三年级第十讲等差数列全解
- 格式:ppt
- 大小:2.16 MB
- 文档页数:14
高三等差数列知识点随着学业的逐渐深入,高三学生们开始接触到更加复杂的数学知识点。
其中,等差数列是一个非常重要的概念。
在本文中,我们将深入探讨高三等差数列的相关知识点,帮助学生们更好地理解和应用这一概念。
一、等差数列的定义和性质等差数列是指一个数列中的每个相邻两项之间的差是相等的。
具体来说,对于一个等差数列{a₁,a₂,a₃,...,an},其通项公式为an = a₁+(n-1)d,其中a₁为首项,n为项数,d为公差。
等差数列中的每一项都可以通过首项与公差来确定。
利用通项公式,我们可以很方便地求解等差数列中任意一项的值。
同时,我们还可以通过项数来确定等差数列的总和,这是求解一系列数值累加问题时非常有用的工具。
二、等差数列的常见问题和方法在高三数学考试中,等差数列的问题屡见不鲜。
以下是一些常见的等差数列问题及其解决方法。
1. 求解等差数列的前n项和当我们需要计算等差数列前n项的和时,可以利用以下公式:Sn = (a₁+an) * n / 2其中,Sn表示前n项的和,a₁表示首项,an表示第n项。
2. 求解等差数列中某一项的值对于需要求解等差数列中任意一项的问题,我们可以使用通项公式an = a₁+(n-1)d来计算。
3. 求解等差数列中项数或公差有时候,题目给出等差数列中某两项的值,让我们求解项数或公差。
这时,我们可以利用等差数列的通项公式和公式an =a₁+(n-1)d来建立方程,从而解出未知数。
三、等差数列的应用等差数列的应用非常广泛,不仅仅局限于数学课堂。
以下是一些常见的等差数列应用场景。
1. 计算利润在商业领域中,等差数列可以用来计算一项产品或服务的利润。
通过观察销售额在不同时间段的等差数列变化规律,可以更好地预测未来的盈利情况。
2. 编程中的应用在计算机编程中,等差数列的概念经常被使用。
例如,循环控制结构中的索引变量往往是按照等差数列的方式递增或递减。
3. 数学建模等差数列的概念在数学建模中也得到了广泛应用。
等差数列知识点总结等差数列是数学中常见的一种数列,它具有一定的规律性和特点。
在学习数学的过程中,掌握等差数列的知识对于理解数学的整体框架和提高解题能力都具有重要意义。
本文将对等差数列的相关知识点进行总结,以便读者更好地掌握这一部分内容。
首先,我们来了解一下等差数列的定义。
等差数列是指一个数列,其中相邻两项的差值都相等。
即对于数列{a1, a2, a3, ...},若满足a2 a1 = a3 a2 = ... = d,其中d 为公差,则称该数列为等差数列。
公差d的值可以为正、负或零,它决定了数列中相邻项之间的间隔大小和方向。
在等差数列中,我们常常需要计算数列的第n项和前n项和。
对于等差数列{a1, a2, a3, ...},其第n项an的计算公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
而前n项和Sn的计算公式为Sn = n/2 (a1 + an),这个公式的推导过程可以通过数学归纳法来证明。
另外,等差数列还有一个重要的性质,那就是任意三项成等差数列。
对于等差数列{a1, a2, a3, ...},任取其中三项a1, ak, an,若满足ak a1 = an ak,则这三项构成等差数列。
这一性质在解题过程中经常会被用到,可以帮助我们简化问题,减少计算量。
在实际问题中,等差数列也有着广泛的应用。
比如在日常生活中,我们经常会遇到一些成等差数列的情况,比如等差数列的数值模拟了某种变化规律,或者在金融领域中,利息的计算也涉及到等差数列的概念。
因此,掌握等差数列的知识对于我们理解和解决实际问题都具有重要意义。
总的来说,等差数列作为数学中的一个重要概念,具有着丰富的性质和应用。
通过本文的总结,相信读者对等差数列的相关知识已经有了更清晰的认识。
在学习数学的过程中,要善于运用所学的知识,灵活应用到实际问题中,不断提高自己的数学素养和解题能力。
希望本文能对读者有所帮助,谢谢阅读!。
一、 等差数列的概念1. 等差数列:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列。
1) 2、5、8、11、14……从第二项起,每一项比前一项大3,递增数列。
2) 100、95、90、85、80……从第二项起,每一项比前一项小5,递减数列。
2. 首项:一个数列的第一项,通常用1a 表示。
3. 末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
4. 项数:一个数列全部项的个数,通常用n 来表示。
5. 公差:等差数列每两项之间固定不变的差,通常用d 来表示。
6. 和:一个数列的前n 项的和,常用n S 来表示。
二、 等差数列的公式1. 通项公式:1) 递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 2) 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()3) 延伸公式:n m a a n m d -=-⨯(),n m >()2. 项数公式:项数=(末项-首项)÷公差+13. 求和公式:和=(首项+末项)⨯项数÷2理解:(以1239899100++++++ 为例)23498991001009998973212101101101101101101101+++++++=+++++++=+++++++ 和=1+和倍和和 (1001)1002101505050=+⨯÷=⨯=第八讲等差数列基础知识概述三、等差数列的中项定理1.对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;各项和等于中间项乘以项数。
2.对于任意一个项数为偶数的等差数列,中间两项的平均数等于所有项的平均数,也等于首项与末项的和;各项和等于中间两项的和乘以项数的一半。
例题精讲【例1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
等差数列三年级奥数题摘要:1.等差数列的概念和基本性质2.等差数列求和公式3.三年级奥数等差数列求和习题及答案4.提高等差数列求和题目的解题技巧正文:一、等差数列的概念和基本性质等差数列是指一个数列,其中每个相邻的元素之差相等。
等差数列的基本性质包括:1.等差数列中任意两个相邻元素的差值相等;2.等差数列中任意两个元素之差的值都是相同的;3.等差数列中元素的和与项数成正比。
二、等差数列求和公式等差数列求和公式是指将一个等差数列的所有元素相加得到的总和的计算公式。
等差数列求和公式为:S = n * (a1 + an) / 2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的第一个元素,an 表示等差数列的最后一个元素。
三、三年级奥数等差数列求和习题及答案1.习题:一个等差数列的前5 个元素分别为1, 3, 5, 7, 9,求这个等差数列的和。
答案:S = 5 * (1 + 9) / 2 = 252.习题:一个等差数列的前10 个元素分别为2, 4, 6, 8, 10, 12, 14, 16, 18, 20,求这个等差数列的和。
答案:S = 10 * (2 + 20) / 2 = 110四、提高等差数列求和题目的解题技巧1.观察题目中的已知条件,如元素个数、首项和末项等,确定等差数列的性质;2.利用等差数列求和公式,将已知条件代入公式计算;3.注意数列中可能出现的公差为0 的情况,此时等差数列的所有元素都相等,和为元素个数乘以任意一项。
通过以上提纲和正文内容,我们可以了解到等差数列的概念和基本性质,以及等差数列求和公式的应用。
同时,我们通过三年级奥数等差数列求和习题及答案,学会了如何利用等差数列求和公式解决实际问题。
计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 .三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和 即,和 (1001)100 2 10150 5050=+⨯÷=⨯=.四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲: 例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13= (3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85—1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如(1)式=(1+199)×199÷2=19900答案:(1)19900 (2)1160 (3)5355例3:一个等差数列2,4,6,8,10,12,14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8756⨯=答案:56例4:求1+5+9+13+17……+401该数列的和是多少.分析:这个数列的首项是1,末项是401,项数是(401-1)÷4+1=101,所以根据求和公式,可有:和=(1+401)×101÷2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+(61-1)×3=182根据求和公式:和=(2+182)×61÷2=5612答案:5612例6:把自然数依次排成“三角形阵”,如图。
(完整)三年级奥数等差数列小学三年级奥数专项练题《等差数列》【知识要点屋】1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。
2.特点:①相邻两项差值相等;②要么递增,要么递减。
3.名词:公差,首项,末项,项数★按一定次序排列的一列数叫做数列。
★数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;最后一个数叫末项。
★如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列。
★后项与前项的差就叫做这个数列的公差。
如:1,2,3,4,?是等差数列,公差是1;1,3,5,7,?是等差数列,公差是2;5,10,15,20,?是等差数列,公差是5.★由高斯的巧算可知,在等差数列中,由如下规律:通项公式:末项=首项+(项数-1)×公差第几项= 首项+(项数-1)×公差;项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2 = 平均数×项数平均数公式:平均数=(首项+末项)÷2(★★★)⑴一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;⑵一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。
(3)一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。
(★★)计算下面的数列和:⑴1+2+3+4+…+23+24+25=⑵1+5+9+13+…+33+37+41=(3)3+7+11+15+19+23+27+31=拓展练习:1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?2、一个等差数列的首项是6,第8项是55,公差是()。
2、(1)2、4、6、8、……、28、30这个等差数列有()项。
等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。
黄冈奥数金牌学校专题十等差数列知识归纳:1、若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
2、如果从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
例如:3、6、9、12、15、18、21、24、27、30、33这是一个首项为3,末项为33,项数为11,公差为3的数列。
3、有关公式:1-(项数-1)×公差1)×公差224、特别当等差数列的个数较少时:个数为奇数是:总和=中间数×个数首项=末项-(项数-1)×公差个数为偶数时:总和=(首项+末项)×个数的一半5、规律总结:前n个奇数的和:1+3+5+…+(2n-1)=n2前n个偶数的和:2+4+6+…+2n=n2+n例题讲析:例1、有一列数:5,8,11,14,……。
①求它的第100项;②求前100项的和。
③求前250项的平均数。
例2、计算下列数列的和①、1+3+5+7+…+99 ②、2+4+6+8+…+100 ③、21+23+25+27+…+99④、1998+1997-1996-1995+1994+1993-1992-1991+……198+197-196-195⑤、1+2+3-4-5-6+7+8+9-10-11-12+……+182+183 ⑥、1+2-3+4+5-6+7+8-9+…+97+98-99例3、写出数列:1,2,3,4,5,6, ……中,第n 个偶数和第n 个奇数。
例4、1971,1981,1991,2001,2011,…,2091,这几个数的和是多少?例5、在小于100的自然数中,被7除余3的数的和是多少?例6、从一点o 引出20条不重复的射线共形成多少个锐角?例7、下图有中的30个方格中各有一个数,每个格子中的数等于同一横行最左边一格和同一竖列最上面一格的数之和(如a=14+17=31)。
学习的重点、难点:求首项,求末项,求项数、求和。
知识点介绍:很多同学都知道这样的一个故事:大数学家高斯在很小的时候,就利用巧妙的算法计算出从1到100这100个自然数的总和。
想一想高斯为什么算得快呢?其实他就是利用了等差数列的规律性找到了极简便的求和方法。
如果你也掌握了这种算法,就能解决很多有趣的问题呢![学习过程]一. 什么是等差数列?1、观察下面的数列,并在括号中填上适当的数。
(1)4,8,12,16,(),(),……(2)100,90,80,(),(),50,40。
(3)5,9,13,17,(),(),……(4)2,5,8,11,14,(),()……思考:你发现这些数列有什么共同特点?相邻两项的差都是相等的。
这样的数列就叫做等差数列。
这个相等的差叫做“公差”,数列中的每一个数都称为“项”。
第一项称为“首项”,记作a1, 第二项记作a2,……排在第n位的叫第n项,也叫通项。
由给定的数列,寻求规律,求数列的通项,或填加所缺的项,是等差数列的基本训练。
2. 判断:数列中哪些是等差数列?若是请指明公差是几;若不是说明理由。
(例题板书)二. 等差数列项数和通项的计算:(一)已知等差数列3,6,9,12,……思路点拨:这个等差数列的首项和公差是一样的,这样的数列求通项和求项数有什么规律?1.这个数列的第10项是多少?第24项是多少?2.18是这个数列的第几项?42是这个数列的第几项呢?随堂练习:已知等差数列5、10、15、20、25、……1.这个数列的第20项是多少?第38项是多少?第61项是多少?2.45是这个数列的第几项?140是这个数列的第几项?(二)已知等差数列1,4,7,10,13,……思路点拨:这个等差数列我们要利用点数和段数的知识来进行计算,通项计算:首项+(项数—1)×公差项数计算:(末项—首项)÷公差+11、这个数列的第11项是多少?第25项是多少?2、19是这个数列的第几项?46是这个数列的第几项呢?随堂练习:已知等差数列3、8、13、18、23、……1、这个数列的第7项是多少?第15项是多少?第41项是多少?2、43是这个数列的第几项?103是这个数列的第几项?三、等差数列求和:(一)、求等差数列3,5,7,9,11,13,15 和 2、7、12、17、22、27、32、各自的和。
已知量2.2等差数列的前n项和1 •理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n 项和公式与二次函数的关系.(重点)2•熟练掌握等差数列的五个基本量a i, d, n, a n, S n之间的联系,能够由其中的任意三个求出其余的两个.(重点)1.等差数列的前n2.n n—1 d 2dS n= na i + —2—d=㊁门+ a i —2 n.d M0时,S n是关于n的二次函数,且无常数项.判断(正确的打“V”,错误的打“x”)(1) 公差为零的数列不能应用等差数列的前n项和公式.()(2) 数列{n2}可以用等差数列的前n项和公式求其前n项和S n.()(3) 若数列{a n}的前n项和为S n= an2+bn,则{a n}是等差数列.()【解析】(1)任何等差数列都能应用等差数列的前n项和公式.(2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式.(3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)x ⑵x (3)V[小组合作型]3(1) 已知等差数列{a n}中,a i =2,1d= —2,Si= —15, 求n 和a n;(2) 已知等差数列{a n}中,S5= 24,求a2 + a4;(3) 数列{a n}是等差数列,a i= 1,a n= —512, —1 022,求公差d;⑷已知等差数列{a n }中,a 2 + a 5= 19, S = 40,求a io .【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解, 另 外解题时要注意整体代换.3 n n —1 1【尝试解答】 (1)S n = n 2+2 •— 2 = — 15,整理得 n - 7n — 60= 0, 解得n = 12或n = —5(舍去),3 1所以 a 12= 2+ (12— 1)x — 2 = — 4.(2)设等差数列的首项为a 1,公差为d ,即 5a 1+ 10d = 24,所以 a 〔 + 2d =£, 所以 a 2 + a 4= 2(a 1 + 2d) = 2X 乍=譽n n — 1⑶因为 a n = a 1 + (n — 1)d , S n = na 1+ 2d ,又 a 1 = 1, a n = — 512, S n =— 1 022,1+ n — 1 d = — 512,① 所以 1n +qnn — 1 d =— 1 022,②把(n — 1)d = — 513代入②得1n + 刃(—513)= — 1 022,解得 n = 4,所以 d = — 171.a 1 + d + a 1 + 4d = 19,⑷由已知可得 5X 45a 1 + -^d = 40,解得 a 1 = 2, d = 3,则 S 5 = 5a 1 + 5X 5— 12d = 24,所以a io= a i + 9d= 2+ 9X 3= 29.等差数列中基本计算的两个技巧:(1) 利用基本量求值.等差数列的通项公式和前n项和公式中有五个量ai,d, n,a n和S n, —般是利用公式列出基本量a i和d的方程组,解出a i和d,便可解决问题•解题时注意整体代换的思想.(2) 利用等差数列的性质解题•等差数列的常用性质:若m+ n = p+ q(m, n,n a i + a np, q€ N+),贝U a m + a n = a p+ a q,常与求和公式S n= 2 结合使用.[再练一题]1. 等差数列中:(1) a i = 105, a n= 994, d= 7,求S n;(2) a n = 8n+ 2, d = 5,求S20;1(3) d= 3, n = 37, S n= 629,求a i 及a n.【解】(1)由a n= a i + (n- 1)d 且a i= 105, d= 7,得994= 105+ (n- 1)X 7,解得n= 128,n a i+ a n 128X 105+ 994=70 336.(2)van= 8n + 2,—a i= 10,又d = 5,20 X 20 - 1 20a i + X 5 = 20X 10+ 10X 19X 5= 1 150.1 ⑶将 d = 3,n = 37, S = 629代入 a n = a 1 + (n - 1)d ,a 1= 11, 解得a n = 23.为响应教育部下发的《关于在中 小学实施“校校通”工程的通知》 的要求,某市提出了实施“校校通”工程的总 目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网•据测 算,2011年该市用于“校校通”工程的经费为 500万元•为了保证工程的顺利 实施,计划每年投入的资金都比上一年增加 50万元•那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少?【精彩点拨】 将该实际问题转化为数列问题求解,由于每年投入资金都比n a 1 + a nS n = 2 ,得a n = a 1 + 12, 37 a+ a n 2 =上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】根据题意,从2011年〜2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n},其中,a i = 500, d= 50. 那么,到2020年(n= 10),投入的资金总额为10X 10—1S10= 10X 500+ 2 X 50= 7 250(万元),即从2011年〜2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1) 问题中所涉及的数列{a n}有何特征;(2) 是求数列{a n}的通项还是求前n项和;(3) 列出等式(或方程)求解.[再练一题]2. 如图1-2-2,一个堆放铅笔的V型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔?图1-2-2【解】由题意可知这个V型架自下而上各层的铅笔数组成等差数列,记为数列{a n},其中a i= 1, a i20 = 120.根据等差数列前n项和公式得S120 = 120X 1 + 1202 = 7 260.即V型架上共放着7 260支铅笔.[探究共研型]探究1设{a n}是等差数列,公差为d, S n是其前n项和,那么S m, ®m—S3m- S2m 也成等差数列吗?如果是,它们的公差是多少?【提示】由S m= a1 + a2+… • + a m,S2m—S m—a m+ 1 + a m + 2+ …+ a2m —a1 + md+ a2 + md+ …+ a m+ md—S m + m2d,I r 2同理S3m —S2m—a2m+ 1 + a2m + 2+ …+ a3m —S2m —S m+ m d,所以S m , S 2m — S m , S 3m — &m 也成等差数列,公差为 m 2d.探究2设S 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么b n 与12^1有怎样的关系?请证明之.a n 2a n a1 + a2n -1b n—2bn—b l + b 2n — 12n — 1 a 1 + a 2n —12 S 2n -12n — 1 b 1 + b 2n — 1 T 2n — 12(1) 等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3叫Si 7n + 2 a 5(2) 两个等差数列{a n }, {b n }的前n 项和分别为S 和T n ,已知讯—"n +3,求^ 的值.【精彩点拨】 ⑴利用S m , S 2m — S m , S3m — S^m 成等差数列求解.(2)利用前 n 项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】 ⑴在等差数列中,Sm,®m — S m,S 3m — &m 成等差数列,【提示】a n S2n— 1b n — T 2n 【证明】「30,70,S 3m - 100成等差数列,•'•2X 70= 30 + (S 3m — 100),.°S 3m = 210. a s 2a 5 9 a1 +a9 S 9 65 (2)b 5 = 2b 5= 9b i + b 9 = T ^=乜.巧妙应用等差数列前n 项和的性质 ⑴“片段和”性质.若{a n }为等差数列,前n 项和为S n ,则S n , S 2n — S n , S 3n — S 2n ,…构成公差 为n 2d 的等差数列.⑵项数(下标)的“等和”性质.(3) 项的个数的“奇偶”性质. {a n }为等差数列,公差为d.①若共有 2n 项,贝U S 2n = n(a n + a n +1);②若共有 2n + 1 项,贝U S 2n +1 = (2n + 1)a n +1 ; S 偶一S 奇=—a n +1 ; =S 奇 n 十i (4) 等差数列{a n }中,若 S n = m , S m = n(m M n),贝U S m+ n = — (m + n). (5) 等差数列{a n }中,若 S n = S m (m M n),贝U S m + n = 0.S n =n a i + a n 2=n a m + a n - m +1S 偶一 S 奇=nd ;S 偶 a n +1S 奇 a n[再练一题]3. 已知两个等差数列{a n }与{b n }的前n(n >1)项和分别是S n 和T n ,且S n : T n a 9=(2n + 1) : (3n — 2),求$的值.a 9 2a 9 a1 +a17b 9 2b9 b i + b i7a i + a i72X i7+ i_35_53X i7 — 2 — 49 — 7探究i 将等差数列前n 项和S n = na i + 丄d 变形为S 关于n 的函数后,该函数是怎样的函数?为什么?一 n n —i d 2 d【提示] 由于 S n = na i + 2 d = 2n 2 + a i — 2 n , 所以当d M 0时,3为关于n 的二次函数,且常数项为0.探究2类比二次函数的最值情况,等差数列的S n 何时有最大值?最小值? 【提示] 由二次函数的性质可以得出,当d >0时,S 有最小值;当d v 0 时,有最大值,且n 取值最接近对称轴的正整数时,S n 取得最值.[解]X 17 S 17b i + b i72X i7T i7在等差数列{a n}中,a io = 18,前5项的和—15.(1) 求数列{a n}的通项公式.(2) 求数列{a n}的前n项和的最小值,并指出何时取最小值.【精彩点拨】(1)直接根据等差数列的通项公式和前n项和公式列关于首项a i和公差d的方程,求得a1和d,进而得解;(2)可先求出前n项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.a1 + 9d = 18,【尝试解答】(1)由题意得 5 X 45a1 + —厂X d=—15,.'a n = 3n —12.n a1+an 1 2 一、3 7 2 147⑵ S n = 2 = 2(3 n —21n) = ?n — 2 —8•••当门=3或4时,前n项的和取得最小值S3= ®= —18.等差数列前n项和的最值问题的三种解法:⑴利用a n:当a i>0, d v 0时,前n项和有最大值,可由a n>0且a n+1<0, 求得n 的值;当a i v0, d>0,前n项和有最小值,可由a n<0且a n+i >0,求得n的值.d d(2) 利用S n:由S n=2n2+ a i — 2 n(d^0),利用二次函数配方法求得最值时n 的值.(3) 利用二次函数的图象的对称性.[再练一题]4. 在等差数列{a n}中,a i = 25, S i7= S9,求S n的最大值.【解】禾I」用前n项和公式和二次函数性质,由S i7= Sa得i7 925X i7+2(i7—i)d= 25X 9 + 2(9 —i)d,解得d= —2,•0 = 25 n+ 2(n—i)(—2)= —(n—i3)2+ i69,•••由二次函数性质,当n= i3时,S n有最大值i69.1.设3为等差数列{a n }的前n 项和,3 = 4a 3, a 7=- 2,则a 9=()A . - 6B .- 4C .- 2D . 28 a i + a s【解析】 S 8=2= 4(a 3 + a 6),又 S s = 4a 3,所以 a 6 = 0,又 a 7=- 2,所以 a 8=- 4, a 9=- 6. 【答案】 A2. 记等差数列前n 项和为3,若S 2= 4,9 = 20,则该数列的公差d 等于( )A . 2B . 3C . 6D . 72a i + d = 4,【解析】 由题意得4a i + 6d = 20,【答案】 B 3.在等差数列{a n }中,a i = 2,前三项和为15,则前6项和为()A . 57B . - 40C . - 57D . 40【解析】 由题意知 a 1 + a 2 + a 3= 15,—3a 2= 15, a 2 = 5, •'•d = a 2 — a 1 = 3,—a n = 3n - 1, 6 2+ 17 ••$= 2 = 57.1 a 1= 2,解得d = 3.【答案】A4.在等差数列{a n }中,已知a i = 2, d = 2,贝U S 2o = _________【解析】820= 20 a i + 20;19X d = 20X 2+ 2°;19X 2= 420.【答案】 4205. 等差数列{a n }中,a io = 30, a 20= 50. (1) 求通项公式a n ; (2) 若 S n = 242,求 n.【解】 (1)由 a n = a i + (n — 1)d , a io = 30, a 20= 50,a i + 9d = 30,得方程组a i + 19d = 50, a i = 12, 解得 d = 2, 所以 a n = 2n + 10.解得n = 11或n = — 22(舍去),所以n = 11.学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设S n 是等差数列{a n }的前n 项和,若a i + a 3+ a 5= 3,则S 5=( )A . 5B . 7C . 9D . 11【解析】 法一:^ai + a 5 = 2a 3,.°.a i + a 3 + a 5= 3a 3= 3,—a 3= 1, 5 a i + a 5 •'•85= 2 = 5a 3= 5,故选 A.⑵由 n n — 1S n = n a i + 2 d ,得 12n + n n —1 2"- X2 = 242,法二:tai + a 3 + a 5 = a i + (a i + 2d) + (a i + 4d) = 3a i + 6d = 3, •'a i + 2d = 1,5X 4.,S5 = 5a i + ~2~d = 5(a i + 2d) = 5,故选 A. 【答案】 A2•已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8= 4S 4,则 a io =()17 19 A.yB.qC . 10D . 12【解析】 t •公差为1,8X 8- 1.'S 8 — 8a 1 + 2 X 1 = 8a 1 + 28, S 4 = 4a 1 + 6. 1'•'S 8 — 4S 4,.8a 1 + 28 — 4(4a 1 + 6),解得 a 1 —㊁, 1 19.•010— a 1 + 9d — 2+ 9—㊁.故选 B. 【答案】 B3.在等差数列{a n }中,若S 9— 18, S n — 240, a n -4— 30,则n 的值为( )A . 14B . 15C . 16D . 17•'•n(2 + 30) — 480,. n — 15. 【答案】 B4. 设S n 是等差数列{a n }的前n 项和,若S 3— 3,则豊等于() 3 111 A 石% D.9【解析】 由题意S 3, S 6- S 3, S 9-S 6, S 12- S 9成等差数列.S 3 1 '•'S 6=3•不妨设 S 3= 1, S fc = 3,贝U S fc — S 3= 2,所以 S 9— S fc = 3,故 S 9= 6,二【解析】 S 9 — n a 1 + a n9 a 1 + a 9—9a 5 —18,所以 a 5 — 2, S n —n a 5 + a n -42—240,S12 —S9= 4,故S i2= 10,.鱼_ 3 -S2= 10.【答案】A5. 设等差数列{a n}的前n项和为S n,若a1_—11, a4 + a6_ —6,则当S n取得最小值时,n等于()A. 6B. 7C. 8D. 9【解析】设公差为d,由a4+ a6_2a5_ —6,得a5_ —3_a1 + 4d,解得d_2,n n—1 2••S_— 11 n+ 2x 2_ n2—12n,• ••当门_ 6时,S n取得最小值.【答案】A二、填空题6. 已知{a n}为等差数列,3为其前n项和.若a1_ 6, a3 + a5_0,贝U S6_【解析】'-a3+ a5_ 2a4,.°.a4_ 0.'•a1 _6, a4_a1 + 3d,:d_ —2.6x 6—1.'•S3_ 6a1+ d_ 6.【答案】67. _______ 已知{a n}是等差数列,Sn是其前n项和.若a1 + a2_ —3, S5_ 10,则a9 的值是.5 x 4 【解析】法一:设等差数列{a n}的公差为d,由S5_ 10,知S5_5a1+= d_ 10,得a1 + 2d_2, 即卩a1_2—2d.所以a2_a1 + d_2 —d,代入a1 + a2_ —3,化简得d2- -6d+ 9—0,所以 d —3, a1 —— 4.故a9 —a1+ 8d—— 4 + 24 —20.法二:5 a1+ a s设等差数列{a n}的公差为d,由S5—10,知2—5a3 —10,所以a3= 2.所以由a1+ a3—2a2,得a1—2a2—2,代入a1+ a2——3,化简得a2+ 2a2+ 1=0,所以a2—— 1.公差 d —a3 —a2 —2+ 1 —3,故a9 —a3+ 6d—2+ 18—20.【答案】208. 等差数列{a n}的前9项的和等于前4项的和,若a1 —1,a k + a4 —0,则k9X 8【解析】设{a n}的公差为d,由3—S4及a1—1得9X 1+〒X d —4X 14 X 3 1 1+ ~2~ X d ,所以d ——6 ,又a k + a4 —0 ,所以1 + k—1 X —石+11+ 4—1 X —6 —0, 即卩k—10.【答案】10三、解答题9. 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.【解】设等差数列{a n}的公差为d,前n项和为S n,则- n n—1S n—na1 + 2 d.10X 910a1 + 2~d—100,100X 99 100a1 + 2 d—10,11①X 10—②,整理得d——55,由已知得1 099代入①,得勿=110X 109所以 S 11O = 110a i + 2 ------ d 1 099 110X 109 11二110X100 + 2X - 501 099- 109X 11 =110 =— 110.100故此数列的前110项之和为一110.10. 已知等差数列{a n }中,a 1 = 9, a 4+ a 7= 0. (1) 求数列{a n }的通项公式;⑵当n 为何值时,数列{a n }的前n 项和取得最大值? 【解】(1)由 a 1 = 9, a 4+ a 7= 0, 得 a 1 + 3d + a 1 + 6d = 0,解得 d = — 2, • a n = a 1 + (n — 1)d —11 — 2n. (2) a 1 — 9, d —-2,n n — 1Sn — 9n + —2— (— 2)— — n 2 + 10n ——(n — 5)2 + 25,•••当n — 5时,S n 取得最大值.[能力提升]1.在项数为2n + 1项的等差数列{a n }中,所有奇数项的和为165,所有偶数 项的和为150,则n —( )A . 9B . 10C . 11D . 12【解析】•••等差数列有2n + 1项,又 a i + a 2n +1 = a 2 + a 2n , .躡 n +1165n + 1 •'S 奇— a 1 + a 2n +12 ,S 偶— n a 2 + a 2n冠=~n~ = 150,•'•n= 10.【答案】BA n 7n + 452. 已知两个等差数列{a n}与{b n}的前n项和分别为A n和B n, 且n+3,则使得a n为整数的正整数n的个数是()A. 2 B . 3C. 4 D . 5a n A2n-1 14n + 38 7n + 19 7n+ 1 + 12 12【解析】b"= = = = = 7 + ,.n= bn B2n-1 2n + 2 n+1 n+1 n+11,2,3,5,11.【答案】D3. 在等差数列{a n}中,d = 2, a n= 11, S n= 35,则a1等于________ .n n—1 n n—1【解析】因为Si= na1 + 2 d,所以35= na1+ 2 x2= na1 + n(n —1)①,又a n= a1+ (n—1) d= a1 + 2(n—1),••a + 2(n—1)= 11 ②,由①②可得a1 —2a1 —3= 0,解得a1 = 3或一 1.【答案】3或—14 .从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.(1) 记该款服装4月份日销售与销售天数n的关系为a n,求a n;(2) 求4月份的总销售量;(3) 按规律,当该商场销售此服装超过1 200件时,社会上就流行,而且销售量连续下降,且日销售低于100件时,则流行消失,问:该款服装在社会上流行 是否超过10天?【解】(1)从4月1日起每天销售量依次组成数列{a n } , (n € {1,2 ,…,30}) 依题意,数列a 1,a 2,…,a 12是首项为10,公差为15的等差数列, •'a n = 15n — 5(1 w n W 12).a 13,a 14,a 15,…,a 3o 是首项为 a 13= a 12—10= 165,公差为一10的等差数 列,••a n = 165+ (n — 13)(— 10)=— 10n + 295(13= n < 30),15n — 51W n W 12,n € N + ,• 'a n =—10n + 295 13<n W 30,n € N + .(2)4月份的总销售量为 18X 17X — 10+ 18X 165+ 2 = 2 550(件 ),⑶4月1日至4月12日销售总数为39 ••4月12日前还没有流行.由—10n + 295< 100得n >{, •••第20天流行结束,故该服装在社会上流行没有超过 10天.12 10+ 175212 a 1 + a 122 12 10+ 175=1 110< 1 200,2.2等差数列的前n 项和1 •理解并掌握等差数列的前n 项和公式及其推导过程,体会等差数列的前 n 项和公式与二次函数的关系.(重点)2•熟练掌握等差数列的五个基本量 a i , d , n , a n , S n 之间的联系,能够由 其中的任意三个求出其余的两个.(重点)1.等差数列的前n2.已知量n n—1 d 2dS n= na i + —2—d=㊁门+ a i —2 n.d M0时,S n是关于n的二次函数,且无常数项.判断(正确的打“V”,错误的打“x”)(1) 公差为零的数列不能应用等差数列的前n项和公式.()(2) 数列{n2}可以用等差数列的前n项和公式求其前n项和S n.()(3) 若数列{a n}的前n项和为S n= an2+bn,则{a n}是等差数列.()【解析】(1)任何等差数列都能应用等差数列的前n项和公式.(2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式.(3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).[小组合作型]3(1) 已知等差数列{a n}中,a i =2,1d= —2,Si= —15, 求n 和a n;(2) 已知等差数列{a n}中,S5= 24,求a2 + a4;(3) 数列{a n}是等差数列,a i= 1,a n= —512, —1 022,求公差d;⑷已知等差数列{a n }中,a 2 + a 5= 19, S = 40,求a io .【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解, 另 外解题时要注意整体代换.3 n n —1 1【尝试解答】 (1)S n = n 2+2 •— 2 = — 15,整理得 n - 7n — 60= 0,解得n = 12或n = —5(舍去),3 1所以 a 12= 2+ (12— 1)x — 2 = — 4. (2)设等差数列的首项为a 1,公差为d ,即 5a 1+ 10d = 24,所以 a 〔 + 2d =£, 所以 a 2 + a 4= 2(a 1 + 2d) = 2X 乍=譽 n n — 1⑶因为 a n = a 1 + (n — 1)d , S n = na 1+ 2d , 又 a 1 = 1, a n = — 512, S n =— 1 022,1+ n — 1 d = — 512,①所以 1n +qnn — 1 d =— 1 022,② 把(n — 1)d = — 513代入②得 1n + 刃(—513)= — 1 022,解得 n = 4, 所以 d = — 171.a 1 + d + a 1 + 4d = 19,⑷由已知可得5X 45a 1 + -^d = 40,解得 a 1 = 2, d = 3,则 S 5 = 5a 1 + 5X 5—12d = 24,所以a io= a i + 9d= 2+ 9X 3= 29.等差数列中基本计算的两个技巧:(1) 利用基本量求值.等差数列的通项公式和前n项和公式中有五个量ai,d, n,a n和S n, —般是利用公式列出基本量a i和d的方程组,解出a i和d,便可解决问题•解题时注意整体代换的思想.(2) 利用等差数列的性质解题•等差数列的常用性质:若m+ n = p+ q(m, n,n a i + a np, q€ N+),贝U a m + a n = a p+ a q,常与求和公式S n= 2 结合使用.[再练一题]1. 等差数列中:(1) a i = 105, a n= 994, d= 7,求S n;(2) a n = 8n+ 2, d = 5,求S20;1(3) d= 3, n = 37, S n= 629,求a i 及a n.为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网•据测算,2011年该市用于“校校通”工程的经费为500万元•为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元•那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少?【精彩点拨】将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】根据题意,从2011年〜2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n},其中,a1 = 500, d= 50.那么,到2020年(n= 10),投入的资金总额为10X 10—1S io= 10X 500+ 2 X 50= 7 250(万元),即从2011年〜2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1) 问题中所涉及的数列{a n}有何特征;(2) 是求数列{a n}的通项还是求前n项和;(3) 列出等式(或方程)求解.[再练一题]2. 如图1-2-2,一个堆放铅笔的V型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔?图1-2-2[探究共研型]探究1设{a n}是等差数列,公差为d, S n是其前n项和,那么S m, S2m- Sn , S3m- S2m也成等差数列吗?如果是,它们的公差是多少?【提示】由S m= a i + a2+…+ a m, S2m- S m= a m+1 + a m + 2+…+ a2m= a i +2md+ a2 + md+ …+ a m+ md= S m+ m d,同^理S3m —S2m —a2m+ 1 + a2m + 2+ …+ a3m —S2m —S m + m2d ,所以S m, S2m—S m, S3m —&m也成等差数列,公差为m2d.、a n , S 2n -1设S 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么6与T7有怎样的关系?请证明之.a n 2a n ai + a2n -1bn 2bnb l + b 2n -12n — 1 a i + a 2n —i2 S2n -12n — 1 b 1 + b 2n - 1 T 2n - 12(1) 等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3叫7 n -p 2 a 5(2) 两个等差数列{a n }, {b n }的前n 项和分别为S 和T n ,已知T n = "n +3,求^ 的值.【精彩点拨】 ⑴利用S m , S 2m - S m , S 3m - S m 成等差数列求解.(2)利用前 n 项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】 ⑴在等差数列中,S m,9m — S m,S 3m — S 2m 成等差数列,「30,70, S 3m - 100成等差数列,探究2【提示】a n Sn-1 如―T 2n -1 【证明】•'•2X 70= 30+ (S 3m — 100),.°.S 3m = 210. a 5 2a5 9 ai+a9S 9 65 (2)b 5=2b 5= 9b i + b 9 = T 9= 12.巧妙应用等差数列前n 项和的性质 ⑴“片段和”性质.若{a n }为等差数列,前n 项和为S,贝U S1, S 2n — S n , S 3n — S 2n ,…构成公差 为n 2d 的等差数列.⑵项数(下标)的“等和”性质.(3) 项的个数的“奇偶”性质. {a n }为等差数列,公差为d.①若共有 2n 项,贝U S 2n = n(a n + a n +1);S 禺 a n +1S 偶—S 奇=nd ;S 奇 a n②若共有 2n + 1 项,贝U S 2n +1 = (2n + 1)a n +1 ; S 偶一S 奇=—a n +1(4) 等差数列{a n }中,若 S n = m , S m =n(m M n),贝U S m+n = — (m + n). (5) 等差数列{a n }中,若 S n = S m (m M n),贝U S m + n = 0. [再练一题]S n =n a i + a n 2n a m + a n - m + 12S 禺 n S 奇 n + 13. 已知两个等差数列{a n}与{b n}的前n(n>1)项和分别是S n和T n,且S n : T n=(2n+ 1) : (3n —2),求甬的值.探究1将等差数列前n项和S n = na i + n;1d变形为S n关于n的函数后, 该函数是怎样的函数?为什么?【提由于S n二na i+ 2 d =a i—; n.示】所以当d M 0时,S n为关于n的二次函数,且常数项为0.探究2类比二次函数的最值情况,等差数列的&何时有最大值?最小值?【提示】由二次函数的性质可以得出,当d>0时,S有最小值;当d v0 时,有最大值,且n取值最接近对称轴的正整数时,S n取得最值.在等差数列{a n}中,a io = 18,前5项的和—15.(1) 求数列{a n}的通项公式.(2) 求数列{a n}的前n项和的最小值,并指出何时取最小值.【精彩点拨】(1)直接根据等差数列的通项公式和前n项和公式列关于首项a i和公差d的方程,求得a1和d,进而得解;(2)可先求出前n项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.a1 + 9d = 18,【尝试解答】(1)由题意得 5 X 45a1 + —厂X d=—15,.'a n = 3n —12.n a1+an 1 2 一、3 7 2 147⑵ S n = 2 = 2(3 n —21n) = ?n — 2 —8•••当门=3或4时,前n项的和取得最小值S3= ®= —18.等差数列前n项和的最值问题的三种解法:⑴利用a n:当a i>0, d v 0时,前n项和有最大值,可由a n>0且a n+1<0, 求得n的值;当a i v0, d>0,前n项和有最小值,可由a n<0且a n+i >0,求得n的值.d d(2) 利用S n:由S n=2n2+ a i — 2 n(d^0),利用二次函数配方法求得最值时n 的值.(3) 利用二次函数的图象的对称性.[再练一题]4. 在等差数列{a n}中,a i = 25, S i7= S9,求S n的最大值.1. 设3为等差数列{a n}的前n项和,3 = 4a3, a7=- 2,则a9=( )A.-6 B.-4 C.-2 D.22. 记等差数列前n项和为3,若S2= 4,9 = 20,则该数列的公差d等于()A. 2B. 3C. 6D. 73. 在等差数列{a n}中,a i = 2,前三项和为15,则前6项和为()A. 57B.- 40C.- 57D. 404. ________________________________________________ 在等差数列{a n}中,已知a i = 2, d= 2,贝U S20= _________________________ .5. 等差数列{a n}中,a io= 30, a20= 50.(1) 求通项公式a n;(2) 若S n= 242,求n.学业分层测评(五)(建议用时:45分钟)[学业达标]、选择题1. 设3是等差数列{a n}的前n项和,若a i+ a3+ a5= 3,则()A. 5B. 7C. 9D. 112. 已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8= 4S4,则a io=( )C. 10D. 123. 在等差数列{a n}中,若S9= 18, S n= 240, a n-4= 30,则n的值为()A. 14B. 15C. 16D. 174 .设Sn是等差数列{a n}的前n项和,若S6= 3,则SB等于()3 1 1 1A•必 C.8 D.95. 设等差数列{a n}的前n项和为S n,若a1=- 11, a4 +a e=-6,则当S n取得最小值时,n等于()A . 6B . 7C . 8D . 9二、填空题6 .已知{a n}为等差数列,Sn为其前n项和.若a1 = 6, a3 + a5= 0,贝U S6=7.已知{a n}是等差数列,Sn是其前n项和.若a1 + a2=- 3, S5= 10,则a9 的值是__________ .8 .等差数列{a n}的前9项的和等于前4项的和,若a1 = 1, a k + a4= 0,则k三、解答题9. 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.10. 已知等差数列{a n}中,a i = 9, a4+ a7= 0.(1)求数列{a n}的通项公式;⑵当n为何值时,数列{a n}的前n项和取得最大值?[能力提升]1. 在项数为2n+ 1项的等差数列{a n}中,所有奇数项的和为165,所有偶数项的和为150,则n=( )A. 9B. 10C. 11D. 122. 已知两个等差数列{a n}与{b n}的前n项和分别为A n和B n, 且An=帀+:5,B n n+ 3则使得a n为整数的正整数n的个数是()A. 2 B . 3C. 4 D . 53. ______________________________________________________ 在等差数列{a n}中,d = 2, a n= 11, S n= 35,则a1等于 _____________________ .4 .从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40 件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10 件.(1) 记该款服装4月份日销售与销售天数n的关系为a n,求a n;(2) 求4 月份的总销售量;(3) 按规律,当该商场销售此服装超过1 200 件时,社会上就流行,而且销售量连续下降,且日销售低于 1 00件时,则流行消失,问:该款服装在社会上流行是否超过10 天?。