斯科特、阻抗匹配与非匹配平衡变压器
- 格式:ppt
- 大小:326.50 KB
- 文档页数:15
变压器阻抗匹配阻抗和匹配指使负载阻抗与放大器输出阻抗恰当配合,从而得到最大输出功率,这种阻抗恰当的配合较阻抗匹配。
变压器之所以能够实现阻抗匹配,是因为只要适当选择一、二次侧线圈的匝数,即变压器的变比,即可得到恰当的输出阻抗,也就是说,变压器具有变换阻抗的作用,所以他能实现阻抗匹配。
阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。
电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。
但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。
电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。
它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。
此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。
匹配条件:①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。
②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。
这时在负载阻抗上可以得到最大功率。
这种匹配条件称为共轭匹配。
如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。
《电气化铁道供电系统》2011教学要点第一章电力系统与牵引供电系统电力系统:电能的生产、输送、分配和使用组成了一个系统,称为电力系统,主要由发电厂、电力网、电能用户组成。
电力网的任务是将电能从发电厂输送和分配到电能用户。
电力网由各种电压等级的输、配电线路和变(配)电站(所)组成。
按其功能常分为输电网和配电网两大部分。
国家规定的电网额定电压分别为(KV):750、500、330、220、110、60、35、10、6等9个电压等级。
牵引变电所进线电源电压等级主要为110kV,少量采用220kV。
牵引供电系统具有哪些主要特点?由哪几个子系统组成?答:牵引供电系统与一般供电系统相比,具有以下明显特点:(1) 所供负载是一个单相、移动而且是直流的负载。
(2) 供电额定电压为27.5kV(BT)和55kV(AT),不同于国家电网规定的额定电压。
(3) 供电网不同于电力网,它是通过与电力机车接触而供电,因此又叫接触网。
(4) 具有独特的回流通路(架空回流、轨回流和地回流)。
广义牵引供电系统由:电力系统、牵引变电所、牵引网(接触网、供电线、吸回装置)、电力机车。
狭义的牵引供电系统通常只指牵引变电所和牵引网2大部分。
牵引供电系统的4种电流制:(1)直流制(1500V),主要用于地铁、矿山等。
(2)低频单相交流制(3)三相交流制(4)工频单相交流制(27.5KV),我国电气化铁路均采用这种制式。
牵引变电所的4种一次供电方式:(1)一边供电(2)两边供电(3)环形供电(4)辐射供电。
单侧供电方式的可靠性一般比双侧供电方式和环形供电方式要差。
牵引变电所向接触网供电的供电方式:单边供电与双边供电。
第二章牵引变压器及其结线第二章牵引变压器及其结线序号变压器类型输出电压容量利用率对称与否1 单相接线(纯单相单相VV,三相VV量等,60°100%不对称系数1,0.52 三相YN/d11量等,60°75.6%不对称系数0.53 三相不等容量量等,60°94.5%不对称系数0.54 斯科特接线量等,90°92.8%对称5 阻抗匹配平衡型(非阻抗匹配平衡型)量等,90°100%对称三相牵引变压器容量利用率是75.6%,当考虑温度系数kt=0.9时容量利用率可提高到84%容量利用率=定额输出容量/额定容量单相结线在电力系统的电流不对称系数为1,VV结线和三相Y/d结线变压器的不对称系数为0.5。
供电系统电力系统是指发电、送电、变电、和用电组成的整体。
电力系统被发电厂的汽轮机、锅炉、水电厂的水轮机、水库等动力部分包括进来,统称为动力系统。
国家规定电网额定电压分别为(KV)750、500、330、220、110、60、35、10、6等级。
变电所出具变换电压的作用外,还具有集中电能、分配电能和控制电路以及调整电压的作用。
一般把变电所分为以下3种:(1).枢纽变电所;(2).地区变电所;(3).用户变电所;牵引供电系统的电流制:直流制、低频单相交流制、三相交流制、工频单相交流制。
工频单相交流制的主要优点如下:1牵引供电系统结构简单;2牵引供电电压增高,保证机车的正常运行,可使变电所之间距离延长,线截面减小,建设投资和运营费用降低。
3交流电力机车的粘着性能合牵引性能良好。
工频单相交流制存在的主要问题如下:1单相牵引负荷会使电力系统中出现负序电流;2电力机车感性负荷,功率因数低,相控整流出现较大的谐波电流,将使功率因数更低;3.牵引网中单相工频电流将对通讯线路造成较大的电磁干扰;根据采用的变压器的类型不同,牵引变电所通常可分为:单相牵引变电所(包括纯单相变电所、单相V,V结和三相V,V结变电所);三相变电所;三相-两相变电所(包括斯科特接线变电所和阻抗匹配与非阻抗匹配变电所)纯单相接线的主要优点是变压器的容量可以充分利用,容量利用率100%,且变电所的主接线简单,设备少,占地面积小,投资小;缺点:三相系统形成较大的负序电流,不对称系数为1,为减小负序电流对系统的影响,各变电所变压器组成所按相序依次轮换,即所谓换相连接。
纯单相接线主要适用于电力系统容量大,地方电网较发达的地区。
单相V,V接线变电所的优点是容量利用率为100%,而且可以供给所内及地区的三相负荷,对牵引网还可实现双边供电。
与单相接线相比对系统的负序影响减小,变电所的设备也相对较小,投资较省。
缺点:当一台牵引变电器故障时,另一台进行跨相供电,兼供左右两臂的牵引网负荷,这就要一个倒闸过程,把故障变压器原来承担的的任务转移到正常运行的变压器,在这个过程完成前,故障变压器原来供电的牵引负荷将中断。
一、牵引供电系统1、牵引变电所2、AT所接线方式一的AT所内共有4个断路器,1QF、2QF是自藕变压器的本体保护断路器,3QF、4QF是AT所上、下行进线断路器。
正常运行时,AT所内的自耦变压器一主一备。
自耦变压器发生故障时,由变压器本体保护跳开1QF或2QF,并由备自投装置投入另一台变压器运行接线方式二的AT所在正常运行时,两台自親变压器并列运行。
为了保证线路在AT所处并联,并联母线上的断路器3QF在正常运行时保持闭合。
接线方式三:自耦变压器本体保护并没有配置断路器,配置了隔离开关。
当自賴变压器发生故障时,需先将1QF、2QF断开,隔离开关动作,将故障变压器断开、备用变压器投入后,再将1QF、2QF闭合。
3、分区所为了增加供电的灵活性,在两个牵引变电所的供电区中间常增设分区所,如图所示。
断路器1QF、2QF正常工作时闭合,实现上、下行牵引网并联运行。
隔离开关1QS、2QS在正常运行时断开,当相邻牵引变电所发生故障而不能继续供电时,可以闭合1QS、2QS由非故障牵引变电所实现越区供电,使行车不至中断二、牵引变压器接线方式主要有:单相变压器接线、Y/△-11接线、V/V接线、V/X接线、Scott接线、阻抗匹配平衡变压器1、单相变压器接线单相接线牵引变压器的原边只接入三相电力系统的两相,副边的一端与牵引侧母线连接,另一端与钢轨及接地网连接,牵引变电所两供电臂由同一相供电,牵引负荷对于电力系统而言属于纯单相负载。
2、Y/△-11接线3、V/V接线4、V/X接线与下面Scott 接线牵引变压器+牵引变电所出口AT(自耦变压器)接线方式相比,VX 接线牵引变压器二次绕组引出了中性点接地,可兼作馈线AT,因此可取消牵引变电所出口AT5、Scott接线Scott 接线牵引变压器二次侧绕组没有与轨道连接的中性点,因此需要在牵引变电所出口处牵引网和正馈线的断路器后面设置一台自耦变压器(AT)6、阻抗匹配平衡变压器三、牵引网供电方式牵引网是由馈电线、接触网、回流线组成的多导线供电回路。
牵引供电系统负序电流研究负序电流意义:近20多年来,电力牵引由于具有马力大、速度快、能耗低、效率高、环保等特点,在使用电力牵引的区段内,运输能力明显提高,运输成本大为降低,同时,电力牵引机车在机车性能、工作条件等方面较内燃机车更好,是我国铁路牵引动力今后的发展方向。
因此电气化铁路在我国得到了快速的发展,电力牵引负荷总功率及其在整个铁道运力中所占比重也随之得到迅速增加。
但由于电力机车负荷是大功率的不对称负荷,具有复杂多变的运行状态且运行状态随机性很大。
投入运行会产生大量的负序电流,通过牵引变电站注入电力系统,会给系统带来严重的负序危害,影响电网电能质量。
对电力系统的稳定、安全、经济运行构成了一定威胁。
随着电气化铁路牵引负荷的迅速增长,研究其负序特性进而抑制其负序危害已越来越引起人们的重视。
负序电流对电力系统的影响:电气化铁路牵引负荷是电力系统的主要不平衡负荷,并且具有非线性、大功率、分布广、大波动性的特点,在电力系统中产生大量的负序分量,影响系统及设备的安全稳定与经济运行。
正常运行的电力系统是三相对称的,表现为电源电势、网络结构和网络元件参数、负荷均三相对称,以及各运行参数三相对称。
无论电源、网络、负荷任一部分的三相对称性遭到破坏,系统的对称运行状态即受破坏,就会出现电压或电流的不对称。
由对称分量法可以将三相不对称电流分解为正序电流、负序电流和零序电流。
负序电流对电力系统元件具有巨大的影响和危害,主要表现在:1、负序电流对发电机的影响。
负序电流对发电机影响最大的是转子的附加损耗与发热,其次就是附加振动。
转子的附加损耗与发热方面,负序电流在定、转子气隙中建立一个以同步转速旋转、方向与转子转向相反的旋转磁场,它同步转速切割转子,在转子表面各部件(如大齿、小齿、槽楔、护环等)上感应2倍工频电流。
由于转子结构不对称,2倍工频电流在转子上分布不均匀,一般大齿的导磁性能较好,故大齿上感应的电流较大,小齿和槽楔上的电流相对要小些,而且在集肤效应和大齿上横向槽作用下,造成在转子表面和大齿横向槽两侧的电流密度较大,容易出现局部温度升高和过热。
两种特殊接线方式牵引变压器分析摘要随着电铁的不断发展,电铁负荷在电网中的比重越来越多,电铁作为大功率单相交流负荷,对电网安全运行的影响不容忽视。
在牵引变电所处把负荷进行等效,不失为一种可行的研究方式。
本文对两种特殊的牵引变压器进行接线方式分析、原理阐述、优缺点比较,以期为电网运行和工程研究工作提供参考。
关键词电气化铁路;牵引变压器;接线方式中图分类号u224 文献标识码a 文章编号1674-6708(2010)26-0112-020 引言近几十年来,随着国民经济的突飞猛进和工业基础设施的完善,我国的电气化铁路发展迅猛,铁路线总里程不断加长,列车载重量不断增加,铁路牵引变压器需求数量随之越来越多,需求容量也越来越大。
我们知道,电气铁路的27.5kv(bt制)或55kv(at制)的单相牵引电网是通过牵引变电所从常规三相电网获取电能的,牵引变电所的主要作用便是将110kv或220kv三相交流电变换成27.5kv或55kv单相交流电,并供电给电牵引网和电力机车。
根据供电方式和具体要求的不同,牵引变压所采用的牵引变压器种类也不同,主要有:单相牵引变压器,v/v接线变压器,普通三个绕组对称的三相变压器,三相—两相平衡牵引变压器。
本文拟从接线原理、负序和零序影响、容量利用率等方面对两种特殊接线形式的牵引变压器加以总结和评述,以期对电气化铁路牵引供电系统的研究有所帮助。
1 le blanc结线变压器1.1 接线原理分析le blanc变压器绕组结构如图所示,其初级绕组与普通三相变压器绕组相同,基于电气化铁道的不同要求,它们可以为△型或y型,本文仅分析△型,以防由于不平衡负荷产生的谐波(主要是三次谐波)进入系统。
在二次侧有5个将三相电源转化为两相电源的非对称绕组,其接线如图1所示。
1.2 负序和零序影响二次侧各绕组的变比如下当k=1时,由接线原理图和绕组匝数关系可得电流关系式:根据对称分量法,电压平衡关系得一次侧各相的正负零序电流: 当iα=iβ时,原方三相线电流完全对称,无负序电流存在,故该接线也具有将两相对称负荷转换为原方三相对称负荷的能力[1]。
几种牵引变压器的原理分析与比较选择一按照变压器结构种类和接线方式分为:1.单相结线变压器2.单相(三相)V,v结线变压器3.三相YN,d11双绕组变压器4.斯科特结线变压器5.YN,结线阻抗匹配牵引变压器6.YN,结线平衡变压器7.非阻抗匹配YN,结线平衡变压器二变压器的工作原理和分析:变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件1,单相结线变压器原理:牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。
牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。
所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。
另外,单相牵引变压器要按全绝缘设计制造。
2,单相V,v结线变压器(三相)原理:将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。
两变压器次边绕组,各取一端联至牵引变电所两相母线上。
而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。
这时,两臂电压相位差60o接线,电流的不对称度有所减少。
这种接线即通常所说的60o接线。
(三相)原理:将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成。
原边绕组接成固定的V结线,V的顶点(A2与X1连接点)为C相,A1,X2分别为A相,B相。
副边绕组四个端子全都引出在油箱外部,根据牵引供电的要求,既可接成正“V”,也可接成反“V”。
3,三相YN,d11双绕组变压器原理:三相YN,d11结线牵引变压器的高压侧通过引入线按规定次序接到110kV 或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27.5kV的a相和b相母线上。
由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60o,也是60o接线。
浅谈电气化铁路电能质量治理方案摘要:牵引负荷具有随机波动、单相独立和不对称的特点。
电气化铁路的电能质量问题主要包括无功、谐波、负序、电压波动与闪变。
本文将某地区电气化铁路电能质量实测数据结合该地区电气化铁路的现状和发展,进行统计分析电气化铁路牵引负荷对该地区电网电能质量的影响情况,并给出切实可行的治理方案建议。
关键词:电气化铁路;电能质量中图分类号: TM712 文献标识码:A0引言近几年,随着电气化铁路建设速度持续加快,电气化铁路机车逐渐成为了电力系统中主要的大型谐波源之一。
电力机车是单相负荷,可能引起负序问题;机车从接触网得电后经过整流装置给电机供电,是牵引供电系统中主要谐波来源;同时,电气化铁路负荷还具有阶跃性和沿线分布广负荷跨度大的特点,随着机车运行工况的不同,电力机车取流波动较大[1-3]。
牵引供电系统的谐波直接注入高压电力系统,单相交流工频牵引制式引入的负序电流,供电电压偏差等都是电流电气化铁道电能质量存在的问题。
本文对某地区内多条电气化铁路电能质量监测点对电气化铁路电能质量问题进行了数据实测和统计分析。
1某地区电气化铁路情况该地区经济发展稍滞后,线路多以普速铁路为主,牵引变电所电源引接点的短路容量较小,区域内线路交直型机车为主,有少量交直交型电力机车。
牵引变电所内装有并联电容无功补偿装置。
2电能质量标准简介(1)供电电压偏差供电电压为供电企业与用户产权分界处的电压或由供用电协议所约定的电能计量点的电压,其中的基本条款为:35kV及以上供电电压正、负偏差绝对值之和不超过额定电压的10%。
如供电电压上下偏差同号(均为正或负)时,按较大的偏差绝对值为衡量依据[4]。
(2)谐波标准1)谐波电压限值公共连接点的谐波电压应同时满足:a.电压总谐波畸变率THDU测量值的95%概率大值不得超过2.0%;b.奇次和偶次谐波电压含有率HRUh测量值的95%概率大值分别不得超过1.6%和0.8%[5]。