当前位置:文档之家› 曲线的参数方程巩固练习

曲线的参数方程巩固练习

曲线的参数方程巩固练习
曲线的参数方程巩固练习

【巩固练习】

一、选择题

1.已知某条曲线的参数方程为22

32(05)1

x t t y t ?=+?

≤≤?=-??,则该曲线是( ). A .线段 B .圆弧 C .双曲线的一支 D .射线 2.下列在曲线sin 2()cos sin x y θ

θθθ

=??

=+?为参数上的点是( )

A

.1(,2

B .31(,)42

- C

. D

3.将参数方程2

2

2sin ()sin x y θ

θθ

?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.若点P (4,a )在曲线???

??t

y t x 2=2=(t 为参数)上,点F (2,0),则|PF |等于( ).

A .4

B .5

C .6

D .7

5

.与参数方程为)x t y ?=??

=??为参数等价的普通方程为( ) A .214y +=2

x B .21(01)4

y x +=≤≤2x C .21(02)4y y +=≤≤2

x D .21(01,02)4

y x y +=≤≤≤≤2

x 6.若x 、y 满足(x -1)2+(y -1)2

=4,则s=x+y 的最小值为( ). A

.2-

.2-+

.2-- D

.2+ 7.直线y =kx +2与曲线??

?

??αα

sin 3= 2cos y x =至多一个交点的充要条件是( ).

A .k ∈[-21,21

] B .k ∈(-∞,-21]∪[21

,+∞) C .k ∈[-

22,2

2

]

D .k ∈(-∞,-

22]∪[2

2

,+∞) 8.已知点P (x ,y )在曲线2cos sin x y θθ

=-+??

=?(θ为参数)上,则y

x 的取值范围为( )

A .30,

3?????? B .3,03??-???? C .33,33??-????

D .33,33??

- ? ??? 二、填空题 9.将参数方程3cos 3sin x y θθ

=??

=?02πθ?

?≤≤ ??

?化为普通方程是________.

10.弹道曲线的参数方程为????

???2

2

1 sin = cos =00gt -t v y t v x αα

(t 为参数,a ,v 0,g 为常数),当炮弹达到

最高点时,炮弹飞行的水平距离为 .

11.当参数m 随意变化时,则抛物线2

2

(21)1y x m x m =+++-的顶点的轨迹方程为___________。

12.已知曲线2

2()2x pt t p y pt

?=?=?为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,

120t t +=且,那么MN =_______________。

三、解答题

13.分别在下列两种情况下,把参数方程1()cos 21()sin 2

t t t t x e e y e e θθ--?=+????=-??化为普通方程:

(1)θ为参数,t 为常数;(2)t 为参数,θ为常数;

14.在椭圆

22

11612

x y +=上找一点,使这一点到直线2120x y --=的距离的最小。

15.如图,过抛物线y 2

=2px (p >0)的顶点作两条互相垂直的弦OA 、OB . (1)设OA 的斜率为k ,试用k 表示点A 、B 的坐标; (2)求弦AB 中点的参数方程.

【答案与解析】

1.【答案】A

【解析】 消去参数t ,将其化为普通方程,并注意x 、y 的范围即可确定。

由题中的参数方程2

2

32

1

x t y t ?=+??=-??(0≤t ≤5),消去参数t ,得x -3y=5。又0≤t ≤5,故题中所给曲线是线段。

2.【答案】B

【解析】 转化为普通方程:2

1y x =+,当34x =-时,1

2

y = 3.【答案】C

【解析】 转化为普通方程:2y x =-,但是[2,3],[0,1]x y ∈∈ 4.【答案】C

【解析】抛物线为y 2

=8x ,准线为x =-2,|PF |为P (4,a )到准线x =-2的距离,即6. 5.【答案】D

【解析】 222

22

,11,1,0,011,0244

y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得 6.【答案】A

【解析】 设x ―1=2cos θ,y ―1=2sin θ,(0≤θ<2π),

∴22(sin cos )222sin 4s x y πθθθ?

?

=+=++=++ ??

?

∴s 的最小值为222-。故选A 。 7.【答案】A

【解析】曲线的普通方程为1 =3

+42

2y x .与直线方程联立,得一元二次方程.令判别式

Δ≤0,得-21≤k ≤2

1

8.【答案】C 【解析】 曲线2cos sin x y θ

θ

=-+??

=?(θ为参数)是以(-2,0)为圆心,

以1为半径的圆,设

y k x =,求y

x

的取值范围,即求当直线y=kx 与圆有公共点时k 的取值范围,如图。

9.【答案】x 2+y 2

=9(0≤x ≤3,0≤y ≤3) 【解析】 ∵02

π

θ≤≤

∴0≤x ≤3,0≤y ≤3,x 2

+y 2

=9cos 2

θ+9sin 2θ=9。

10.【答案】g

v ααcos sin 20.

【解析】由y =v 0t sin -

2

1gt 2

知, 当炮弹达到最高点时,t =g

v

sin 0α,代入得x =v 0cos

g

v sin 0α=g v ααcos sin 20.

11. 【答案】3

04

x y --

= 【解析】把所求轨迹上的动点坐标x ,y 分别用已有的参数m 来表示,然后消去参数m ,便可得到动点的轨迹方程。

抛物线方程可化为2

15()2

4

y x m m =++-- 它的顶点坐标为15(,)24m m --

-- 消去参数m 得:34

x y -=

故所求动点的轨迹方程为3

04

x y --=。 12.【答案】14p t

【解析】 显然线段MN 垂直于抛物线的对称轴。即x 轴,121222MN p t t p t =-= 13.【解析】(1)当0t =时,0,cos y x θ==,即1,0x y ≤=且; 当0t ≠时,cos ,sin 11()()2

2

t t

t t x y e e e e θθ--=

=

+-

而22

1x y +=,即

2

2

22111()()4

4

t

t t t x y e e e e --+

=+-

(2)当,k k Z θπ=∈时,0y =,1()2

t t

x e e -=±

+,即1,0x y ≥=且; 当,2k k Z πθπ=+∈时,0x =,1()2

t t

y e e -=±-,即0x =;

当,2k k Z πθ≠∈时,得2cos 2sin t t

t t x e e y e e θθ--?+=???

?-=??,即222cos sin 222cos sin t t x y e x y e θθ

θθ-?=+????=-

??

得222222(

)()cos sin cos sin t

t

x y x y e e

θθθθ

-?=+- 即22

2

21cos sin x y θθ

-=。 14.

【解析】设椭圆的参数方程为4cos x y θ

θ

=???=??

,d =

4545cos 3sin 32cos()3553

θ

θθθ=

--=+- 当cos()13

π

θ+=时,min 45

5

d =

,此时所求点为(2,3)-。 15.【解析】 (1)联立方程组2

2y kx

y px

=??

=?,得22A p x k =

,2A p y k =,以1k

-代替上式 中的k ,得方程组

212y x k y px ?

=-?

?

?=?

。解得22B x pk =,2B y pk =-。 ∴2

22,p p A k

k ??

???,2

(2,2)B pk pk -。 (2)由(1)可得2

422

22(1)

22A B M p pk

x x p k k x k +++===

, 222(1)22A B M p

pk

y y p k k y k -+-===。 ∴弦AB 中点M 的轨迹的参数方程为42

2

(1)

(1)p k x k p k y k ?+=???-?=??

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

§2.2.3直线的参数方程及应用(第2课时)1

§2.2.3直线的参数方程及应用(第2课时) 【学习目标】 1. 掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 【学习重点】 1. 直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程解决有关数学问题; 【学习难点】 1. 直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程解决有关数学问题; 【学习过程】 一、学前准备: 1、若由a b →→ 与共线,则存在实数λ,使得 , 2、设e → 为a → 方向上的 ,则a → =︱a → ︱e → ; 3、经过点00(,)M x y ,倾斜角为()2 π αα≠ 的直线的普通方程为 。 二、新课导学 ◆探究新知(预习教材P 35~P 39,找出疑惑之处) 1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程。 如图,在直线上任取一点(,)M x y ,则0MM = , 而直线l 的单位方向向量e → =( , ),因为0MM e → ,所以存在实数t R ∈, 使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点 00(,)M x y ,倾斜角为()2 π αα≠ 的直线的参数方程的标准式为: ???= = y x 2.方程中参数t 的几何意义是什么? 直线上任意动点到定点P 0的距离________||0=P P 3. 直线参数方程的一般式: (1)过点P 0(00,y x ),斜率为a b k = 的直线,记直线倾斜角α,则=αtan ,直线参数方程的一般式是 ? ? ?+=+ =t y y t x x ()()00 (t 为参数),直线上任意动点到定点P 0的距离||________||0t P P =, (2)直线参数方程的一般式是 ???+=+=bt y y at x x 00 (t 为参数), 直线上任意两点A,B 对应参数分别为21,t t ,则它们到P 0的 距离分别为: |t -t |________|B P -A P ||AB ||,|________|||,|________||21002010====弦长t B P t A P ||________||________||________||||212100t t t t B P A P =?=? (3)中点公式:)M(),,(),,(20201010则中点bt y at x B bt y at x A ++++ |2 |________||2 10t t M P += 二、直线参数方程的应用 题组一。.求直线的参数方程的标准式及t 的几何意义的应用 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意义,说明∣t ∣的几何意义.

极坐标和参数方程知识点总结大全

极坐标与参数方程 一、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的 函数,即 ?? ?==) () (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习 1.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ) A . 23 B .23- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1(,2 B .31(,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在 圆上作匀速圆周运动,设,则。 这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是 转过的角度(称为旋转角)。 圆心为,半径为的圆的普通方程是, 它的参数方程为:。 4.椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为 其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为 其中参数仍为离心角,通常规定参数的范围为∈[0,2)。 注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但 当时,相应地也有,在其他象限内类似。 5.双曲线的参数方程

曲线在点处的法平面方程为

B020005 一、1、曲线x y R y z R 222222+=+=???在点R R R 222,,?? ???处的法平面方程为 (A )-+-=x y z R 2 (B )x y z R -+=32 (C )x y z R -+=2 (D )x y z R ++=32 答:( ) 三、1、 若u =f (t )是(-∞,+∞)上严格单调的奇函数,Ω是球体(x -x 0)2+(y -y 0)2+(z -z 0)2≤R 2 (R >0),若,试问a ,b ,c ,d 应满足什么条件。 2、设f x ()是以3为周期的周期函数,又设f x ()在任意有限闭区间[,]a b 内可积。试写出f x ()的傅立叶系数的计算公式。 四、1、z xy =ln()2,求z z x y ,。 2、设z ax bxy cy dx ey f =+++++22222,求 ????z x z y ,。 3、设f x y (,)有连续偏导数,u f e e x y =(,),求d u 。 4、设曲线C 的方程为x 6+y 6=1.求曲线积分 5、求微分方程''-=y a y x 2sin 的一个特解,其中a 为非零实常数。 6、求微分方程tx x ''-'=0的通解。 7、求极限lim x y x xye xy →→-+00 416 。 8、 设Ω是由及z =1所围的有界闭区域,试计算. 五、1、设L 为在右半平面内的任意一条闭的光滑曲线,试证明曲线积分 2、如果幂级数∑∞=0n n n x a 在2-=x 处条件收敛,那么该级数的收敛半径是多少? 试证之. 3、验证:y x y x 12==cos ,sin ωω都是微分方程''+=y y ω20的解,并写出该方程的通解。 4、求证函数系{}sin ,sin ,,sin ,x x nx 2??????是[]0,π上的正交函数系。 5、 试证对于空间任意一条简单闭曲线C ,恒有∮c (2x +y )d x +(4y +x +2z )d y +(2y -6z )d z =0. 六、1、 利用二重积分计算由直线y =x ,y =5x 及x =1所围成区域的面积。 2、在空间找一点P x y z (,,),使它到三个平面x y z x y z y z ++=-+=-=111,,的距离平方和为最小。 3、求微分方程''+'-=y y y 230的一条积分曲线,使其在原点处与直线y x =4相切。 4、求曲线族y Cx =3的正交轨线族(即与曲线y Cx =3 互相正交的曲线族)所满足的微分方程。

直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程,圆锥曲线的参数方程及其应用 一. 教学内容: 直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。 [基本知识点] (1)直线的参数方程 <1>标准形式: :),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α )t (sin t y y cos t x x 00为参数???+=+=αα <2>一般形式 )1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且 (2)参数t 的几何意义及其应用 标准形式: )y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα 的数量的有向线段到直线上动点M M y)(x,M 0 :t,M M 0故即= <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2| <2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0

<3>设弦M 1,M 2中点为M ;则点M 相应的参数 2t t t 2 1M += (3)圆锥曲线的参数方程 <1>)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+ 轴正方向的旋转角 的几何意义动半径对于其中x α <2> 其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222 ααα???===+ 角)。 <3>)(btg y asec x 为参数双曲线的参数方程为ααα???== <4>抛物线y 2=2px 的参数方程为 )(t pt 2y pt 2x 2 为参数?????== (4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。 <2>互化公式

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ x x

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

【原创教案】二、《曲线的参数方程》教案

二、《曲线的参数方程》教案 时间:2 授课班级:高二(8)班 一、教学目标: 理解参数方程的概念;掌握参数方程化为普通方程的几种常见 的方法;会选取适当的参数化普通方程为参数方程。 二、重点、难点:能选择适当的参数写出曲线的参数方程,参数方程与普通方程 的互化和互化的等价性。 三、课时安排:1课时 四、教学过程 (一)创设情境 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物资准确落于灾区指定的地面(不计空气阻 力),飞行员应如何确定投放时机呢? 即求飞行员在离救援点的水平距离多远时,开始投放物 资? (二)探索研究导出新概念 1、参数方程的定义: 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的 函数② ???==) ()(t g y t f x , 并且对于t 的每一个允许值,由方程组②所确定的点),(y x M 都在这条曲线上,那么方程②就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 例1 已知曲线C 的参数方程是???+==1 232t y t x (t 为参数). (1)判断点)1,0(1M ,)4,5(2M 与曲线C 的位置关系; (2)已知点),6(3a M 在曲线C 上,求a 的值; (3)将参数方程化为普通方程,并判断曲线C 表示什么图形。 2、参数方程和普通方程的互化: (1)参数方程通过消元法消去参数化为普通方程 例2 把下列参数方程化为普通方程,并说明它们各表示什么曲线:

直线的参数方程及其应用(不错哦,放心用)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α x

1、求下列各平面的坐标式参数方程和一般方程(精)

1、求下列各平面的坐标式参数方程和一般方程 (1)通过点)1,1,3(1M 和)0,1,1(2-M 且平行于矢量}2,0,1{-的平面; (3)已知四点A (5,1,3),B (1,6,2),C (5,0,4),D (4,0,6),求通过直线AB 且平行直线CD 的平面,并求通过直线AB 且与△ABC 所在平面垂直的平面 2、求下列平面的一般方程 (1)过点M (3,2,-4)且在X 轴和Y 轴上截距分另为-2和-3的平面 (2)已知两点M 1(3,-1,2),M 2(4,-2,-1),通过M 1且垂直于M 1M 2的平面 (3)过点M 1(3,-5,1)和M 2(4,1,2)且垂直于平面x-8y+3z-1=0的平面 3、将下列平面的一般方程化为法式方程 (1)x-2y+5z-3=0 (2) x+2=0 4、求自坐标原点向平面2x+3y+6z-35=0所引垂线的长和批向平面的单位法矢量的方向余弦 5、已知三角形顶点为A(0,-7,0),B(2,-1,1),C(2,2,2),求平面于△ABC 所在的平面且与它相距为 2个单位的平面方程 6、求在X 轴上且到平面12x-16y+15z+1=0和2x+2y-z-1=0距离相等的点 7、已知四面体的四个顶点为S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),计算从顶点S 向底面ABC 所引的高 8、求中心在C3,-5,-2)且与平面2x-y-3z+11=0相切的球面方程。 9、求与9x-y+2z-14=0和9x-y+2z+6=0平面距离相等的点的轨迹 10、判别点M(2,-1,1)和N(1,2,-3)在由下列相交平面所构成的同一个二面角内,还是分别在 相邻二面角内,或是在对顶的二面角内? (1)0323:1=-+-z y x π与042:2=+--z y x π (2)0152:1=-+-z y x π与01623:2=-+-z y x π 11、分别在下列条件下确定l,m,n 的值使lx+y-3z+1=0与7x-2y-z=0表示二平行平面 12、求下列两平行平面19x-4y+8z+21=0和19x-4y+8z+42=0间的距离 13、求两平面2x-3y+6z-12=0和x+2y+2z-7=0所成的角 14、求过Z 轴且与平面0752=--+z y x 成 60角的平面 15、 求下列各直线的方程 (1)通过点),,(0000z y x M 且平行于两相交平面0:1=+++i i i i D z C y B x A π)2,1(=i 的 直线 (2)通过点M (1,0,-2)且与两直线 11111-+==-z y x 和0 1111+=--=z y x 垂直的直线 16、求下列各平面的方程: (1) (1) 通过点P (2,0,1),且又通过直线 3 2121-=-=+z y x 的平面 (2) (2) 通过直线113312-+=-+=-z y x 且与直线???=--+=-+-052032z y x z y x 平行的平面 (3) (3) 通过直线 2 23221-=-+=-z y x 且与平面3x+2y-z-5=0垂直的平面 (4) (4) 通过直线???=-+-=+-+014209385z y x z y x 向三坐标面引的三个射影平面 17、化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦 (1)???=---=+-+0 323012z y x z y x

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

直线的参数方程及应用

直线的参数方程及应用 基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l ? ??+=+=αα s i n c o s 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:0y )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=00y t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1, ∣P 1P 2∣=∣ t 2-t 1∣ 问题4: 一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点 则t 3=2 21t t + 基础知识点拨: 1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义. 例2:化直线2l 的参数方程? ??+=+-= t 313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 你会区分直线参数方程的标准形式? 例3:已知直线l 过点M 0(1,3),倾斜角为 3 π ,判断方程??? ? ???+=+=t y t x 2332 1 1(t 为参数)和方 程? ??+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出 方程中的参数t 是否具有标准形式中参数t 的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题. x y ,) x x

极坐标与参数方程知识点总结

第一部分:坐标系与参数方程 【考纲知识梳理】 1平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换? :严"一?x,(匸〉0 )的作用下,点p(x, y)对应到点 y=U?y,(A;>0) ' Px,y■,称「为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. M於①] 2?极坐标系的概念 (1)极坐标系如图(1)所示,在平面内取一个定点0 ,叫做极点,自极点0引一条射线Ox, 叫做极轴;再选定一个长度单位,一 个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系? 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可?但极坐标系和平面直角坐标系都是平面坐 标系? (2)极坐标 设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0灿始边,射线0M为终边的角? x0M叫做点M的极角,记为—有序数对几二叫做点M的极坐标记作M匸门?一般地,不作特殊说明时,我们认为「_ 0门可取任意实数?特别地,当点M在极点时,它的极坐标为0,匚< 三R 。和直角坐标不同,平面内一个点的极坐标有无数种表示?如果规定T -0,0"::^ ::: 2-,那么除极点外,平面内的点可用 唯一的极坐标几二表示;同时,极坐标订二表示的点也是唯一确定的 3?极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同 的长度单位,如图(2)所示: (2)互化公式:设M是坐标平面内任意一点,它的直角坐标是x, y,极坐标是:::0,于 是极坐标与直角坐标的互化公式如表: 点M 直角坐标(X, y )极坐标(巴日) 互化公式P cos日= Psi n 日P2 =x2+ y2 tan? - y (x 式0 ) x 在一般情况下,由tan二确定角时,可根据点M所在的象限最小正角4?常见曲线的极坐标方程

2知识讲解 曲线的参数方程

曲线的参数方程 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

求曲线方程的基本方法--坐标法

求曲线方程的基本方法——坐标法 借助坐标系研究几何图形的方法叫做坐标法.用坐标法研究几何图形的知识形成了一门叫做解析几何的学科. 平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 例1 设A 、B 两点的坐标是(10)(10)-,,,,若1MA MB k k =- ,求动点M 的轨迹方程. 解:设M 的坐标为()x y ,,M 属于集合{}|1MA MB P M k k ==- . 由斜率公式,点M 所适合的条件可表示为 1(1)11 y y x x x =-≠±-+ ,整理后得 221(1)x y x +=≠±. 下面证明221(1)x y x +=≠±是点M 的轨迹方程. (1)由求方程的过程可知,M 的坐标都是方程221(1)x y x +=≠±的解; (2)设点1M 的坐标11()x y ,是方程221(1)x y x +=≠±的解, 即221111(1)x y x +=≠±,221111(1)y x x =-≠±,11 11111 y y x x =--+ , ∴111M A M B k k =- . 由上述证明可知,方程221(1)x y x +=≠±是点M 的轨迹方程. 点评:所求的方程221x y +=后面应加上条件1x ≠±. 例2 点M 到两条互相垂直的直线的距离相等,求点M 的轨迹方程. 解:取已知两条互相垂直的直线为坐标轴,建立直角坐标系,如图1所示. 设点M 的坐标为()x y ,,点M 的轨迹就是到坐标轴的距离相等的点的集合{}|P M MR MQ ==,其中Q R ,分别是x 轴、y 轴上的过点M 的垂线的垂足. 因为点M 到x 轴、y 轴的距离分别是它的纵坐标和横坐标的绝对值,所以条件MR MQ =可写成x y =, 即0x y ±=.①

曲线的参数方程知识讲解

曲线的参数方程 编稿:赵雷审稿:李霞 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

相关主题
文本预览
相关文档 最新文档