD相交于点O,∴AC⊥BD,则∠AOD=90°,∵H为AD边中点,∴OH=AD,∵OH的长为3,∴AD=6,∴菱形ABCD的周长等于:4×6=24.故答案为:24.【点评】此题主要考查了菱形的性质以及直角三角形中斜边上的中线等于斜边的一半,根据OH= AD得出是解题关键.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有240人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人数7 10 14 19 【考点】用样本估计总体.【分析】先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.【解答】解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.【点评】本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为8.【考点】平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==4,∴AE=2AO=8.故答案为:8.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.18.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】旋转的性质;等边三角形的性质;正方形的性质.【分析】利用正方形的性质和等边三角形的性质证明△ABE≌△ADF(SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF可以在正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,在△ABE与△ADF中,,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°故答案为:15°或165°.【点评】本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.三、操作解释(本题12分)19.如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别是A(1,3),B(3,1).(1)画出△AOB绕点O逆时针旋转180°后得到△A′OB′;(2)点A关于点O中心对称的点A′的坐标为(﹣1,﹣3);(3)连接AB′、BA′,四边形ABA′B′是什么四边形:矩形.【考点】作图-旋转变换.【分析】(1)根据中心旋转图形的定义画出图形即可.(2)由点A′的位置可以写出点A′坐标.(3)结论是矩形,根据对角线相等的平行四边形是矩形进行证明.【解答】解:(1)△AOB绕点O逆时针旋转180°后得到△A′OB′的图象如图所示:(2)由图象可知点A′坐标(﹣1,﹣3).故答案为(﹣1,﹣3).(3)连接AB′、BA′,∵OA=OA′,OB=OB′,∴四边形AB′A′B是平行四边形,∵OA=OB,∴AA′=BB′,∴四边形AB′A′B是矩形.故答案为矩形.【点评】本题考查旋转变换、中心对称的定义、矩形的判定、点与坐标的关系等知识,正确画出中心旋转图形是解题的关键,记住矩形的3种判定方法,属于中考常考题型.20.课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果制成了如下的统计表.等级人数/名百分比优秀200 20%良好600 60%及格150 15%不及格50 a(1)a的值为5%;(2)请你从表格中任意选取一列数据,绘制合理的统计图来表示.(绘制一种即可)(3)说一说你选择此统计图的理由.【考点】统计图的选择.【分析】(1)根据百分比之和等于1,即可解决问题.(2)可以绘制条形统计图,扇形统计图.(3)根据已知人数可以绘制条形统计图,根据已知百分比可以绘制扇形统计图.【解答】解:(1)a=1﹣20%﹣60%﹣15%=5%.故答案为5%.(2)可以绘制扇形统计图、条形统计图如图所示,(3)选用第二列,因为优秀、良好、及格、不及格的人数已知,即可绘制条形统计图.选用第三列,因为已知百分比,可以绘制扇形统计图.【点评】本题考查统计图的选择,解题的关键是掌握基本概念,记住百分比之和等于1,扇形统计图的圆心角=360°×百分比,属于中考常考题型.四、计算与说理(本题共2小题,共14分)21.一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数200 300 400 500 600 700 800 1000 摸到红球次数m 151 221 289 358 429 497 568 701 摸到红球频率0.75 0.74 0.72 0.72 0.72 0.71 a b (1)表格中a=0.71,b=0.70;(2)估计从袋子中摸出一个球恰好是红球的概率约为0.7;(精确到0.1)(3)如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?【考点】利用频率估计概率.【分析】(1)直接用摸到红球的次数除以试验次数即可求得摸到红球的频率;(2)找到多次试验频率逐渐稳定到的常数即可求得概率;(3)根据题意列出方程求解即可.【解答】解:(1)a=568÷800=0.71;b=701÷800=0.70;(2)观察发现随着实验次数的增多,摸到红球的频率逐渐稳定在常数0.7附近,所以计从袋子中摸出一个球恰好是红球的概率约为0.7;(3)设袋子中除去红球外,还有其他颜色的球x个,根据题意得0.7(x+14)=14,解得:x=6,答:袋子中还有其他颜色的球6个.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.22.为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共10000名,其中小学生4500名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为36000名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.【解答】解:(1)100000×10%=10000(名),10000×45%═4500(名).故答案为:10000,4500;(2)100000×40%×90%=36000(名).故答案为:36000;(3)例如:与2010年相比,2014年该地区大学生50米跑成绩合格率下降了5%(答案不唯一).。
2017 f 2018 年上学期学业水平阶段性检测试卷八年级数学|空1魁号一14 '17183) 2122—13 1—•也幷s30133a99> 911 1 10II130 U一•选择■(毎小超空分■共如命)I «i 2U胚中茁边卜的同.卜科■法中正隔的是X.5J2.B W.5J2.7 C«JS.7 U3.4』X如图.已知AAftC n &口堆・H中W = CPjpi卜则詁论中「不正•》的是I4,4C - CKG丄g =册门茂乙号=厶刃4.一个一他形三个内角的虞散之比为2:齐7+这节三他形一足足I业尊魔三角足0自角■角形c幔免—他腦九钝箱「枸陥5.hi边帘每个外箱都是60S这亍事边齢的外角和为4. ISO1円他 C.720-6.如图丄^C.HD1 W^tl M■耐匚期利用3个制定E说圈三角晤金粤,4. SASC5SL47卜「列说法中酱鮒是L三ft形的中线倫平分线加统那足线氐氏代亜角肪的外用和邯赴3⑷“八年纹地学« I 35 (共&页)E .讣1). Hi.E ■宥一个内箱是直输的直角三角壽 U 三角应曲一牛外角丈于住何一个内角8若有—条舍挑滋的聘个三仙形称为一时-共边三舞形• .iSHa 中氐sc 为公共边的 “共边二焙形”宵 ( j儿士时出*时 *c#时扭昨对9 ftlBi.iJDC = 9&\^C = 1S*,ZA = 的腹敬足[]4 33°R2LVG2T"O 37^血如图,Z4S<7 = CACB ・3厲队3肝別半分LAHC 的外角L £<C\内角Eg "CF 以下馆总①M 用Br 5t2>Z_ACB 匸 Z^ADS^^ADC = 908 - UHD 迤 "AC T X^IC 其中正歸的结堆合[ ]底 4 个 & 3 6 C2 1< U I 牛二’填空(8(命小題审分■扶15分)IL 二角羽的内用和等于 _______________ 度,坨.举昭一亍利用二角形前总定性的实#1________________________ .13一 in< J1ABC 空 AMC T Z_A = 60™, HE = 40°,9么上恵? \U 张老师戏林 张三加ff 的砸坦ISU 乩曲门11鼻小担自制一牛与宅全誓的三帚仪 第一小组测■了厶的KftW4B.sc 的长吧帰二小粗分那需量r 三边的长廈曲三孙组 CT 「了 一个侑F?勺復昵笫岡小菲测■丁矶■川C 的氏度及LC Wljttt,那化低认为第 ——-小粗熬胡作出符合塑班的三轴陋・中虫AJC =90口上是肚的中绘3C1 I 比理旳的址拴統予F.昔耕* = ll,#;| AOC 的呻乱为八年繼U 学K 2 ffi 1^65?)(>(割g<spu三、朋薯融I 共产分1必fT#角的仪养如體所不「其屮祐AD.BC = IH\ 求讦:匚哒=iP4GE 出分)巳知一牛多边器的内倉和是外桶和的4常违■测・・瑞垃个爹边槪的边4LM (学井*如阳:住it 方略幡命中有一牛仙匚按聲求进厅下列昨囲: (t ) ■出厶儿肮甲acitt 上的高(裔写出第论X(2) 向右平S6ft.PI 向上$稱;Iff 后的曲林:⑶ ・_MO 鼻・小产睫進養®点杆略点上)血其園穩尊f w 的間锐八年迪数学以』页(些”刺'< 7干/J5.k--------- MTTSc 119,(爭分)如阳苗』UTE申g:昶边上的驀廃是"解的平JMSt丄甘■诙•ZC = 70S車£4KD MJfUg [9的JflU点匚点風尸在一条氏找匕肚丄3于H屈丄M于鼠M"几XP二DE.求证拓尸齐RF.八年製豐学SMK 〔共农刃】Zl. < II#)已知恥1 丄佃•且爾祢判ffi.WMAAVC的M 圧屆用¥井吹+请说罔休的理由(養求桂朗毎妇的理由)力「0洌如田■肋,皿讣别足边M和“ t■的离.点P在肋的捷抡线匕・BP = AC,j^ Q&CE上.CQ =皿求诞: ⑴"=AQ;(2)AP丄池.八毎BHtt学第9贡:共占页)23 11 >> :Hi ■ &…闻白榊蚩蒔礙屮卫为塑杯嵯恵上倒点的址标仔别为山叭》0> B'd. fH 6 ri -3 I _ f). ,'2n - 6 =0,点P从°岀营・Ut毎砂1,单位的逢度沿射战40匀遠运苓・理点尸运动时间为1枕<0#0*^5 的烁* d逢握F仇当P庄找段OA上且AFM的血珀神亲3时”求'的渲;{3)过卩作直懂4出的婁线、乖毘为DIWIPO与孑缈于点E在点卩运动的过厘中』凰 .产存在这制沪,巴ft △MM A A"妙若耗腐直捲写出『的值涪不徉在,请说明理由说明:1 •如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2 •评阅试卷,要坚持每题评阅到底,不能因考生解答中岀现错误而中断对本题的评阅•如果考生的解答在某一步岀现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3•评分标准中,如无特殊说明,均为累计给分.三、解答题(共75 分)16 .证明:在△ ABC和厶ADC中,有AB=ADBC=DCAC=AC,•••△ABC ADC ( SSS),/•Z BAC= Z DAC . ................................................................................................................ 9 分17.解:设这个多边形的边数是n,依题意得(n —2)X 180 °=4 X 360 ° + 180 °,…5分(n —2)=8 + 1,n=11 .即这个多边形的边数是11 .……8分18.解:如图所示,AG就是所求的△ ABC中BC边高.(没有指明高的结果扣1分,每小题3分共9分)19 .解:TZ B=50 °,AD是BC边上的高,•Z BAD=90 °—50 °=40 °,T Z B=50 °,ZC=70 °,•Z BAC=180 °—Z B—Z C一、选择题(每小题3分,共30分)1. C2. A3. C4. D5. B6. D7. D8. B9. B 10 . B二、填空题(每小题3分,共15分)4 •评分过程中,只给整数分数.11 . 180 12 .略13• 60 14.四15 . 48 {八年级数学参考答案=180 ° - 50 ° - 70 °=60 ° ,••• AE是/ BAC的平分线,1 1•••/ BAE= 2 Z BAC= 2 x 60 °=30 ° ,/•Z AED= Z B+Z BAE=50 ° + 30°=8020. 证明:T AB丄CD, DE丄CF,•Z ABC= Z DEF=90 ° .在Rt△ ABC 和Rt△ DEF 中,A C=DFAB= DE,•Rt △ ABC 也Rt △ DEF (HL).•BC=EF.•BC- BE=EF —BE.即:CE=BF . ........... 9分21. 解:AD是厶ABC的中线.理由如下:••• BE丄AD, CF丄AD,(已知)•Z BED= Z CFD=90 °,(垂直的定义)在厶BDE和厶CDF中,「Z BED=Z CFD (已证)v Z BDE=Z CDF (对顶角相等).BE= CF,(已知)•△BDE^A CDF (AAS),•BD=CD .(全等三角形对应边相等)•AD是厶ABC的中线.(三角形中线的定义)(证明8分,理由3分)22 .证明:(1 )T BD 丄AC, CE丄AB (已知),•Z BEC= Z BDC=90 ° ,•Z ABD+Z BAC=90 ° ,Z ACE+Z BAC=90。
江苏省灌云县西片2017-2018学年八年级数学下学期第一次月考试题一、选择题(每小题4分,共32分)1.下面4个图案中,是中心对称图形的是( )A C2.“a 是实数,I a I ≥0”这一事件是 ( )A .必然事件B .不确定事件C .不可能事件D .随机事件3.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指 ( )A .1 000名学生B .被抽取的50名学生C .1 000名学生的身高D .被抽取的50名学生的身高 4.菱形具有而矩形不一定具有的性质是( ) A .对边平行 B .对角相等C .对角线互相平分D .对角线互相垂直5.下列条件之一能使菱形ABCD 是正方形的为( )①AC⊥BD ②∠BAD=90° ③AB=BC ④AC=BD. A .①③ B .②③ C .②④ D .①②③6.如图,在ABC ∆中,65CAB ∠=︒,将ABC ∆在平面内绕点A 旋转到AB C ''∆的位置,使//CC AB ',则旋转角的度数为( ).A. 35°B. 40°C. 50°D. 65°7.某工厂上半年生产总值增长率的变化情况如图所示,从图上看,下列结论中不正确的是 ( )A .1~5月份生产总值增长率逐月减少B .6月份生产总值的年增长率开始回升C .这半年中每月的生产总值不断增长D .这半年中每月的生产总值有增有减8.如图,在Rt ABC ∆中,,AB AC D =、E 是斜边BC 上两点,且45DAE ∠=︒,将ADC ∆ 绕点A 顺时针旋转90°后,得到AFB ∆,连接EF ,下列结论:①AED ∆≌AEF ∆;②ABE ∆≌ACD ∆; ③BE DC DE +=;④222BE DC DE += .其中正确的是( ).(第8题)A.②④B.①④C.②③D.①③ 二、填空题(每小题4分,共32分)9.已知平行四边形ABCD 的周长为32,AB=4,则BC 的长为 .10.在英语句子“Wish you success ”(祝你成功)中任选一个字母,这个字母为“s ”的概率是 .11.如图,□ABCD 的对角线相交于点O ,请你添加一个条件_______(只添一个即可),使□ABCD 是矩形.12.某课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:①在公园调查了1 000名老年人的健康状况;②在医院调查了1 000名老年人的健康状况;③调查了10名老年邻居的健康状况;④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.你认为抽样比较合理的是(填序号).13.已知菱形的两条对角线长为6cm 和8cm ,菱形的周长是_______. 14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率为_________(精确到0.1). 15.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30 %,表示踢毽的扇形圆心角是60。
人教版八年级(下)学期 第一次月考数学试题含答案一、选择题1.下列运算中,正确的是 ( ) A .53-23=3 B .22×32=6 C .33÷3=3D .23+32=552.下列计算正确的是( ) A .325+= B .1233-=C .326 D .1234÷=3.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .84.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 20205.下列二次根式是最简二次根式的是( ) A .21a +B .15C .4xD .276.下列计算正确的是( ) A .822-=B .321-=C .325+=D .(4)(9)496-⨯-=-⨯-=7.已知226a b ab +=,且a>b>0,则a ba b+-的值为( ) A .2B .±2C .2D .±2 8.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a 9.1x -x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <110.下列计算正确的是( ) A 235=B .332-= C .222= D 393=11.下面计算正确的是( ) A .3+3=33B 273=3C 2?3=5D ()222--12.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题13.已知a ,b 是正整数,且满足15152()a b是整数,则这样的有序数对(a ,b )共有____对. 14.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式) 15.已知函数1x f xx,那么21f _____.16.4102541025-+++=_______. 17.函数y =42xx --中,自变量x 的取值范围是____________. 18.2m 1-1343m --mn =________. 19.已知23x =243x x --的值为_______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.计算: (112﹣133(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可. 试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222224.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn、的式子分别表示a b、,得:a = ,b = ; (2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可; (2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==2(2)-=22=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=233÷3==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).28.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.29.计算:(1;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断. 【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误; 故选:C . 【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.2.B解析:B 【解析】解:A ;B ==;C =;D 2===.故选项错误.故选B.3.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=x<C、当0D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.6.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】 A. 82222=2-=-,正确; B. 32,,不是同类二次根式,不能加减,故本项错误;C. 32,,不是同类二次根式,不能加减,故本项错误;D. (4)(9)49366-⨯-=⨯==,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.7.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴a+b=8ab ,a-b=4ab ,∴a b a b +-=824ab ab=, 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.8.A解析:A【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.9.A解析:A【分析】根据二次根式有意义的条件:被开方数x -1≥0,解不等式即可.解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.11.B解析:B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A A选项错误;B===3,故B选项正确;C==C选项错误;D.2(2)2-==,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.12.A解析:A利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题13.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a =540,b =135时,即2=1; 故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a ,b )共有 7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a 、b 可能的取值.14.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观解析:220400x x x - 【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式===故答案为220400x x x -. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.17.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343n m m -=⎧⎨-=-⎩, 解得,73m n =⎧⎨=⎩, ∴7321.mn =⨯=故答案为21.19.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
江苏省灌云县2017-2018学年八年级数学下学期第一次月考试题考试时间:100分钟试卷总分:150分一、选择题:1.如图图形中,既是轴对称图形又是中心对称图形的是(▲)A. B. C. D.2.为了解某县八年级8800名学生的视力情况,从中抽查了100名学生的视力情况,对于这个问题,下面说法中正确的是(▲)A.8800名学生是总体 B.每个学生是个体C.100名学生是所抽取的一个样本 D.100名学生的视力情况是所抽取的一个样本3.小沂在梳理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有一个共同的性质,这条性质是对角线(▲)A.互相平分B.相等C.互相垂直D.平分一组对角4.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则 ( ▲ )A.P1=1,P2=1 B.P1=0,P2=1C.P1=0,P2= D.P1=P2=5.菱形具有而矩形不一定具有的性质是(▲)A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补6.若平行四边形的一边长是12cm,则这个平行四边形的两条对角线长可以是(▲)A.5cm和7cm B.20cm和30cm C.8cm和16cm D.6cm和10cm7.如图,正方形ABCD的边长为4,点E在对角线B D上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(▲)A.1 B.C.4﹣2D.3﹣48.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE ⊥BF ;(3)AO=OE ;(4)中正确的有( ▲ ) A .4个 B .3个 C .2个D .1个二、填空题:9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球, 是红球的可能性▲选填(“大于”“小于”或“等于”)是白球的可能性.10.如图,在四边形ABCD 中,已知AB ∥DC ,AB=DC .在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是▲.(填上你认为正确的一个答案即可) 11.如图是某足球队全年比赛情况统计图,根据图中信息,该队全年胜了▲场.(10题图)(11题图)12.某射击运动员在相同的条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次“射中9环以上”的概率是▲. 13.矩形一个角的平分线分矩形一边成2cm 和3cm ,则这个矩形的面积为▲.14.如图,矩形ABCD 中,AB=6,BC=8,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为▲.15.如图,在△ABC 中,AB=AC ,将△ABC 绕点C 旋转180°得到△FEC ,连接AE 、BF .当∠ACB 为▲度时,四边形ABFE 为矩形.CD E(14题图)(15题图)(16题图)16.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE 为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=▲.三、解答题:(共9大题,共94分)17.(本题8分)如图,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD 的周长.18.(本题8分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.19.(本题10分)我校为了解“课程选修”的情况,对报名参加“艺术欣赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇形统计图中“艺术欣赏”部分的圆心角是度;(2)请把这个条形统计图补充完整;(3)现校共有1200名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.20.(本题10分)某班数学课代表小华对本班上学期期末考试数学成绩作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:根据上述信息,完成下列问题:(1)频数、频率统计表中,a=;b=;(2)请将频数分布直方图补充完整;(3)若成绩在79.5分以上为优秀,则该班优秀人数是多少?21.(本题10分)如图所示,已知在平行四边形ABCD中,BE=DF求证:AE=CF.23.(本题10分)如图,已知菱形ABCD的对角线相交于O,延长AB至E,使BE=AB,连结CE。
2017-2018学年江苏省南京市八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B. C.D.2.(2分)如果把分式2xx+y中的x和y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的1 3倍C.缩小为原来的16倍D.不变3.(2分)某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.调查了10名老年人的健康状况C.在医院调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人健康状况4.(2分)下列事件中,属于确定事件的个数是()(1)打开电视,正在播放广告.(2)投掷一枚普通的骰子,掷得的点数小于10.(3)射击运动员射击一次,命中10环.(4)在一个只装有红球的袋子中摸出白球.A.1 B.2 C.3 D.45.(2分)下列计算错误的是()A.√12÷√43=3 B.(1﹣√2)2=3﹣2√2C.√(3−π)2=3﹣πD.(﹣5√2+3√5)(﹣5√2﹣3√5)=56.(2分)如图,AD是△ABC是角平分线,E、F分别是边AB、AC的中点,连接DE、DF,要使四边形AEDF是菱形还需要添加一个条件,这个条件不可能是()A .AD ⊥BCB .AB=AC C .AD=BCD .BD=DC二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.(2分)使式子x−1x+2有意义的x 的取值范围是 . 8.(2分)分式2ab ,1a 2b ,3abc的最简公分母是 . 9.(2分)化简√25的结果是 .10.(2分)如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为 .11.(2分)已知点A (3,y 1)、B (m ,y 2)在反比例函数y =6x 的图象上,且y 1>y 2.写出满足条件的m 的一个值,m 可以是 .12.(2分)若m 是√2的小数部分,则m 2+2m+1的值是 .13.(2分)一次函数y=kx+b 与反比例函数y =m n 中,若x 与y 的部分对应值如下表:x … ﹣4 ﹣2 ﹣1 1 2 4 … y=kx+b … ﹣1 1 2 4 5 7 … y =mx…﹣1﹣2﹣4421…则不等式mx>kx +b 的解集是 .14.(2分)课本上,在画y =6x 图象之前,通过讨论函数表达式中x ,y 的符号特征以及取值范围,猜想出y =6x 的图象在第一、三象限.据此经验,猜想函数y =1x2的图象在第 象限.15.(2分)如图,矩形ABCD中,AB=4,BC=6,E是BC上一点(不与B、C重合),点P 在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是.16.(2分)如图,将△ABC绕点B逆时针旋转60°得△DBE,连接CD,若AB=AC=5,BC=6,则CD= .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)(2√12−3√13)×√6.(2)23√9x−(6√x4+2√x)(x>0).18.(8分)解方程:(1)3xx−3=1+13−x.(2)x2﹣6x+2=0(用配方法).19.(8分)先化简,再求值:(1+1x2−1)÷x2x+1,其中x是一元二次方程x2﹣2x﹣2=0的正数解.20.(8分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求该反比例函数的表达式.(2)当气体体积为1m3时,气球内气体的气压是多少?(3)当气球内的气压大于200kPa时,气球将爆炸,为确保气球不爆炸,气球内气体的体积应不小于多少?21.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?22.(8分)已知:关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0.(1)若这个方程有实数根,求k的取值范围.(2)若此方程有一个根是1,求k的值.23.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.24.(8分)如图,四边形ABCD 为矩形,O 为AC 中点,过点O 作AC 的垂线分别交AD 、BC 于点E 、F ,连接AF 、CE . (1)求证:四边形AFCE 是菱形. (2)若AC=8,EF=6,求BF 的长.25.(7分)某学习要添置一批圆珠笔和签字笔,计划用200元购买圆珠笔,用280元购买签字笔.已知一支签字笔比一支圆珠笔贵1元.该学校购买的圆珠笔和签字笔的数量能相同吗? (1)根据题意,甲和乙两同学先假设该学校购买的圆珠笔和签字笔的数量能相同,并分别列出的方程如下:200x =280x+1;280y −200y=1,根据两位同学所列的方程,请你分别指出未知数x ,y 表示的意义:x 表示 ;y 表示 .(2)任选其中一个方程说明该学校购买的圆珠笔和签字笔的数量能否相同.26.(10分)如图,矩形AOCB 的顶点B 在反比例函数y =kx (k >0,x >0)的图象上,且AB=3,BC=8.若动点E 从A 开始沿AB 向B 以每秒1个单位长度的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t 秒. (1)求反比例函数的表达式.(2)当t=1时,在y 轴上是否存在点D ,使△DEF 的周长最小?若存在,请求出△DEF 的周长最小值;若不存在,请说明理由.(3)在双曲线上是否存在一点M ,使以点B 、E 、F 、M 为顶点的四边形是平行四边形?若存在,请直接写出满足条件t 的值;若不存在,请说明理由.27.(9分)(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD的面积.小明发现四边形ABCD的一组领边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)如果把分式2xx+y中的x和y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的1 3倍C.缩小为原来的16倍D.不变【分析】根据分式的性质,可得答案.【解答】解:把x和y都扩大3倍后,原式为3⋅2x3x+3y=3⋅2x3(x+y),约分后仍为原式,分式值不变,故选D.【点评】本题考查了分式的基本性质,利用分式的基本性质是解题关键.3.(2分)某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.调查了10名老年人的健康状况C.在医院调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人健康状况【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、调查不具代表性,故A错误;B、调查不具广泛性,故B错误;C、调查不具代表性,故C错误;D、调查具有广泛性、代表性,故D正确;故选:D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.4.(2分)下列事件中,属于确定事件的个数是()(1)打开电视,正在播放广告.(2)投掷一枚普通的骰子,掷得的点数小于10.(3)射击运动员射击一次,命中10环.(4)在一个只装有红球的袋子中摸出白球.A.1 B.2 C.3 D.4【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:(1)打开电视,正在播放广告为随机事件.(2)投掷一枚普通的骰子,掷得的点数小于10是必然事件.(3)射击运动员射击一次,命中10环为随机事件.(4)在一个只装有红球的袋子中摸出白球为不可能事件,故确定事件为(2)(4),故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2分)下列计算错误的是()A.√12÷√43=3 B.(1﹣√2)2=3﹣2√2C.√(3−π)2=3﹣πD.(﹣5√2+3√5)(﹣5√2﹣3√5)=5【分析】根据各个选项中的式子可以计算出正确的结果,从而可以判断各个选项是否正确.【解答】解:∵√12÷√43=2√3×√32=3,故选项A正确,∵(1−√2)2=1−2√2+2=3−2√2,故选项B正确,∵√(3−π)2=π−3,故选项C错误,∵(﹣5√2+3√5)(﹣5√2﹣3√5)=(−5√2)2−(3√5)2=50−45=5,故选项D正确,故选C.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.(2分)如图,AD是△ABC是角平分线,E、F分别是边AB、AC的中点,连接DE、DF,要使四边形AEDF是菱形还需要添加一个条件,这个条件不可能是()A.AD⊥BC B.AB=AC C.AD=BC D.BD=DC【分析】由条件可先判定四边形AEDF为平行四边形,再利用等腰三角形的判定即可求得答案.【解答】解:∵E、F分别为AB、AC的中点,∴DE、DF分别为△ABC的中位线,∴DE∥AF,DF∥AB,∴四边形AEDF为平行四边形,若AB=AC即可求得四边形AEDF为菱形,故B选项可以,当AD⊥BC时,则可求得∠ABD=∠ACD,即AB=AC,可得AE=AF,故A选项可以,当BD=DC时,可证得△ABD≌△ACD,可得AB=AC,故D选项可以,当AD=BC时,无法确定AB=AC,故C选项不可以,∴要使四边形AEDF是菱形还需要添加一个条件,这个条件不可能是C,故选C.【点评】本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子x−1x+2有意义的x 的取值范围是 x ≠﹣2 .【分析】根据分式有意义的条件即可求出答案. 【解答】解:由题意可知:x+2≠0, ∴x ≠﹣2故答案为:x ≠﹣2【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.8.(2分)分式2ab,1a b ,3abc的最简公分母是a 2bc .【分析】根据最简公分母的定义可以找出题目中各个式子的最简公分母,本题得以解决. 【解答】解:分式2ab,1a b,3abc的最简公分母是a 2bc ,故答案为:a 2bc .【点评】本题考查最简公分母,解答本题的关键是明确最简公分母的定义,会找几个式子的最简公分母.9.(2分)化简√25的结果是 √105.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式=√2√5=√105.故答案为:√105. 【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.(2分)如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为 0.600 .【分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【解答】解:依题意得击中靶心频率逐渐稳定在0.600附近,估计这名射手射击一次,击中靶心的概率约为0.600.故答案为:0.600.【点评】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.11.(2分)已知点A(3,y1)、B(m,y2)在反比例函数y=6x的图象上,且y1>y2.写出满足条件的m的一个值,m可以是 6 .【分析】反比例函数y=6x 的图象位于一三象限,由y1=63=2、y2=6m及y1>y2,可得2>6m,解得m<0或m>3.【解答】解:∵点A(3,y1),B(m,y2)在y=6x的图象上,∴y1=63=2,y2=6m.∵y1>y2.∴2>6m ,解得:m<0或m>3,∴在m<0或m>3内可取m=6,故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上任意两点函数的大小.12.(2分)若m是√2的小数部分,则m2+2m+1的值是 2 .【分析】先估算出√2的大小,从而得到m的值,最后代入计算即可.【解答】解:由题m是√2的小数部分,√2≈1.414,所以m=√2﹣1.∵m2+2m+1=(m+1)2,代入m=√2﹣1.原式=(√2﹣1+1)2=2. 故答案为:2.【点评】本题主要考查的是估算无理数的大小,求得m 的值是解题的关键.13.(2分)一次函数y=kx+b 与反比例函数y =mn 中,若x 与y 的部分对应值如下表:x … ﹣4 ﹣2 ﹣1 1 2 4 … y=kx+b… ﹣1 1 2 4 5 7 … y =m x…﹣1﹣2﹣4421…则不等式mx>kx +b 的解集是 x <﹣4或0<x <1 .【分析】由表得出直线和双曲线的交点,画出直线和双曲线的大致图象,由m x>kx +b 知反比例函数图象在一次函数图象上方,结合图象可得答案.【解答】解:由表可知y=kx+b 与y =mx 交于点(﹣4,﹣1)和点(1,4),用描点法可得出二者的大致图象.若m x>kx +b ,则反比例函数图象在一次函数图象上方,由函数图象可知解集为x <﹣4或0<x <1, 故答案为:x <﹣4或0<x <1.【点评】本题考查了一次函数和反比例函数的交点问题,给出相应的函数值,求自变量的取值范围应该从交点入手思考.14.(2分)课本上,在画y =6x 图象之前,通过讨论函数表达式中x ,y 的符号特征以及取值范围,猜想出y =6x 的图象在第一、三象限.据此经验,猜想函数y =1x2的图象在第 一、二象限.【分析】分两种情况:x >0时;x <0时;进行讨论,由各象限点的坐标特征可求函数y =12的图象所在象限.【解答】解:x >0时,y =1x 2>0.此时函数在第一象限. x <0时,y =1x 2>0.此时函数在第二象限. 故函数y =1x 2的图象在第一、二象限. 故答案为:一、二.【点评】考查了反比例函数的性质,反比例函数的图象,关键是熟悉各象限点的坐标特征,注意分类思想的运用.15.(2分)如图,矩形ABCD 中,AB=4,BC=6,E 是BC 上一点(不与B 、C 重合),点P 在边CD 上运动,M 、N 分别是AE 、PE 的中点,线段MN 长度的最大值是 √13 .【分析】由条件可先求得MN=12AP ,则可确定出当P 点运动到点C 时,PA 有最大值,即可求得MN 的最大值. 【解答】解:∵M 为AE 中点,N 为EP 中点, ∴MN 为△AEP 的中位线,∴MN=12AP .若要MN 最大,则使AP 最大.∵P 在CD 上运动,当P 运动至点C 时PA 最大, 此时PA=CA 是矩形ABCD 的对角线, ∴AC=√42+62=2√13,∴MN 的最大值=12AC=√13,故答案为:√13.【点评】本题主要考查矩形的性质和三角形中位线定理,由条件确定出当MN有最大值时P 点的位置是解题的关键.16.(2分)如图,将△ABC绕点B逆时针旋转60°得△DBE,连接CD,若AB=AC=5,BC=6,则CD= 4+3√3.【分析】连接CE,设BE、CD交于点O.先判定△DEC≌△DBC(SSS),得到∠1=∠2.再判定△DEO≌△DNO(SAS),即可得出∠DOE=∠DOB=90°,进而得到等腰△BDE中,O为BE中点,即OE=12BE=3,最后根据勾股定理求得DO,CO的长即可.【解答】解:如图,连接CE,设BE、CD交于点O.由旋转得BE=BE=6,∵∠CBE=60°,∴△CBE为等边三角形,∴CE=CB,∵△BDE中,DE=DB,∴△DEC和△DBC中,{DE=DB EC=BC DC=DC.∴△DEC≌△DBC(SSS),∴∠1=∠2.又∵△DEO和△DBO中,{DE=DB ∠1=∠2 DO=DO,∴△DEO≌△DNO(SAS).∴∠DOE=∠DOB=90°,∴等腰△BDE中,O为BE中点,∴OE=12BE=3,∴Rt△DOE中,DO=√52−32=4,Rt△COE中,CO=√62−32=3√3.∴DC=DO+CO=4+3√3.故答案为:4+3√3.【点评】本题考查了旋转的性质,等边三角形的判定和性质,全等三角形的判定和性质以及勾股定理的运用,解本题的关键是判断出DC是线段BE的垂直平分线.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)(2√12−3√13)×√6.(2)23√9x−(6√x4+2√x)(x>0).【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=2√12×6﹣3√13×6=12√2﹣3√2=9√2;(2)原式=2√x﹣3√x﹣2√x=﹣3√x.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解方程:(1)3xx−3=1+13−x.(2)x 2﹣6x+2=0(用配方法).【分析】(1)先把分式方程化为整式方程3x=(x ﹣3)﹣1,然后解整式方程得x=﹣2,然后进行检验确定原方程的解;(2)利用配方法得到(x ﹣3)2=7,然后利用直接开平方法求解. 【解答】解:(1)两边同乘以x ﹣3得,3x=(x ﹣3)﹣1, 解得x=﹣2,检验:x=﹣2时,x ﹣3≠0. 所以x=﹣2是原方程的解. (2)x 2﹣6x+9=7, (x ﹣3)2=7, x ﹣3=±√7,所以x 1=3+√7,x 2=3﹣√7.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解分式方程.19.(8分)先化简,再求值:(1+1x 2−1)÷x 2x+1,其中x 是一元二次方程x 2﹣2x ﹣2=0的正数解.【分析】先求出一元二次方程x 2﹣2x ﹣2=0的解,再根据分式混合运算的法则把原式进行化简,把x 的值代入进行计算即可.【解答】解:原式=x 2x −1⋅x+1x =1x−1,化简方程得,(x ﹣1)2=3,解方程得,x 1=1+√3,x 2=1−√3, 取正数解,则将x =1+√3代入原式,原式=√33.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(8分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. (1)求该反比例函数的表达式.(2)当气体体积为1m 3时,气球内气体的气压是多少?(3)当气球内的气压大于200kPa 时,气球将爆炸,为确保气球不爆炸,气球内气体的体积应不小于多少?【分析】(1)设出反比例函数解析式,把A 坐标代入可得函数解析式; (2)把v=1代入(1)得到的函数解析式,可得p ; (3)把P=200代入得到V 即可.【解答】解:(1)设ρ=k v,由题意知120=k0.8, 所以k=96,故ρ=96v(v >0);(2)当v=1m 3时,ρ=961=96,∴气球内气体的气压是96kPa ;(3)当p=200kPa 时,v=96200=1225. 所以为了安全起见,气体的体积应不少于1225m 3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.21.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200 名同学;(2)条形统计图中,m= 40 ,n= 60 ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72 度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m 的值;(3)利用360°乘以对应的百分比即可求解;(4)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:40200×360°=72°,故答案为:72;(4)由题意,得5000×30200=750(册).答:学校购买其他类读物750册比较合理.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.22.(8分)已知:关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0.(1)若这个方程有实数根,求k的取值范围.(2)若此方程有一个根是1,求k的值.【分析】(1)根据方程有实数根结合根的判别式,即可得出△=﹣8k+24≥0,解之即可得出k 的取值范围;(2)将x=1代入原方程,解之即可求出k值.【解答】解:(1)∵关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0有实数根,∴△=[﹣2(k﹣2)]2﹣4(k2﹣2k﹣2)=﹣8k+24≥0,解得:k≤3.(2)将x=1代入原方程得1﹣2(k﹣2)+k2﹣2k﹣2=k2﹣4k+3=(k﹣1)(k﹣3)=0,解得:k1=1,k2=3.【点评】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)根据方程有实数根,找出△=﹣8k+24≥0;(2)将x=1代入原方程求出k值.23.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×√10=4√10;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.24.(8分)如图,四边形ABCD为矩形,O为AC中点,过点O作AC的垂线分别交AD、BC于点E、F,连接AF、CE.(1)求证:四边形AFCE是菱形.(2)若AC=8,EF=6,求BF的长.【分析】(1)由条件可先证四边形AFCE为平行四边形,再结合线段垂直平分线的性质可证得结论;(2)由菱形的性质可求得AE=CF=5,设BF=x,在Rt△ABF和Rt△ABC中,分别利用勾股定理可得到关于x的方程,可求得BF的长.【解答】(1)证明:∵O为AC中点,EF⊥AC,∴EF为AC的垂直平分线,∴EA=EC,FA=FC,∴∠EAC=∠ECA,∠FAC=∠FCA.∵AE∥CF,∴∠EAC=∠FCA,∴∠FAC=∠ECA,∴AF ∥CE ,∴四边形AFCE 平行四边形. 又∵EA=EC ,∴平行四边形AFCE 是菱形.(2)∵四边形AFCE 是菱形,AC=8,EF=6, ∴OE=3,OA=4, ∴AE=CF=5, 设BF=x ,在Rt △ABF 中,AB 2=AF 2﹣BF 2,在Rt △ABC 中,AB 2=AC 2﹣BC 2. ∴52﹣x 2=82﹣(x+5)2,解得x =75,∴BF =75.【点评】本题主要考查菱形的判定和性质,掌握菱形的判定方法和菱形的性质是解题的关键,在求BF 的长时,注意方程思想的应用.25.(7分)某学习要添置一批圆珠笔和签字笔,计划用200元购买圆珠笔,用280元购买签字笔.已知一支签字笔比一支圆珠笔贵1元.该学校购买的圆珠笔和签字笔的数量能相同吗? (1)根据题意,甲和乙两同学先假设该学校购买的圆珠笔和签字笔的数量能相同,并分别列出的方程如下:200x =280x+1;280y −200y=1,根据两位同学所列的方程,请你分别指出未知数x ,y 表示的意义:x 表示 圆珠笔的单价 ;y 表示 所购圆珠笔(签字笔)的数量 . (2)任选其中一个方程说明该学校购买的圆珠笔和签字笔的数量能否相同.【分析】(1)由一支签字笔比一支圆珠笔贵1元且该学校购买的圆珠笔和签字笔的数量能相同,即可得出x 、y 表示的意义;(2)选第一个分式方程,解之并检验后即可得出结论.【解答】解:(1)∵一支签字笔比一支圆珠笔贵1元,该学校购买的圆珠笔和签字笔的数量能相同,∴x 表示圆珠笔的单价,y 表示所购圆珠笔(签字笔)的数量. 故答案为:x 表示圆珠笔的单价;y 表示所购圆珠笔的数量.(2)选第一个分式方程200x =280x+1,去分母得:200(x+1)=280x ,解得:x=52,经检验,x=52为方程的解,符合题意.答:该校购买的圆珠笔和签字笔的数量能相同.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据相等的量找出x 、y 表示的意义;(2)熟练掌握解分式方程的方法.26.(10分)如图,矩形AOCB 的顶点B 在反比例函数y =k x (k >0,x >0)的图象上,且AB=3,BC=8.若动点E 从A 开始沿AB 向B 以每秒1个单位长度的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t 秒. (1)求反比例函数的表达式.(2)当t=1时,在y 轴上是否存在点D ,使△DEF 的周长最小?若存在,请求出△DEF 的周长最小值;若不存在,请说明理由.(3)在双曲线上是否存在一点M ,使以点B 、E 、F 、M 为顶点的四边形是平行四边形?若存在,请直接写出满足条件t 的值;若不存在,请说明理由.【分析】(1)根据AB 与BC 的长,且B 为第一象限角,确定出B 的坐标,代入反比例函数解析式求出k 的值,即可确定出反比例解析式;(2)运动1秒时,在y 轴上存在点D ,使△DEF 的周长最小,理由为:作出E 关于y 轴的对称点E′,连接E′F,与y 轴交于点D ,连接DE ,EF ,此时△DEF 周长最小,求出周长最小值即可;(3)存在,若四变形BEMF 为平行四边形,则有三种可能,已知E (t ,8),F (3,8﹣2t ),0<t ≤3.。
江苏省靖江市 2017--2018学年八年级数学下学期第一次独立作业试
题
(考试时间:120分钟 满分:150分)
一.选择题:(本大题共 6小题,每小题 3分,共 18分)
1. 下列标志图中,既是轴对称图形,又是中心对称图形的是 ( )
2. 下列说法中,正确的是 ( )
A.“打开电视,正在播放江苏新闻节目”是必然事件
B.某种彩票中奖概率为 10%是指买十张一定有一张中奖
C.神舟飞船发射前需要对零部件进行抽样调查
D.了解某种节能灯的使用寿命适合抽样调查
3.下列各式: a 2 b , x 3 x , 5 y ,
aa b
b
1
,
(x
y
)
中,是分
式的共有
( )
m
A.1个 B.2个 C.3个 D.4个
4. 能判定四边形 ABCD为平行四边形的题设是( )
A. AB∥CD,AD=BC B. AB=CD,AD=BC C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
5.如图,矩形纸片 ABCD中,AB=4,BC=6,将△ABC沿 AC折叠,使点 B落在点 E处,CE交 AD
于点 F,则 DF的长等于( )A、 B、 C、 D、
6. 如图,矩形 ABCD 中, AB 3,BC 5.过对角线交点O 作OE AC 交 AD 于 E,则
AE
的 长 是 (
) A 1..6
B.2.5 C.3
D3..4
第 5题图 第 6题图 第 13题图
二、填空题:(本大题共 10小题,每空 3分,共 30分)
7.要使 x 2 1- 2x 有意义,x的取值范围是_____________.
1 和 4 2 m
可以合
并. 8.当 = 时,最简二次根式
2m 1
2
9.一袋中有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球是白球的概率是 .
10.在平行四边形 ABCD 中,若 B D 100 ,则 A .
11.若分式
x
1
2
2
x -1
的值为零,则 x=________.
2x m
12.当 m= 时,关于 x的分式方程
-1
无解.
x -3
13.如图,□ABCD周长为 16cm,AC、BD相交于点 O,OE⊥AC交 AD于 E,则△DCE周长为
14.如 图 , 将 矩 形 ABCD绕 点 A顺 时 针 旋 转 到 矩 形 A’B’C’D’的 位 置 , 旋 转 角 为
.若,则 度.
B’
A D
D’
B C
1
C’
第 14题图 第 15题图 第 16题图
15.已知:如图,矩形 ABCD的对角线 AC、BD相交于点 O,AE平分 BAD,交 BC于 E, CAE=15°,
则 BOE= °.
16.在矩形 ABCD 中, AB 1, AD 3 , AF 平分 DAB ,过 C 点作 CE BD 于 E ,
延长 AF 、 EC 交于点 H ,下列结论中:① AF FH ;② BO BF ;③ CA CH ;④
BE 3ED
,正确的序号是
三.解答题:
17. 计算:(本大题共 4小题,每题 5分,共 20分)
(1) ÷ ﹣ × + (2)
18 3 2 1 2
9
0 2
2
(3) (3 2 2 3)2 (4) (x>0,y>0)
2
x 1 2x
1
x
2
18.(本题 7分)先化简再计算: ,其中
x
2 1
x x
2
x
19.解方程:(本大题共 2小题,每题 5分,共 10分)
(1)
1 64
x
2
5x - 4 4x
10
1
(2)
x - 2 3x -6
20.(8分) 已 a 5 2,b 5 2 ,求下列各式的值:
(1)
a
2
b
2
1 (2) a 1
b
21.(本题 8分)从今年起,我市生物和地理会考实
施改革,考试结果以等级形式呈现,分 A、B、C、D四
个等级.某校八年级为了迎接会考,进行了一次模拟
考试,随机抽取部分学生的生物成绩进行统计,绘制
成如下两幅不完整的统计图.
(1)这次抽样调查共抽取了 名学生的生物成绩.扇形统计图中,D等级所对应
的扇形圆心角度数为 °;
(2)将条形统计图补充完整;
(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?
22.(本题 7分)如图,在正方形网格中,每个小正方形的边长为 1个
单位长度.平面直角坐标系 xOy的原点 O在格点上,x轴、y轴都在格
线上.线段 AB的两个端点也在格点上.
(1)若将线段 AB绕点 O逆时针旋转 90°得到线段 A1B1,试在图中画
出线段 A1B1.
(2)若线段 A2B2与线段 A1B1关于 y轴对称,请画出线段 A2B2.
(3)若点 P是此平面直角坐标系内的一点,当点 A、B1、B2、P四点围成的四边形为平行四边
形时,请你直接写出点 P的坐标.
23.(本题 10分)在□ABCD中,过点 D作 DE⊥AB于点 E,点 F在边 CD上,DF=BE,连接 AF,BF.
(1)求证:四边形 DEBF是矩形;
(2)若 AF平分∠DAB,AE=3,BF=4,求□ABCD的面积.
3
24.(本题 10分)某商家预测一种衬衫能畅销市场,就用 12000元购进了一批这种衬衫,上市
后果然供不应求,商家又用了 26400元购进了第二批这种衬衫,所购数量是第一批购进量的 2
倍,但每件进价贵了 10元,该商家购进的第一批衬衫是多少件?
25. (本题 10分)如图,四边形 ABCD的对角线 AC⊥BD于点 E,
AB=BC,F为四边形 ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.
(1)求证:四边形 DBFC是平行四边形;
(2)如果 BC平分∠DBF,∠CDB=45°,BD=2,求 AC的长.
26.(本题 12分)如图,正方形 ABCO的边 OA、OC在坐标轴上,点 B坐标为(6,6),将正方
形 ABCO绕点 C逆时针旋转角度α(0°<α<90°),得到正方形 CDEF,ED交线段 AB于点 G,ED
的延长线交线段 OA于点 H,连 CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段 HG、OH、BG之间的数量关系,说明理由;
(3)连结 BD、DA、AE、EB得到四边形 AEBD,在旋转过程中,四边形 AEBD能
否为矩形?如果能,请求出点 H的坐标;如果不能,请说明理由.
4
2017-2018学年度第二学期
八年级数学第一次独立作业答题卷
(考试时间:120分钟 满分:150分)
1 2 3 4 5 6
二、填空题:(每空 3分,共 30分)
7.____________ 8.____________ 9. 10.__________ 11.___________
12._____________ 13.____________ 14._____________15.__________ 16.____________
三、解答题:
17.( 20分 ) 计 算 : ( 1) ÷ ﹣ × + ( 2)
9
0 2
18 3 2 1 2
2
(3) (3 2 2 3)2 (4) (x>0,y>0)
x 1 2x
1
2
18.(7分)先化简再计算:
x
x
2
x
x
,其中
x
2
1
19.(10分)解方程:
12 64
12
64
x
(1)
5x - 4 4x
10
1
(2)
x - 2 3x -6
20.(8分)
5