铁道车辆轮对结构与轮轨接触几何关系
- 格式:ppt
- 大小:6.63 MB
- 文档页数:94
轮轨接触⼏何关系轮轨接触⼏何关系班级:学号:姓名:轮轨接触⼏何关系是轮轨关系研究的基本内容,它不仅关系到车辆的动⼒学性能,也关系到轮轨之间的磨耗。
其研究结果可以⽤于横向稳定性计算、随机响应计算及动态曲线通过计算等,还可以⽤于轨道⼏何参数和轮轨外形的合理选择。
选择合适的轮轨⼏何,不仅可以改善车辆的动⼒学性能,还能降低轮轨间的磨耗,减少制造和维修成本,提⾼车辆的可靠性,延长车轮的使⽤寿命。
本⽂采⽤Simpack软件模拟轮轨接触,选⽤的车轮踏⾯为S1002,轨头为CHN_60。
1. S1002踏⾯外形S1002外形轮廓由车轮踏⾯作⽤区域之外的倒⾓、外侧斜度区域A、踏⾯区域B和C、踏⾯外形轮廓与轮廓外部区域的连接区域D、70o轮缘⾓长度区域E和轮缘区域F、G、H构成。
其中,外侧斜度区域A的斜度值可从6.5%⾄15%;踏⾯区域B和C由两段凹凸⽅向不同的⾼次曲线构成;连接区域D为⼀段半径为13mm的圆弧;70o轮缘⾓长度区域E为⼀条切线段;当车轮直径≥760mm时,轮缘⾼度h为28mm,轮缘区域F、G、H分别由半径为30mm、12mm和20.5mm的三段圆弧构成。
随着轮缘厚度的变化,轮缘及其踏⾯的连接区域也随之变化。
S1002踏⾯外形如图1-1所⽰。
图1-1 S1002踏⾯外形2. CHN_60轨⾯形状CHN_60钢轨顶⾯采⽤80-300-80的复合圆弧,具有与车轮踏⾯相适应的外形,能改善轮轨接触条件,提⾼抵抗压陷的能⼒;同时具有⾜够的⽀承⾯积,以备磨耗。
CHN_60踏⾯外形如图2-1所⽰。
图2-1 CHN_60轨⾯截⾯形状3. 轮轨⼏何关系参数轮轨⼏何关系重要参数有:车轮和钢轨型⾯、轨距、轨底坡、轮缘内侧距、名义滚动圆距轮对中⼼距离和车轮名义直径。
其⼏何关系平⾯图(见图3-1)和影响轮轨接触⼏何关系参数的平⾯图(图3-2)如下所⽰。
图3-1 轮轨接触⼏何关系平⾯图图3-2 影响轮轨接触⼏何关系平⾯图4. 轮轨接触⼏何关系的特征参数在机车车辆动⼒学研究中,除了要计算处接触点位置和相应参数值,另外,还要研究和动⼒学性能直接相关的轮轨关系特征参数,它们分别是:等效锥度、等效接触⾓、轮对重⼒刚度和重⼒⾓刚度。
轮轨接触几何关系探讨卜庆萌指导教师姚林泉摘要: 轮轨接触几何关系在高速、安全的轨道交通中具有重要的作用。
本文根据我国使用的三种主要车轮踏面的轮廓线,采用对其一、二阶导函数比较分析的方法研究它们的光滑度。
同时考察不同规格钢轨的光滑度以及与各车轮踏面相配合的结果。
从轮轨几何光滑接触的角度,指出了较优的车轮踏面,较优的轮轨配合以及几何优化原则。
关键字:轮轨关系,接触几何,车轮踏面,钢轨Abstract: The geometric relation of wheel-rail contact plays an important part in fast and safety rail transportation. Based on the three main Chinese wheels, we work out the first and second derivative of the contours in order to compare their smoothness. Also we research the smoothness of different rails and the effect to work in different wheels. From the aspect of that wheel and rail contact in smoothness, the better interface, the better coupling of wheel-rail and the principle of geometric optimization are shown.Keywords: wheel-rail relation,contact geometry,wheel treads,rail1 引言随着铁路列车运行速度、运载重量和运输密度的大幅度提高,机车车辆与轨道结构之间的相互作用引发的问题更加严重,也更趋复杂。
几类轮轨接触几何关系的研究作者:张全付凯兵李婉清来源:《科技资讯》2021年第26期摘要:高速鐵路的发展带来了新的挑战,轮轨的磨耗增加,不仅增加维修成本,而且也影响了列车的安全性。
因此,对轮轨几何关系的研究尤为重要。
影响高速列车轮轨几何关系的因素很多。
该文以中国铁路的LMA踏面、日本新干线JR-ARC踏面和欧洲标准S1002踏面以及钢轨断面为例,对踏面曲线函数进行研究,比较3种轮轨关系的几何参数差异,分析踏面曲线。
关键词:高速铁路车辆动力学轮轨接触几何关系车轮踏面中图分类号:U211.5 文献标识码:A文章编号:1672-3791(2021)09(b)-0025-03Study on Several Kinds of Wheel Rail Contact Geometric RelationsZHANG Quan FU Kaibing LI Wanqing(Changchun Normal University, Changchun, Jilin Province, 130000 China)Abstract: The development of high-speed railway has brought us new challenges. The increase of wheel rail wear not only increases the maintenance cost, but also affects the safety of the train. Therefore, it is particularly important to study the wheel rail geometric relationship. There are many factors affecting the wheel rail geometric relationship of high-speed train. Taking LMA tread of China railway, JR-ARC tread of Shinkansen in Japan, S1002 tread of European standard and rail section as examples, this paper studies the tread curve function, compares the geometric parameter differences of three wheel rail relationships, and analyzes the tread curve.Key Words: High speed railway; Vehicle dynamics; Wheel rail contact geometry; Wheel tread高速铁路的发展给人们的生活带来了便利,缩短了城市之间的距离,但也带来了很多复杂问题。
第三节轮轨接触几何关系及滚动理论轨道车辆沿钢轨运行,其运行性能与轮轨接触几何关系和轮轨之间的相互作用有着密切的关系。
同时,由于轮轨的原始外形不同和运用中形状的变化,轮轨之间的接触几何关系和接触状态也是不同和变化的。
米用车轮轴承、滚动是车辆获取导向、驱动或制动力的主要方式,轨道车辆中地铁、轻轨常采用钢轮钢轨方式,而独轨、新交通系统及部分地铁则采用充气轮胎走行在硬质导向路面上。
车轮与导轨间的滚动接触关系决定了它们间的作用力、变形和相对运动。
因此滚动接触直接影响城市轨道车辆的性能、安全、磨耗与使用寿命。
一轮轨接触参数和接触状态当车辆沿轨道运行时,为了避免车轮轮缘与钢轨侧面经常接触和便于车辆通过曲线,左右车轮的轮缘外侧距离小于轨距,因此轮对可以相对轨道作横向位移和摇头角位移。
在不同的横向位移和摇头角位移的条件下,左右轮轨之间的接触点有不同位置。
于是轮轨之间的接触参数也出现变化。
对车辆运行中动力学性能影响较大的轮轨接触几何参数如下(图5一8): 1左轮和右轮实际滚动半径r L ,r R。
当轮对为刚性轮对,轮对绕其中心线转动时,各部分的转速是一致的,车轮滚动半径大,在同样的转角下行走距离长。
同一轮对左右车轮滚动半径越大,左右车轮滚动时走行距离差就加大,车轮滚动半径的大小也影响轮轨接触力。
2左轮和右轮在轮轨接触点处的踏面曲率半径和3左轨相石轨在稚轨接触点处的矶头截曲曲率半径和轮轨接触点处的曲率半径大小将会影响轮轨实际接触斑的大小、形状和轮轨的接触应力。
4左轮和右轮在接触点处的接触角s:和6R,即轮轨接触点处的轮轨公切面与轮对中心。
线之间的夹角。
轮轨接触角的大小影响轮轨之间的法向力和切向力在垂向和水平方向分量的大小。
5轮对侧滚角小w。
轮对侧滚角会引起转向架的侧滚和车体侧滚。
6.轮对中心上下位移Z w。
该量的变化会引起转向架和车体的垂向位移。
研究轮轨接触关系时应特别注意轮轨间的接触状态。
车轮与钢轨之间的接触状态可能有两种,即一点接触和两点接触(图5一9),轮对相对轨道的移动量不大时,一般出现车轮踏面与钢轨顶面相接触,通常为“一点接触”;当轮对相对轨道的横移和摇头角位移量超过一定范围,根据不同轮轨形状特点可能引起车轮踏面和轮缘同时与钢轨顶面和侧面接触,即所谓“两点接触”。