2FSK调制解调原理及设计.pdf
- 格式:pdf
- 大小:391.57 KB
- 文档页数:10
用SYSTEMVIEW实现2FSK键控调制与相干解调实验报告01091036 贺冰涛01091037 罗名川用SystemView仿真实现2FSK键控的调制1、实验目的:(1)了解2FSK系统的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2DPSK系统中的基带信号、载波及已调信号;(3)熟悉系统中信号功率谱的特点。
2、实验内容:以PN码作为系统输入信号,码速率Rb=20kbit/s。
(1)采用键控法实现2FSK的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2FSK等信号的波形。
(2)获取主要信号的功率谱密度。
3、实验原理:数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。
2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。
2FSK键控法利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。
键控法的特点是转换速度快、波形好、稳定度高且易于实现,故应用广泛。
2FSK信号的产生方法及波形示例如图所示。
图中s(t)为代表信息的二进制矩形脉冲序列,即是2FSK信号。
abcde 2FSK信号ttttt二进制移频键控信号的时间波形根据以上2FSK 信号的产生原理,已调信号的数字表达式可以表示为(5-1)其中,s(t)为单极性非归零矩形脉冲序列(5-2)(5-3)g(t)是持续时间为、高度为1的门函数;为对s(t)逐码元取反而形成的脉冲序列,即(5-4)是的反码,即若 =0,则 =1;若=l,则 =0,于是(5-5)分别是第n个信号码元的初相位。
一般说来,键控法得到的与序号n无关,反映在上,仅表现出当与改变时其相位是不连续的;而用模拟调频法时,由于与改变时的相位是连续的,故不仅与第n 个信号码元有关,而且之间也应保持一定的关系。
由式(5-1)可以看出,一个2FSK信号可视为两路2ASK信号的合成,其中一路以s(t)为基带信号、为载频,另一路以为基带信号、为载频。
2fsk信号的产生及解调原理
2FSK(Frequency Shift Keying)信号的产生和解调原理如下:
1.产生原理:
*基带码元d(t)中码元为1时,波形为频率为f1的高频载波;基带码元d(t)中码元为0时,波形为频率为f2的高频载波。
*通过将基带码元与f1的高频正弦波相乘,可以生成2FSK 信号。
类似地,将基带码元的反码与f2的高频正弦波相乘,也可以生成第二个2FSK信号。
*将这两个2FSK信号相加,即可得到最终的2FSK信号。
2.解调原理:
*2FSK信号经过信道传输之后,通过带通滤波器将其分为上下两路,分别变成两路2ASK(Amplitude Shift Keying)信号。
*然后将这两路2ASK信号与对应的载波相乘,再经过低通滤波后抽样判决,即可恢复出原始的基带码元信号。
以上信息仅供参考,如有需要,建议咨询专业技术人员。
2FSK调制解调原理及设计2FSK调制解调技术通常用于调制两个离散频率(频移)来表示二进制数据流中的0和1、其中一个频率用于表示0,另一个频率用于表示1、在调制过程中,将基带数字信号转换为模拟信号,并将其移频到所需的频率。
解调过程则通过检测输入信号的频率来还原原始的二进制数据流。
1.调制器设计:调制器将二进制数据流转换为模拟信号,并在不同的频率上调制这些信号。
常见的调制器设计包括频率锁相环(PLL)和直接数字频率合成(DDS)。
PLL使用反馈回路来产生一个输出信号,其频率与输入信号的相位差很小。
DDS则使用数字信号直接合成所需的频率。
2.频率选择器:频率选择器用于选择调制信号的频率。
通过控制频率选择器的开关或滤波器,可以选择不同的频率来代表0和1、频率选择器可以是可编程的,以便在需要时切换不同的调制频率。
3.解调器设计:解调器将传输信号转换为数字信号,使数据能够被读取和处理。
解调器通常包括一个带通滤波器和一个判决器。
带通滤波器用于滤除不需要的频率成分,使解调信号只包含所需的频率分量。
判决器则用于将接收到的信号映射到二进制数据流中的0和14.错误检测和纠正:在接收端,通常还需要实施错误检测和纠正机制来提高数据传输的可靠性。
常见的错误检测和纠正方法包括奇偶校验、循环冗余检测(CRC)和海明码。
2FSK调制解调技术在数字通信系统中得到了广泛的应用,特别是在无线通信领域。
它具有简单可靠的特点,适用于低复杂度的通信系统。
同时,2FSK调制解调技术也可以扩展为多级FSK调制解调技术,以提高数据传输速率和信号带宽利用率。
总之,2FSK调制解调是一种常见且有效的数字调制解调技术,其原理和设计涉及调制器设计、频率选择器、解调器设计以及错误检测和纠正等关键步骤。
这种技术在数字通信系统中具有广泛的应用,并且可以根据需要进行扩展和优化。
一、设计基本原理和系统框图2FSK 系统分调制和解调两部分。
①调制部分:2FSK 信号的产生方法主要有两种。
第一种是用二进制基带矩形脉冲信号去调制一个调频器,如(a)图所示,使其能够输出两个不同频率的码元。
第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如(b)图所示。
这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号,在相邻码元之间的相位是连续的,如(c)图所示;而开关法产生的2FSK 信号,则分别由两个独立的频率源产生不同频率的信号,故相邻码元的相位不一定是连续,如(d)图所示。
本次设计用键控法实现2FSK 信号。
(c)相位连续 (d)相位不连续②解调部分:2FSK 信号的接收主要分为相干和非相干接收两类,本次设计采用非相干法(即包络解调法),其方框图如下。
用两个窄带的分路滤波器分别滤出频率为1f 和2f 的高频脉冲,经过包络检波后分别取出它们的包络。
把两路输出同时送到抽样判决器进行比较,从而判决输出基带数字信号。
FSK 信号包络解调方框图设频率1f 代表数字信号1;2f 代表数字信号0,则抽样判决器的判决准则:式中x1和x2分别为抽样判决时刻两个包络检波器的输出值。
这里的抽样判决器,要比较x1、x2的大小,或者说把差值x1-x2与零电平比较。
因此,有时称这种比较判决器的判决电平为零电平。
当FSK 信号为1f 时,上支路相当于接收“1”码的情况,其输出x1为正弦波加窄带高斯噪声的包络,它服从莱斯分布。
而下支路相当于接收“0”码的情况,输出x2为窄带高斯噪声的包络,它服从瑞利分布。
如果FSK 信号为2f ,上、下支路的情况正好相反,此时上支路输出的瞬时值服从瑞利分布,下支路输出的瞬时值服从莱斯分布。
无论输出的FSK 信号是1f 或2f ,两路输出的判决准则不变,因此可以判决出FSK 信号。
二、各单元电路设计2.1 2FSK调制单元要将NRZ码经过2FSK调制成为2FSK信号,我们采用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出。
摘要在本二进制移频键控调制解调电路中,其中调制系统由模拟开关电路以及两个射随、选频电路组成。
解调是用非相干解调,即包络检波法。
在设计过程中,采用模块化的设计方法,并使用了Multisim工具软件,在计算机屏幕上仿真实验,绘制电路图所需的元件、芯片以及导线均可在屏幕上选取,提高了设计效率。
本方案的优点是产生的FSK信号频率稳定度好,转换速度快,波形好。
关键词:射随/选频电路;模拟开关;包络检波;仿真目录摘要前言 (4)一、2FSK的调制解调原理介绍 (5)2.1 2FSK的调制原理..................................^ (5)2.2 2FSK信号的解调原理 (6)二、各单元电路设计 (8)3.1 2FSK调制单元 (8)3.1.1 射随、选频电路 (8)3.1.2 模拟开关电路 (8)3.2 2FSK解调单元 (9)三、总体电路与电路仿真 (10)4.1 总体电路设计 (10)4.2 调制和解调的仿真结果图 (10)参考文献 (13)设计总结 (14)附件1:各元件引脚图 (15)附件2:元器件清单 (16)前言在通信系统的设计、实验过程中,通信信号仿真具有灵活性好、经济等诸多优点,通信中的一个基本概念就是调制,是指用携带有用信息的调制信号去控制高频载波信号。
数字调频又称移频键控(frequency shift keying,FSK),它是用不同的载波来传送数字信号的。
调频信号即2FSK信号是数字通信系统使用较早的一种通信方式,这种通信方式容易实现,抗噪声和抗衰减性能较强,广泛的应用于低速数据传输通信系统中。
2FSK信号的产生有两种方法:直接调频法和频率键控法。
直接调频法是用数字基带信号直接控制载波振荡器的振荡频率。
虽然方法简单,但频率稳定度不高,同时转移速度不能太高。
而频率键控法则不同,它有两个独立的振荡器,数字基带信号控制开关,选择不同频率的高频振荡信号,从而实现FSK调制。
一总体设计思路1.1总体设计原理时分复用(TDM)的基本原理是将传输时间分割成若干个互不重叠的时刻,各个信号按一定顺序占和各自的时隙,在发送端按顺序将各个信号进行复接;在收端,按照一定的顺序将各个信号分接。
与频分复用相比,时分复用便于信号的数字化和实现数字通信,而制造调试的过程也相对比较容易,更适合采用集成电路实现。
2FSK时分复用通信系统由数字信源单元,数字调制单元,2FSK解调单元,位同步单元,帧同步单元及数字终端6个主要模块组成。
其利用的是载波的频率不同传输信号。
在2进制的状况下,利用频率为f1 载波来表示信号1,频率为f2的频率来表示信号0,实现信息的传递。
首先,由信源模块向调制模块提供数字基带信号(NRZ)和位同步信号BS,再次,在调制模块中用键控法产生2FSK信号,然后对产生的2FSK的信号用过零检测法进行解调。
波形在数字通信系统中,发端按照确定的时间顺序,逐个传输数码脉冲序列中的每个码元,而在接收端必须有准确的抽样判决时刻才能正确判决所发送的码元,所以应在接收端插入位同步。
同时,在时分复用通信系统中,为了正确的传输信息,必须在信息码流中加入一定数量的帧同步码。
1.2 系统框图图1.1 系统框图图中m(t)为时分复用数字基带信号,为NRZ 码,发滤波器及收滤波器的作用与基带系统相同,本实验假设信道是理想的,收发端都无带通滤波器.'()n t()1D t()2D t ()1m t()2m t 复接器 2FSK 调制 发滤波器信 道 收滤波器2FSK 解调 复接器 位同步位同步二 模块设计原理及框图2.1 2FSK 调制单元要将NRZ 码经过2FSK 调制成为2FSK 信号主要有两种方法:第一种是用二进制基带矩形脉冲信号去调制一个调频器,使其能够输出两个不同频率的码元;而另一种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出。
在此,我们采用第二种方法(键控法)。
2FSK调制解调电路设计引言:频移键控调制(Frequency Shift Keying, FSK)是一种数字调制方式,通过改变载波频率的方式来传输信号。
2FSK(2 Frequency Shift Keying)是一种常见的FSK调制方式,其基本原理是通过输入的数字信号决定载波频率的两个离散状态,从而实现数字信息的传输。
在本文中,我们将介绍2FSK调制解调电路的设计。
一、2FSK调制电路设计:1.信号波形产生器:首先,我们需要设计一个信号波形产生器来生成数字信号。
该数字信号表示要传输的信息,通常是基带信号。
可以使用微处理器、FPGA或其他数字电路来实现波形产生器。
2.带通滤波器:接下来,我们需要设计一个带通滤波器来选择一个特定频率范围内的频率。
2FSK调制需要选择两个离散频率用于传输数据,所以我们需要设计一个可以在这两个频率范围内切换的带通滤波器。
3.频率切换电路:在2FSK调制中,我们需要能够在两种不同的频率之间切换的载波信号。
为了实现这一点,我们可以使用一个开关电路,根据输入的数字信号来选择不同的频率。
4.调制电路:最后,我们将基带信号和切换后的载波信号相乘,利用频谱合并来实现2FSK调制。
这个乘法操作可以通过模拟乘法器或数字乘法器来实现。
二、2FSK解调电路设计:1.频谱分离电路:为了将调制信号中的两个频率分离开来,我们需要设计一个频谱分离电路。
这个电路可以通过使用带通滤波器和差分器来实现,带通滤波器选择一个频率范围内的信号,差分器可以根据输入信号的相位差来判断频率是高频还是低频。
2. 相位检测电路:在2FSK解调中,我们需要检测信号的相位来确定接收到的信号是1还是0。
相位检测电路可以使用锁相环(Phase Locked Loop, PLL)或其他相位检测技术来实现。
3.信号解码器:最后,我们需要设计一个信号解码器来将解调得到的数字信号转化为原始信息。
这个解码器可以通过使用微处理器或其他数字电路来实现。
2FSK调制解调电路的设计引言:调频键控(Frequency Shift Keying, FSK)是一种常见的数字调制解调技术,其原理是通过改变载波频率来传输数字信号。
二进制FSK(2FSK)是最基本的FSK调制方式,其中两个不同的频率代表了二进制中的0和1、本文将介绍2FSK调制解调电路的设计。
一、2FSK调制电路1.频率可调的带通滤波器频率可调的带通滤波器用于接收输入信号,并将频率转换为两个不同的预设频率。
该滤波器通常由一个带可调中心频率的VoltageControlled Oscillator (VCO)和一个窄带滤波器组成。
输入信号经过一级放大后进入VCO,VCO将输入信号频率转换为预设频率。
滤波器用于滤除不需要的频率成分,只保留希望传输的频率分量。
2.相位锁定环路(PLL)相位锁定环路是2FSK调制电路的核心。
它由一个相频比较器(Phase-Frequency Detector, PFD)、一个环路滤波器(Loop Filter)、一个VCO和一个除频器(Divider)组成。
相频比较器用于比较参考信号和VCO输出信号的相位差,产生一个频率和相位误差的输出。
这个输出信号经过环路滤波器后,将调整VCO的输出频率,使其与参考信号的相位差最小化。
除频器将VCO输出的频率除以一个预设的常数,得到一个比输入信号低的频率,在输入信号的两种频率之间切换。
二、2FSK解调电路2FSK解调电路主要由一个鉴频器和一个比较器组成。
1.鉴频器鉴频器用于提取输入信号中的频率信息,并将其转换为与输入信号频率相同的模拟信号。
鉴频器通常由一个窄带滤波器和一个包络检波器组成。
窄带滤波器用于滤除不需要的频率成分,只保留输入信号中的目标频率分量。
包络检波器将滤波后的信号变为其包络信号,将其转换为模拟信号。
2.比较器比较器用于将模拟信号转换为数字信号,实现2FSK信号的解调。
比较器通常由一个阈值电路和一个数字信号输出端口组成。
2FSK调制解调系统设计2FSK(2 Frequency Shift Keying)调制解调系统是一种常见的数字调制技术,用于将数字信号转换为模拟信号进行传输和解调。
本文将重点介绍2FSK调制解调系统的设计,包括系统框图、原理以及实现过程。
一、2FSK调制解调系统框图1.调制部分:调制部分的主要功能是将数字信号转换为模拟信号。
常见的2FSK调制方法是通过选择两个不同频率的正弦波信号,分别对应数字信号的0和1、将数字信号经过调制电路进行调制后,输出模拟信号。
2.解调部分:解调部分的主要功能是将模拟信号转换为数字信号。
解调部分通常需要实现两个不同的带通滤波器,分别对应调制信号的两个频率。
对接收到的模拟信号进行滤波后,判断输出信号对应的频率,得到数字信号的0和1二、2FSK调制解调系统原理1.调制原理:2.解调原理:2FSK解调是通过判断接收到的模拟信号的频率来确定数字信号的0和1、解调时需要接收到的模拟信号经过一个带通滤波器,分别与f1和f2对应的滤波器进行滤波,得到两个对应的滤波输出信号。
根据输出信号的幅度比较,判断数字信号是0还是1三、2FSK调制解调系统设计实现过程1.调制部分设计:(1)选择载波频率:确定两个载波频率,分别对应数字信号的0和1(2)数字信号转换:将数字信号进行编码,将0对应的频率设为f1,1对应的频率设为f2(3)调制电路设计:设计调制电路将数字信号转换为模拟信号。
常见的调制电路包括震荡电路、混频电路等。
2.解调部分设计:(1)带通滤波器设计:设计两个带通滤波器,分别对应f1和f2的频率范围。
滤波器的设计可以采用数字滤波器或者模拟滤波器。
(2)滤波输出比较:将接收到的模拟信号依次通过两个滤波器进行滤波,得到两个滤波输出信号。
比较两个输出信号的幅度大小,判断数字信号是0还是13.系统参数调整和优化:对于2FSK调制解调系统,可以根据具体的要求进行参数调整和系统优化。
例如,调制信号的频率范围选择、滤波器的带宽设计等。
信息职业技术学院毕业设计说明书(论文)设计(论文)题目:2FSK调制解调电路的设计专业:通信技术班级:通技06-2 学号:姓名:指导教师:信息职业技术学院毕业设计(论文)任务书目录摘要 ................................................. 错误!未定义书签。
第一章绪论 ......................................... 错误!未定义书签。
第二章方案设计 ....................................... 错误!未定义书签。
方案比较 ......................................... 错误!未定义书签。
键控法 ....................................... 错误!未定义书签。
模拟调制法 ................................... 错误!未定义书签。
方案论证 ......................................... 错误!未定义书签。
第三章硬件设计 ....................................... 错误!未定义书签。
器件介绍 ......................................... 错误!未定义书签。
NE564介绍.................................... 错误!未定义书签。
2CD4016介绍.................................. 错误!未定义书签。
锁相环的大体工作原理 ......................... 错误!未定义书签。
2FSK调制电路设计................................. 错误!未定义书签。
2FSK解调器电路设计............................... 错误!未定义书签。
2FSK调制与解调系统设计引言:频移键控(FSK)是一种基于频率变化来传输信息的调制技术,它在很多应用中被广泛使用,如无线通信、数据传输等。
本文将介绍2FSK调制与解调系统设计的原理和实现。
1.系统设计要求:设计一个2FSK调制解调系统,满足以下要求:-使用两个信号频率(f1和f2)进行二进制调制,其中f1表示二进制‘0’,f2表示二进制‘1’。
-采用正弦波作为调制波形,调制指数保持为1-采用相干解调方式进行解调。
2.系统设计步骤:(1)调制设计:然后,使用正弦波产生器生成对应信号频率的正弦波。
将正弦波与二进制码序列进行调制,可以通过调制电路(如倍频器,可变频率的振荡器等)完成。
最后,得到调制信号。
(2)解调设计:采用相干解调方式进行解调。
相干解调是通过与已知频率的正弦波进行相乘,在经过低通滤波器之后,得到原始信号的解调结果。
首先,设计一个频率锁定环路(PLL),用于锁定接收信号的频率,确定解调时所采用的解调频率。
然后,通过解调电路对接收的信号进行解调。
解调电路的关键在于使用与PLL锁定频率相同的正弦波对接收信号进行相乘。
相乘之后,经过低通滤波器,得到解调信号。
最后,通过解调信号恢复原始的二进制码序列。
3.系统实现:(1)调制实现:根据系统设计要求,选择两个信号频率(f1和f2)。
通过正弦波产生器生成这两个频率的正弦波。
将正弦波与二进制码序列进行调制,采用合适的调制电路完成调制。
根据调制原理,可以得到调制信号。
(2)解调实现:设计一个频率锁定环路(PLL),用于锁定接收信号的频率。
频率锁定环路通常包括相位锁定环和频率鉴别器。
通过解调电路对接收的信号进行解调。
解调电路采用与PLL锁定频率相同的正弦波进行相乘,经过低通滤波器得到解调信号。
通过解调信号恢复原始的二进制码序列。
4.总结:本文介绍了2FSK调制解调系统的设计原理和实现步骤。
调制部分使用两个信号频率对应二进制码,采用正弦波进行调制;解调部分采用相干解调方式,通过与PLL锁定频率相同的正弦波进行相乘,经过低通滤波器得到解调信号。
用SystemView仿真实现二进制移频键控(2FSK)的模拟调制相干解调及其性能分析课程:通信系统实验班级:学号:1、系统仿真目的;(1)了解2FSK模拟调制相干解调通信系统的工作原理、电路组成和抗噪声性能等特点。
(2)掌握2FSK通信系统的设计方法与参数选择原则(3)掌握由图符模块建立子系统并构成通信系统的设计方法(4)熟悉通信系统的SYSTEMVIEW仿真测试环境(5)分别从时域、频域视角观测2FSK系统中的基带信号、载波及已调信号。
熟悉系统号功率谱的特点。
2、系统仿真容简介;以PN码作为系统输入信号,码速率Rb=20kBd。
(1)、熟悉2FSK模拟调制和相干解调的原理,并设计相应的调制和解调电路。
(2)、使用仿真软件SYSTEMVIEW,从SystemView配置的图标库中调出相关合适的图符并进行合适的参数设置,并连好图符间的连线,完成对2FSK模拟调制与相干解调仿真电路设计,并完成仿真操作。
(3)仿真结果要求为,观察各点波形:包括时域波形、眼图、覆盖图、可能的星座图等,以及记录主要信号点的功率谱密度。
3、原理简介;(1).2FSK的模拟调制原理二进制移频键控信号的产生,可以采用模拟调频电路来实现。
调频电路有直接调频和间接调频,本次实验我们采用的是间接调频法。
模拟调频电路原理图:其中s(t)表示信息的二进制矩形脉冲序列。
(2)2FSK的相干解调原理框图其中为相干载波,采用相干解调法其解调原理是将二进制移频键控信号分解为上下两路二进制振幅键控信号,分别进行解调,通过对上下两路的抽样值进行比较,最终判决出输出信号。
4、系统组成框图、子系统组成框图及图符块参数设置;(1)、利用 SystemView 系统建立的2FSK 模拟调制法实现调制的仿真电路如下图所示。
1、2FSK 模拟法调制仿真电路。
图符0产生二进制PN 码矩形脉冲序列,图符26和图符27分别产生载波1和载波2,图符28 为键控反相器,图符7为相加器。
通信原理(第2版)
– 108 –
图6-4 2ASK 信号解调原理
6.2.2 二进制频移键控(2FSK )调制与解调
1.2FSK 调制
2FSK 信号是用二进制脉冲序列中的“1”或“0”去控制两个不同频率的载波信号得到的。
已调信号的时域表达式为
()()()2FSK s 1s 2cos cos n n n n s t a g t nT t a g t nT t ωω=-=-=
-+-∑∑∞∞∞∞ (6.5)
若只考虑在一个码元的持续时间内
()12FSK 2cos "1"cos "0"A t s t A t ωω⎧=⎨⎩ (6.6)
输入序列为1001时,已调2FSK 的输出波形如图6-5所示,图中f 1代表“1”,f 2代表“0”。
频移键控调制器既可以采用模拟信号调频电路,也可以采用键控法如图6-6所示。
采用键控法时,二进制矩形脉冲序列中的“1”和“0”分别控制两个独立的载波发生器,“1”码时输出载波频率f 1;“0”码时输出载波频率f
2。
图6-5 2FSK 信号的波形 图6-6 2FSK 调制器 2.2FSK 解调
2FSK 信号的解调借用了2ASK 信号的解调电路,所以也有相干解调或非相干解调两种方式,如图6-7(a )、图6-7(b )所示。
考虑到成本等综合因素,在2FSK 系统中很少使用相干解调,以图6-7(b )非相干解调原理框图为例画出的各点波形如图6-7(c )所示。
图中的抽样判决电路是一个比较器,在判决时刻对上下两支路低通滤波器送出的信号电平进行比较,如果上支路输出的信号大于下支。
专业技能实训报告题目2FSK调制解调电路设计与实现学院信息科学与工程学院专业通信工程专业班级学生学号指导教师二〇一三年一月十日目录1前言................................................................................... (1)1.1 FSK简介................................................. .......... .. (1)1.2 课题的主要研究工作及意义................................ ...................... . (1)2 2FSK的调制解调原理介绍 (2)2. 1 锁相环原理介绍 (2)2.2 2FSK的调制原理 (2)2.3 2FSK的解调原理 (4)3 2FSK的各电路模块设计 (7)3.1 2FSK的调制单元 (7)3.1.1模拟开关电路 (7)3.1.2振荡电路 (8)3.2 2FSK的解调单元 (8)3.2.1 2FSK的两种解调方式介绍 (8)3.2.2 2FSK解调电路 (9)4 2FSK总体电路设计与仿真 (11)4.1 总体电路设计 (11)4.2 调制解调仿真 (12)结语 (14)参考文献 (15)附录 (16)1 前言1.1 FSK简介数字频率调制又称频移键控(FSK—Frequency Shift Keying),二进制频移键控记作2FSK。
数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。
2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。
从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。
模拟调频法是利用一个矩形脉冲序列对一个载波进行调频,是频移键控通信方式早期采用的实现方法。
2FSKFSK通信系统调制解调综合实验电路设计以下是一个关于2FSK/FSK通信系统调制解调综合实验电路设计的文本,并附有示意图,共计1200字以上:引言:2FSK(双频调制)和FSK(频移键控)是一种常用的数字调制技术,广泛应用于通信系统中。
本实验旨在设计一个基于2FSK/FSK调制解调的通信系统电路。
1.系统概述本系统由两部分组成:调制器和解调器。
调制器负责将数字信号转换为2FSK/FSK信号,解调器负责将接收到的2FSK/FSK信号转换为数字信号。
2.调制器设计调制器的设计包括以下步骤:-数字信号生成:生成一个长度为N的数字信号序列,表示待传输的信息。
-符号映射:将数字信号映射为对应的2FSK/FSK调制信号。
例如,可以将“0”映射为低频信号,将“1”映射为高频信号。
-调制信号生成:使用相应的调制技术,将映射后的2FSK/FSK信号生成为模拟信号。
例如,对于2FSK调制,可以使用两个不同的频率来表示“0”和“1”;对于FSK调制,可以使用频率的变化来表示“0”和“1”。
-输出:将调制后的信号输出至发送端。
3.解调器设计解调器的设计包括以下步骤:-信号接收:接收从发送端发送的调制信号。
-频率检测:检测接收到的信号的频率变化,判断其对应的数字信号。
-符号还原:根据频率的变化,将接收到的频率信号还原为对应的数字信号。
-输出:将还原后的数字信号输出至接收端。
4.电路设计根据调制器和解调器的设计要求,可以设计以下电路模块:-时钟模块:用于生成系统所需的时钟信号。
-数字信号生成模块:负责生成数字信号序列。
-符号映射模块:根据数字信号将其映射为2FSK/FSK信号。
-调制信号生成模块:根据2FSK/FSK信号生成调制信号。
-信号接收模块:接收从发送端发送的调制信号。
-频率检测模块:检测接收到的信号的频率变化。
-符号还原模块:根据频率变化将接收到的信号还原为数字信号。
-输出模块:负责将数字信号输出至接收端。
一.2FSK 调制原理:
1、2FSK 信号的产生:
2FSK 是利用数字基带信号控制在波的频率来传送信息。
例如,1码用
频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。
故其表示式为
)cos()
cos(2112
2)
(t A t
A FSK
t 时发送时
发送"1""0"式中,假设码元的初始相位分别为1和2;11
2f π和222f π为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。
2FSK 信号的产生方法有两种:
(1)模拟法,即用数字基带信号作为调制信号进行调频。
如图1-1(a )所示。
(2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。
如图1-1(b )所示。
这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。
(a)
(b)
2FSK 信号产生原理图
由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发
送的两个2ASK 信号之和,即
)
cos(
])([
)cos(])([
)cos(
·)()cos()()(2
2
1
12
21
12t
nT t
g a t
nT t g a t
t g t
t g t n
s n n
s n FSK
其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。
P ,0P
11概率,概率n
a P 1,0P
1概率,概率n
a 其中,n a 为n a 的反码,即若1n a ,则0n
a ;若0n
a ,则1n
a 。
2、2FSK 信号的频谱特性:
由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可
以直接应用2ASK 信号的频谱分析结果,比较方便,即
)]
()
()
()
([]
|)(||
)(||)(||)([|)()
()
(221116
12
22
22
12
11622221f f
f f
f f
f f T f f
Sa T f f Sa T f f Sa T f f
Sa f S f S f S S S S S T ASK ASK FSK S 2FSK 信号带宽为s s FSK R f f f f f B 2||2||21
212式中,s s f R 是基带信
号的带宽。
二.2FSK 解调原理:
仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。
其非相干检测解调框图如下
M 信号非相干检测解调框图当k=m 时检测器采样值为:。