SPSS统计分析第5章 非参数检验
- 格式:ppt
- 大小:3.33 MB
- 文档页数:31
SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。
与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。
SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。
本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。
案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。
为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。
研究人员想要比较两组员工在绩效上的差异。
步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。
假设每个样本中有n个观测值。
在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。
步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。
该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。
步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。
将实验组和对照组的变量分别输入到"因子1"和"因子2"中。
在"可选"选项中,可以选择在报告中包含各种统计量。
步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。
其中,最重要的是U值和显著性。
U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。
如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。
总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。
非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。
与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。
为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。
此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。
它的原假设是两组样本中位数相同。
首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。
接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。
它的原假设是两组样本中位数相同。
要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。
接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。
最后点击“OK”即可得到检验结果。
3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。
它的原假设是多组样本中位数相同。
要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。
接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。
统计学2——SPSS软件的参数检验与非参数检验班级学号姓名日期实验目的(1)熟悉单样本t检验。
(2)熟悉两独立样本t检验。
(3)熟悉两配对样本t检验。
(4)熟悉总体分布的卡方检验。
实验内容(1)SPSS的单样本t检验操作。
(2)SPSS的两独立样本t检验。
(3)SPSS的两配对样本t检验。
(4)SPSS的总体分布的卡方检验。
实验过程(1)SPSS的单样本t检验操作。
(2)SPSS的两独立样本t检验。
(3)SPSS的两配对样本t检验。
(4)SPSS的总体分布的卡方检验。
DATASET NAME 数据集1 WINDOW=FRONT.T-TEST/TESTVAL=0.8/MISSING=ANALYSIS/VARIABLES=x5678_1/CRITERIA=CI(.95).T检验T-TEST/TESTVAL=0.8/MISSING=ANALYSIS/VARIABLES=x10_1/CRITERIA=CI(.95).T检验GETFILE='C:\Documents and Settings\admin\LocalSettings\Temp\Rar$DI02.829\商品房购买意向调查模拟数据.sav'. DATASET NAME 数据集2 WINDOW=FRONT.T-TEST GROUPS=t2(1 2)/MISSING=ANALYSIS/VARIABLES=t10_1/CRITERIA=CI(.95).T检验独立样本检验DATASET ACTIVATE 数据集1.T-TEST GROUPS=x13(1.5)/MISSING=ANALYSIS/VARIABLES=x5678_1/CRITERIA=CI(.95).T检验DATASET ACTIVATE 数据集2.GETFILE='C:\Documents and Settings\admin\Local Settings\Temp\Rar$DI67.032\减肥茶.sav'. DATASET NAME 数据集3 WINDOW=FRONT.T-TEST PAIRS=hcq WITH hch (PAIRED)/CRITERIA=CI(.9500)/MISSING=ANALYSIS.T检验DATASET ACTIVATE 数据集1.GETFILE='C:\Documents and Settings\admin\Local Settings\Temp\Rar$DI10.7860\心脏病猝死.sav'. DATASET NAME 数据集4 WINDOW=FRONT.NPAR TESTS/CHISQUARE=rq/EXPECTED=2.8 1 1 1 1 1 1/MISSING ANALYSIS.NPar 检验卡方检验频率实验心得。
第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。
参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。
而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。
参数检验主要有t检验、方差分析和回归分析等。
其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。
方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。
回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。
非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。
Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。
在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。
2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。
3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。
4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。
5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。
无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。
同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。
在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。
SPSS⾮参数检验实验⽬的:学会使⽤SPSS的简单操作,掌握⾮参数检验。
实验内容: 1.中位数符号检验,检验总体中位数是否等于某个假定的值。
设⼀个随机样本有n个数据,总体中位数的实际值为M,假设的总体中位数值为。
当样本中的数据⼤于假设的中位数时,⽤“+”号表⽰,⼩于假设的中位数时,⽤“-”表⽰;对于恰好等于假设的中位数的数据予以剔出。
若关⼼实际的M与假设的是否有差别,应建⽴假设:;计算检验统计量S+和S-。
S+表⽰每个样本数据与与差值符号为正的个数;S-表⽰每个样本数据与差值符号为负的个数。
计算P值并作出决策。
若P<,拒绝原假设。
2.Wilcoxon符号秩检验,检验总体参数(如中位数)是否等于某个假定的值。
它是对符号检验的⼀种改进,弥补了符号检验的不⾜,要⽐单纯的符号检验更准确⼀些(对应的参数检验—单样本均值检验)。
检验步骤:①计算各样本观察值与假定的中位数的差值,并取绝对值;②将差值的绝对值排序,并找出它们的秩;③计算检验统计量和P值,并作出决策。
3.独⽴样本的检验,Mann-Whitney检验不需要诸如总体服从正态分布且⽅差相同等之类的假设,但要求是两个独⽴随机样本的数据⾄少是顺序数据;Kruskal-Wallis检验不需要总体服从正态分布且⽅差相等这些假设。
该检验可⽤于顺序数据,也可⽤于数值型数据。
要检验k个总体是否相同,提出如下假设。
:所有总体都相同,:并⾮所有总体都相同或等价于,不全相同。
4.秩相关检验,对两个顺序变量之间相关程度的⼀种度量。
Spearman秩相关系数也称等级相关系数,记为,计算公式为,的取值范围为[-1,1];,两种排序之间完全相关;若,两种排序之间为负相关;若,两种排序之间为正相关;若,两种排序之间不相关;越趋于1,相关程度越⾼;越趋于0,相关程度越低。
实验步骤: 1.中位数符号检验SPSS操作,点击【分析】→【⾮参数检验】→【相关样本】,打开【⾮参数检验、两个或更多相关样本】对话框。
实验二 SPSS的参数检验和非参数检验(验证性实验 4学时)1、目的要求:熟练掌握t检验及其结果分析。
熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。
2、实验内容:使用指定的数据按实验教材完成相关的操作。
3、主要仪器设备:计算机。
练习:1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:鼠体内钙的留存量有显著不同。
2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天并说明分析结论。
1 参数检验概述假设检验的基本思想.事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立;.采用逻辑上的反证法,依据统计上的小概率原理。
2 单样本的T检验2.1检验目的:•检验单个变量的均值是否与给定的常数(总体均值)之间是否存在显著差异。
如:分析学生的IQ平均分是否为100分;大学生考研率是否为5%。
•要求样本来自的总体服从或近似服从正态分布。
2.2 单样本T检验的实现思路•提出原假设:•计算检验统计量和概率P值●给定显著性水平与p值做比较:如果p值小于显著性水平,小概率事件在一次实验中发生,则我们应该拒绝原假设,反之就不能拒绝原假设。
2.3 单样本t检验的基本操作步骤1、选择选项Analyze-Compare means-One-Samples T test,出现窗口:2、在Test Value框中输入检验值。
3、单击Option按钮定义其他选项。
Option选项用来指定缺失值的处理方法。
其中,Exclude cases analysis by analysis表示计算时涉及的变量上有缺失值,则剔除在该变量上为缺失值的个案;Exclude cases listwise表示剔除所有在任意变量上含有缺失值的个案后再进行分析。
可见,较第二种方式,第一种处理方式较充分地利用了样本数据。
在后面的分析方法中,SPSS对缺失值的处理方法与此相同,不再赘述。
SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种不基于总体分布特征的统计方法,适用于数据分布未知、非正态分布或无法满足参数检验假设的情况。
其中一种非参数检验是两独立样本检验,用于比较两组独立样本之间的统计差异。
本篇文章将结合案例解析,详细介绍SPSS软件中如何进行非参数检验的两独立样本检验。
案例背景:工厂生产两种不同形状的零件,为了比较两种零件的尺寸是否存在差异,随机选取了30个零件进行测量。
现在需要使用两独立样本检验来研究这两种零件的尺寸是否存在显著差异。
步骤一:数据导入首先,将收集到的数据导入SPSS软件中。
数据包括两个变量:零件类型(Group)和尺寸(Size)。
将数据按照Excel或CSV格式保存,然后在SPSS中选择"文件"->"导入"->"数据",选择导入文件,并进行数据格式定义。
步骤二:描述性统计分析在进行假设检验之前,首先进行描述性统计分析,以了解样本数据的基本特点。
在SPSS中,选择"分析"->"描述性统计"->"描述性统计",将"Size"变量拖入"变量"框中,然后点击"统计"按钮,选择要统计的统计量(如均值、标准差等),最后点击"确定"按钮进行计算。
步骤三:正态性检验在进行非参数检验之前,需要进行正态性检验,以确定数据是否满足参数检验的假设。
在SPSS中,选择"分析"->"非参数检验"->"单样本分布检验",将"Size"变量拖入"变量"框中,然后点击"选项"按钮,选择要进行的正态性检验方法,如Kolmogorov-Smirnov检验或Shapiro-Wilk检验等。
非参数检验SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法.但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当.当天的比例近似为2。
8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等.通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X 来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果.用1表示一级品,用0表示非一级品。