AD转换器解析
- 格式:ppt
- 大小:686.00 KB
- 文档页数:52
AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换成数字信号的电子器件,广泛应用于测量、通信、控制和信号处理等领域。
主要技术指标是指影响AD转换器性能的关键参数。
下面将介绍AD转换器的主要技术指标。
1. 位数(Resolution):位数是指转换结果的二进制位数,也可理解为ADC的精度。
位数越高,转换结果的精度越高。
常见的位数有8位、10位、12位、16位等。
常见的高精度应用需要12位以上的位数。
2. 采样率(Sampling Rate):采样率是指ADC在单位时间内完成采样的次数,常用单位为千赫兹(kHz)或兆赫兹(MHz)。
采样率决定了ADC对信号的处理能力,即ADC能够处理多快的信号。
高速应用需要高采样率的ADC。
3. 信噪比(Signal-to-Noise Ratio, SNR):信噪比表示转换后的数字信号与输入模拟信号之间的噪声水平差异。
信噪比越高,ADC的抗干扰能力越强,输出结果越准确。
4. 有效比特数(Effective Number of Bits, ENOB):有效比特数表示ADC输出二进制数据的有效位数,与信噪比有关。
一般来说,ENOB比位数小,这是由于ADC的非线性误差、噪声和失配等因素导致的。
5. 误差(Error):误差是指ADC转换结果与输入信号之间的差异。
常见的误差包括非线性误差、积分非线性误差、增益误差、失配误差等。
误差越小,ADC的准确度越高。
6. 电源电压(Supply Voltage):ADC的电源电压指使用电路所需的电源电压。
一般来说,工作电压越低,功耗越小,对系统电源需求越低。
7. 噪声(Noise):噪声是指ADC输出结果中包含的非期望信号。
噪声可由转换器内部电路、供电电压和输入信号引起。
噪声影响了ADC对小信号的测量准确性,因此较低的噪声水平对高精度测量至关重要。
8. 温度效应(Temperature Coefficient):温度效应衡量ADC对温度变化的敏感程度。
ad转换器的组成AD转换器是一种将模拟信号转换为数字信号的电子设备,它是数字信号处理系统中的重要组成部分。
AD转换器的主要功能是将模拟信号转换为数字信号,以便数字信号处理器能够对其进行数字信号处理。
AD 转换器的组成包括模拟前端、采样保持电路、量化电路、编码器和数字接口等几个部分。
1. 模拟前端模拟前端是AD转换器的第一部分,它主要负责将模拟信号转换为电压或电流信号。
模拟前端通常包括放大器、滤波器、衰减器等电路。
其中,放大器的作用是将输入信号放大到适当的范围,以便后续的处理;滤波器的作用是滤除不需要的频率成分,以保证输入信号的质量;衰减器的作用是将输入信号的幅度降低到适当的范围,以避免过载。
2. 采样保持电路采样保持电路是AD转换器的第二部分,它主要负责将模拟信号转换为数字信号。
采样保持电路的作用是将输入信号按照一定的时间间隔进行采样,并将采样值保持在一定的时间内,以便后续的处理。
采样保持电路通常包括采样开关、保持电容、放大器等电路。
3. 量化电路量化电路是AD转换器的第三部分,它主要负责将模拟信号转换为数字信号。
量化电路的作用是将采样保持电路输出的模拟信号转换为数字信号,以便后续的数字信号处理。
量化电路通常包括比较器、参考电压源、编码器等电路。
其中,比较器的作用是将采样保持电路输出的模拟信号与参考电压进行比较,以确定其大小关系;参考电压源的作用是提供一个稳定的参考电压,以保证量化精度;编码器的作用是将比较器输出的数字信号转换为二进制码。
4. 编码器编码器是AD转换器的第四部分,它主要负责将数字信号转换为二进制码。
编码器通常采用二进制编码方式,将数字信号转换为二进制码,以便数字信号处理器能够对其进行数字信号处理。
5. 数字接口数字接口是AD转换器的最后一部分,它主要负责将数字信号输出到数字信号处理器中。
数字接口通常采用串行接口或并行接口,将数字信号输出到数字信号处理器中,以便数字信号处理器能够对其进行数字信号处理。
在仪器仪表系统中,常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量,才能输入到计算机中进行处理.这些模拟量经过传感器转变成电信号(一般为电压信号),经过放大器放大后,就需要经过一定的处理变成数字量。
实现模拟量到数字量转变的设备通常成为模数转换器(ADC),简称A/D。
随着集成电路的飞速发展,A/D转换器的新设计思想和制造技术层出不穷。
为满足各种不同的检测及控制需要而设计的结构不同、性能各异的A/D转换器应运而生.下面讲讲A/D转换器的基本原理和分类根据A/D转换器的原理可将A/D转换器分成两大类。
一类是直接型A/D转换器,将输入的电压信号直接转换成数字代码,不经过中间任何变量;另一类是间接型A/D转换器,将输入的电压转变成某种中间变量(时间、频率、脉冲宽度等),然后再将这个中间量变成数字代码输出。
尽管A/D转换器的种类很多,但目前广泛应用的主要有三种类型:逐次逼近式A/D转换器、双积分式A/D转换器、V/F变换式A/D转换器.另外,近些年有一种新型的Σ—Δ型A/D转换器异军突起,在仪器中得到了广泛的应用。
逐次逼近式A/D转换器的基本原理是:将待转换的模拟输入信号与一个推测信号进行比较,根据二者大小决定增大还是减小输入信号,以便向模拟输入信号逼进.推测信号由D/A转换器的输出获得,当二者相等时,向D/A转换器输入的数字信号就对应的时模拟输入量的数字量.这种A/D转换器一般速度很快,但精度一般不高。
常用的有ADC0801、ADC0802、AD570等。
双积分式A/D转换器的基本原理是:先对输入模拟电压进行固定时间的积分,然后转为对标准电压的反相积分,直至积分输入返回初始值,这两个积分时间的长短正比于二者的大小,进而可以得出对应模拟电压的数字量。
这种A/D转换器的转换速度较慢,但精度较高.由双积分式发展为四重积分、五重积分等多种方式,在保证转换精度的前提下提高了转换速度.常用的有ICL7135、ICL7109等Σ-Δ型A/D转换的具体技术细节不详,这种转换器的转换精度极高,达到16到24位的转换精度,价格低廉,弱点是转换速度比较慢,比较适合用于对检测精度要求很高但对速度要求不是太高的检验设备。
D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。
D/A 转换器实质上是一个译码器〔解码器〕。
一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。
UREF 为参考电压。
uO =DnUREF将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,那么所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。
D/A 转换器一般由数码缓冲存放器、模拟电子开关、参考电压、解码网络和求和电路等组成。
数字量以串行或并行方式输入,并存储在数码缓冲存放器中;存放器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。
开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地。
权电阻网络D/A 转换器的特点①优点:构造简单,电阻元件数较少;②缺点:阻值相差较大,制造工艺复杂。
2. 倒T 型电阻网络D/A 转换器3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。
当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地。
但由于虚短,求和点和地相连,所以不管开关如何转向,电阻2R 总是与地相连。
这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。
倒T 型电阻网络D/A 转换器的特点:①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。
②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。
三、D/A 转换器的主要技术指标1. 分辨率分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。
ad转换原理
AD转换原理
AD转换,即模拟-数字转换,也称为A/D转换,是一种将模拟信号转换成数字信号的过程。
它是现代电子系统的关键,用于将实际的电子信号转换成电子计算机可以处理的数字信号。
AD转换技术也可以把信号从电子计算机中转换回模拟信号,这称为数字-模拟转换,简称为D/A转换。
AD转换原理是基于采样理论,它假定模拟信号可以通过每隔一段时间就采样一次的方式被转换成一系列数字信号。
AD转换器把模拟信号转换成一系列数字信号,每个数字信号对应一个模拟信号采样值。
有了这些采样值,模拟信号可以由数字信号重新构造出来,并可以被电子计算机处理。
要实现AD转换,需要一个AD转换器,它能够把模拟信号转换成数字信号。
AD转换器是一种模拟-数字转换器,它能够把模拟信号转换成数字信号,也就是电子计算机可以处理的信号。
它有很多不同的类型,比如模数转换器,计数器,比较器,传感器,等等。
AD转换器的工作原理是把模拟信号转换成一系列数字信号,每一个数字信号对应一个模拟信号的采样值。
这些采样值可以用来重新构造模拟信号,也可以用来被电子计算机处理。
AD转换是现代电子技术中一个重要的组成部分,它可以把实际的模拟信号转换成电子计算机可以处理的数字信号,也可以把数字信号转换回模拟信号。
AD转换器可以把模拟信号转换成一系列数字信号,以便电子计算机可以处理这些信号。
A/D 和D/A 转换器在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。
传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。
这种模拟量到数字量的转换称为模-数(A/D)转换。
处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。
A/D 变换器简称为ADC 和D/A 变换器简称为DAC 是数字系统和模拟系统的接口电路。
第一节 基本概念一、D/A 变换D/A 变换器一般由变换网络和模拟电子开关组成。
输入n 位数字量D (=D n-1…D 1D 0)分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。
(1)变换网络变换网络一般有权电阻变换网络、R-2RT 型电阻变换网络和权电流变换网络等几种。
ⅰ、权电阻变换网络权电阻变换网络如图8-1所示,每一个电子开关S i 所接的电阻R i 等于2n-1-i R (i=0~n-1),即与二进制数的位权相似,R 0=2n-1R ,R n-1=R 。
对应二进制位D i =1时,电子开关S i 合上,R i 上流过的电流 I i =V REF /R i 。
令V REF /2n-1R=I REF ,则有 I i =2i I REF ,即R i 上流过对应二进位权倍的基准电流,R i 称为权电阻。
权电阻网络中的电阻从R 到2n-1R 成倍增大,位数越多阻值越大,很难保证精度。
图8-1 权电阻D/A 变换器ⅱ、R-2R 电阻变换网络R-2R 电阻网络中串联臂上的电阻为R ,並联臂上的电阻为2R ,如图8-2所示。
从每个並联臂2R 电阻往后看,电阻都为2R ,所以流过每个与电子开关S i 相连的2R 电阻的电流I i 是前级电流I i+1的一半。
因此, I i =2i I 0=2i I REF /2n ,即与二进制i 位权成正比。
ad值转换原理
AD转换的原理是将模拟信号转换成数字信号。
模拟信号是一种连续变化的电压或电流信号,而数字信号是一种离散的信号,只包含两个离散电平,通常表示为0或1。
AD转换器使用一个采样和保持电路,它定期获取输入模拟信号的样本,并将其保持在一个电容器中。
然后,AD转换器使用一个比较器将这个模拟样本的电压与一个参考电压进行比较。
比较器会确定模拟信号样本的电压是高于还是低于参考电压,并输出一个相应的数字信号。
接着,AD 转换器会使用一个模数转换器将比较器的输出转换为一个对应的数字码。
这个数字码表示模拟信号样本的量化数值。
最后,AD转换器会使用一个编码器将量化的数字码转换为二进制形式,以便后续的数字信号处理。
16位ad转换器的分辨率和脉冲16位AD转换器的分辨率和脉冲是现代电子设备中非常重要的概念。
AD转换器是指模拟信号转换为数字信号的装置,而分辨率则决定了转换后的数字信号的精度。
脉冲则是AD转换器中用于采样和量化模拟信号的时钟信号。
16位AD转换器的分辨率是指它可以将模拟信号分成2^16个等级。
也就是说,它可以将模拟信号的幅值从最小值到最大值分成65536个等分。
这种高分辨率使得AD转换器能够以非常精细的方式对模拟信号进行采样和量化,从而更准确地转换为数字信号。
脉冲是AD转换器中的关键信号之一。
它用于确定采样时刻和量化时刻。
脉冲的频率决定了AD转换器的采样速度,而脉冲的宽度决定了AD转换器的量化精度。
通常情况下,脉冲的频率越高,采样速度越快,但是量化精度可能会降低。
而脉冲的宽度则会影响到AD 转换器的量化误差,宽度越小,量化误差越小,量化精度越高。
对于16位AD转换器来说,它的分辨率非常高,可以达到很精细的量化水平。
这使得它在许多应用领域中得到广泛应用。
例如,在音频领域,16位AD转换器可以更准确地将模拟音频信号转换为数字音频信号,从而保证音频的高保真性。
在医疗设备中,16位AD转换器可以更精确地测量和记录生物信号,如心电图和血压信号。
在工业自动化领域,16位AD转换器可以对各种传感器信号进行高精度的采样和量化,从而实现精确的控制和监测。
脉冲在AD转换器中的作用也非常重要。
它决定了转换过程中的时序,从而保证了采样和量化的准确性。
脉冲的频率和宽度需要根据具体的应用需求进行选择。
在一些对采样速度要求较高的应用中,如雷达信号处理,脉冲的频率通常较高,以确保高速的信号采样。
而在一些对量化精度要求较高的应用中,如音频信号处理,脉冲的宽度通常较小,以保证高精度的信号量化。
总的来说,16位AD转换器的分辨率和脉冲是现代电子设备中非常重要的概念。
它们决定了电子设备对模拟信号的采样和量化能力。
高分辨率的AD转换器可以实现更精细的信号转换,而合适的脉冲则可以确保采样和量化的准确性。
AD和DA的工作原理AD和DA是模数转换和数模转换的简称,分别代表模数转换器(Analog-to-Digital Converter)和数模转换器(Digital-to-Analog Converter)。
AD用于将模拟信号转换为数字信号,而DA则是将数字信号转换为模拟信号,两者是相对的过程。
AD的工作原理:AD转换器的作用是将输入的模拟信号,通过一定的采样和量化方法,转换为数字形式的信号,以便于数字设备进行处理和存储。
AD转换器通常分为两个主要阶段:采样和量化。
1.采样:AD转换器首先对输入信号进行采样,即按照一定的时间间隔对连续模拟信号进行抽样。
采样的频率也被称为采样率,通常用赫兹(Hz)表示。
采样率决定了输入信号中能够被留存下来的频率范围。
2.量化:采样后的模拟信号将被输入到量化器中。
量化是将连续的模拟信号转换成离散的数字信号的过程。
在这个过程中,AD转换器将把输入的模拟信号分成一定数量的等级,并为每个等级分配一个数字代码。
采样和量化的过程可以通过二进制表示来完成,其中最常见的是通过ADC(模数转换器)将模拟信号转换为二进制数。
DA的工作原理:DA转换器的作用是将数字信号转换为模拟信号,以便于与模拟设备进行连接和交互。
DA转换器通常包含两个主要部分:数字信号处理和模拟输出。
1.数字信号处理:DA转换器首先接收到一串数字信号,这些信号由计算机或数字设备产生。
这些信号是基于离散的数字表示,通常使用二进制数表示。
DA转换器将会对这些数字信号进行处理,比如滤波、重采样等,以确保生成的模拟信号质量和稳定性。
2.模拟输出:处理后的数字信号被输入到DAC(数模转换器),将数字信号转换为模拟信号。
DAC将根据数字信号的数值,通过一定的电流或电压生成模拟信号。
这些模拟信号将与各种模拟设备进行连接,例如音频设备、电机控制等。
需要注意的是,AD和DA转换的精度和速度是非常重要的参数。
转换器的精度是指转换器所能提供的输出与输入之间的误差。
A /D 转换器的技术指标D A 转换器的转换精度与转换速度一、 A /D 转换器的转换精度在单片集成的D A 转换器中也采用分辨率(又称分解度)和转换误差来描述转换精度。
分辨率以输出二进制数或十进制数的位数表示,它说明D A 转换器对输入信号的分辨能力。
从理论上讲,n 位二进制数字输出的D A 转换器应能区分输入模拟电压的n 2个不同等级大小,能区分输入电压的最小差异为n 21FSR (满量程输入的n 21)。
例如D A 转换器的输出为10位二进制数,最大输入信号为5V ,那么这个转换器的输出应能区分出输入信号的最小差异为1025v =4.88mV .转换误差通常以输出误差最大值的形式给出,它表示实际输出的数字量和理论上应有的输出数字量之间的差别,一般多以最低有效位的倍数给出。
例如给出转换误差<±21LSB,这就表明实际输出的数字量和理论上应得到的输出数字量 之际的误差小于最低有效位的半个字。
有时也用满量程输出的百分数给出转换误差。
例如D A 转换器的输出为十进制的321位(即所谓的三位半),转换误差为±0.005%FSR ,则满量程输出为1999,最大输出误差小于最低位的1。
通常单片集成D A 转换器的转换误差已经综合的反映了电路内部各个元、器件及单元电路偏差对转换精度的影响,所以无须再分别讨论这些因素各自对转换精度的影响了。
还应指出,手册上给出的转换精度都是在一定的电源电压和环境温度下得到的数据。
如果这些条件改变了,将引起附加的转换误差。
例如10位二进制输出的D A 转换器AD571在室温(+25℃)和标准电源电压(+V =+5V 、+V =-15V )下转换误差21±≤LSB ,而当环境温度从0℃变到70℃时,可能产生±1LSB 的附加误差。
如果正电源电压在+4.5V~+5.5V 范围内变化,或者负电源电压在-16V~-13.5V 范围内变化时,最大的转换误差可达到±2LSB 。
AD转换及其原理AD转换器(Analog-to-Digital Converter,简称ADC)是将模拟信号转换为数字信号的电子设备。
在现代电子技术中,AD转换器广泛应用于各种领域,如通信、计算机、仪器仪表、医疗设备等。
AD转换的原理是利用一定的电路和算法将连续的模拟信号转换为离散的数字信号。
整个转换过程可以分为三个步骤:采样、量化和编码。
首先是采样过程,即将模拟信号在时间上离散取样。
采样的目的是为了获取一定时间段内的模拟信号的定量表示。
采样率是衡量采样的频率,通常用赫兹(Hz)来表示。
根据采样定理,采样率应该至少是被采样信号中最高频率成分的两倍,以避免采样失真。
接下来是量化过程,即将采样得到的模拟信号转换为离散的数字信号。
采样得到的信号是连续变化的,而存储和处理数字信号时需要离散的数值。
因此,量化是将连续的模拟信号按照一定的规则映射到离散的数字值。
常见的量化方式有线性量化和非线性量化。
线性量化根据信号的幅值和量化级别来进行映射,而非线性量化则根据信号的幅值和概率分布进行映射。
最后是编码过程,即将量化得到的数字信号转换为二进制码。
编码的目的是为了方便数字信号的存储和处理。
常用的编码方式有二进制编码和格雷码。
二进制编码是将每个数字信号对应的离散值用二进制数表示,格雷码则是相邻离散值的编码只有一个位数的变化,以减少编码转换时可能引入的错误。
AD转换器的实现方式有许多种,常见的包括逐次逼近型、并行型和积分型等。
逐次逼近型AD转换器是一种非常常见且常用的转换方式。
它的工作原理是通过逐步逼近的方式将模拟信号与一系列已知的参考电压进行比较,以确定最接近的数字值。
逐次逼近型AD转换器的精度一般由比较次数决定,比较次数越多,精度越高,但转换速度会降低。
除了转换方式,AD转换器的精度也是一个重要的指标。
精度指的是数字输出值和实际输入值之间的误差大小。
常见的精度指标有位数(bit)和有效位数(ENOB)等。
位数是指AD转换器的输出位数,通常越高精度越高,有效位数是指真正用于表示输入信号的有效位数,它比位数少一些,因为AD转换器的输出范围往往比输入信号的范围大一些。
A/D转换器AD转换就是模数转换,就是把模拟信号转换成数字信号。
模拟量可以是各种物理量,但在A/D转换前,输入到A/D转换器的输入信号必须转换成电压信号。
输出是数字信号。
输出数字信号的位数越多,分辨率越高,精度也越高,转换器的性能也就越好。
A/D转换主要有三种方法:逐次逼近法,双积分法,电压频率转换法。
A/D转换一般要经过采样、保持、量化及编码4个过程。
在实际电路中,有些过程是合并进行的,如采样和保持,量化和编码在转换过程中是同时实现的。
转换方法模数转换过程包括量化和编码。
量化是将模拟信号量程分成许多离散量级,并确定输入信号所属的量级。
编码是对每一量级分配唯一的数字码,并确定与输入信号相对应的代码。
模数转换从转换原理来分可分为直接法(逐次逼近法)和间接法(双积分法,电压频率转换法)两大类。
直接法是直接将电压转换成数字量。
它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡。
1.逐次逼近法图1 逐次逼近法原理图先使二进位制数的最高位Dn-1=1,经数模转换后得到一个整个量程一半的模拟电压VS,与输入电压Vin相比较,若Vin>VS,则保留这一位;若Vin<Vs,则Dn-1=0。
然后使下一位Dn-2=1,与上一次的结果一起经数模转换后与Vin相比较,重复这一过程,直到使D0=1,再与Vin相比较,由Vin>VS还是Vin<V来决定是否保留这一位。
经过n 次比较后,n位寄存器的状态即为转换后的数据。
特点:直接逐位比较型转换器是一种高速的数模转换电路,转换精度很高,但对干扰的抑制能力较差,常用提高数据放大器性能的方法来弥补。
间接法不将电压直接转换成数字,而是首先转换成某一中间量,再由中间量转换成数字。
2.双积分法图2 双积分法原理图双积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。