以煤为原料合成氨工艺流程
- 格式:docx
- 大小:36.66 KB
- 文档页数:2
合成氨的发展历程及煤合成氨原理一、合成氨的历程1.怎样固氮——问题浮出水面氨(Amonia),分子式NH3,1754 年由英国化学家普里斯特利(J.Joseph Priestley)加热氯化铵和石灰石时发现。
1784 年,法国化学家贝托雷(C.L.Berthollet)确定了氨是由氮和氢组成的。
从那以后很长一段时间,氨的主要来源是氮化物,而氮化物的主要来源是自然界中的硝石矿产。
19 世纪以来,人类步入了现代化的历程。
随着农业的发展,氮肥的需求量在不断提高;同时随着工业的突飞猛进,炸药的需求量也在迅速增长。
1809 年,在智利发现了一个很大的硝酸钠矿产地;但是面对人类不断膨胀的需求,自然界的生物和矿产资源毕竟有限。
然而全世界无论何处,大气的五分之四都是氮,如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。
因此将空气中丰富的氮固定下来并转化为可被利用的形式,成为一项受到众多科学家注目和关切的重大课题,而合成氨,作为固氮的一种重要形式,也变成了19 至20 世纪化学家们所面临的突出问题之一。
2.历经磨难,终成正果——从实验室到工业生产在合成氨研究屡屡受挫的情况下,德国物理化学家F·哈伯(Fritz Haber)知难而进,对合成氨进行了全面系统的研究和实验,决心攻克这一令人生畏的难题。
1912 年在德国奥堡(Oppau)建成世界上第一座日产30t合成氨的装置,1913 年9 月9 日开始运转,氨产量很快达到了设计能力。
一百多年来无数科学家们合成氨的设想,终于得以实现。
合成氨历经磨难,终于从实验室走向了工业化,它成了工业上实现高压催化反应的一座里程碑。
由于哈伯和博施的突出贡献,他们分别获得1918、1931 年度诺贝尔化学奖金。
3.艰难的探索N2+3H2=2NH3氨的合成反应式:N2+3H2=2NH3合成氨的化学原理,写出来,不过这样一个方程式;但就是这样一个简单的化学方程式,从实验室研究到最终成功、实现工业生产,却经历了约150 年的艰难探索。
1. 合成氨工业(1)简要流程(2)原料气的制取N2:将空气液化、蒸发分离出N2或将空气中的O2与碳作用生成CO2,除去CO2后得N2。
H2:用水和燃料(煤、焦炭、石油、天然气)在高温下制取。
用煤和水制H2的主要反应为:(3)制得的H2、N2需净化、除杂质,再用压缩机制高压。
(4)氨的合成:在适宜条件下,在合成塔中进行。
(5)氨的分离:经冷凝使氨液化,将氨分离出来,提高原料的利用率,并将没有完全反应的N2和H2循坏送入合成塔,使之充分利用。
2.合成氨条件的选择(1)合成氨反应的特点:合成氨反应是一个放热的、气体总体积缩小的可逆反应:(2)合成氨生产的要求:合成氨工业要求:○1反应要有较大的反应速率;○2要最大限度的提高平衡混合物中氨气的含量。
(3)合成氨条件选择的依据:运用化学反应速率和化学平衡原理的有关知识,同时考虑合成氨生产中的动力、材料、设备等因素来选择合成氨的适宜生产条件。
反应条件对化学反应速率的影响对平衡混合物中NH3的含量的影响合成氨条件的选择增大压强有利于增大化学反应速率有利于提高平衡混合物中NH3的产量压强增大,有利于氨的合成,但需要的动力大,对材料、设备等的要求高,因此,工业上一般采用20MPa—50MPa的压强升高温度有利于增大化学反应速率不利于提高平衡混合物中NH3的产量温度升高,化学反应速率增大,但不利于提高平衡混合物中NH3的含量,因此合成氨时温度要适宜,工业上一般采用500℃左右的温度(因该温度时,催化剂的活性最强)使用催化剂有利于增大化学反应速率没有影响催化剂的使用不能使平衡发生移动,但能缩短反应达到平衡的时间,工业上一般选用铁触媒作催化剂,使反应在尽可能低的温度下进行。
○1温度:500℃左右○2压强:20MPa—50MPa ○3催化剂:铁触媒除此之外,还应及时将生成的氨分离出来,并不断地补充原料气,以有利合成氨反应。
(6)合成氨生产示意图3.解化学平衡题的几种思维方式(1)平衡模式思维法(三段思维法)化学平衡计算中,依据化学方程式列出“起始”“变化”“平衡”时三段各物质的量(或体积、或浓度),然后根据已知条件建立代数式等式而进行解题的一种方法。
简述合成氨的生产工艺流程摘要:氨作为重要的化工产品,在人们的生产生活中占有重要地位。
农业中用到的大部分氮肥,包含尿素、硝酸铵、氯化铵等复合肥都是以氨为原料的。
据统计,世界每年合成氨产量不少于一亿吨,大部分都是用做原料来生产化肥,所以合成氨的重要性不言而喻,本文将结合安徽晋煤中能化工股份有限公司的车间操作规程,对合成氨的生产工艺流程进行分析和整理。
关键词:合成氨;生产工艺;反应一、氨合成的基本原理氨合成反应是在高温、高压、并有催化剂存在条件下进行的放热、体积缩小、可逆的反应。
其化学反应式如下:N2+3H22NH3+Q由于氨合成反应是可逆、放热、体积缩小的反应,根据化学平衡移动定律(勒沙特列原理),提高压力,降低温度,降低进塔氨含量,控制合适的氢氮比,有利于反应向生成氨的方向进行,即有利于氨的合成。
二、氨合成的反应机理在催化剂的作用下,氢与氮生成氨的反应是一多相气体催化反应,多相气体催化反应的历程一般由以下几个步骤所组成:1、气体反应物扩散到催化剂外表面;2、反应物自催化剂外表面扩散到毛细孔内表面;3、气体被催化剂表面(主要是内表面)活性吸附;4、吸附状态的气体在催化剂表面上起化学反应,生成产物;5、产物自催化剂表面解吸;6、解吸后的产物从催化剂毛细孔向外表面扩散;7、产物由催化剂外表面扩散至气相主流。
以上七个步骤是氢和氮自气相空间向催化剂表面接近,其绝大部分自外表面向催化剂的毛细孔的内表面扩散,并在表面上进行活性吸附。
吸附氮与吸附氢及气相氢进行化学反应,依次生成NH, NH2, NH3,后者自表面脱附后进入气相空间。
三、安徽晋煤中能化工股份有限公司氨合成的工艺流程氨的合成主要包含脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收制冷及输入氨库和氨吸收八个工序,下面主要针对徽晋煤中能化工股份有限公司的氨的合成部分进行阐述。
来自压缩七段出口的新鲜气,经七段油分分离后,在冷交气体出口氨冷前补入,进入氨冷器冷却后,进入氨分离器分离液氨,并在下部进入冷交换器管内上行(降低水冷后气体),由上部出来进入循环机加压,加压后的气体先进入油分离器分离油滴,然后进入热交与水加热器来的热气预热交换后进入合成塔(为调节炉温在油分离后至水冷进口设置一近路管线,在油分离器后至合成塔底部及g3冷激设副线以便调节催化剂床层温度)。
煤制尿素工艺流程
1.原料准备:选用适合的煤炭作为主要原料,并对其进行破碎、煤磨
和煤岩脱硫等预处理工序,以保证原料的质量和适宜性。
2.煤气化:将经过预处理的煤料送入煤气化炉中,在高温和一定压力
下进行气化反应,将煤转化为合成气体(即煤气)。
3.气体净化:合成气中含有大量的杂质,需要经过净化工序进行处理。
一般包括除尘、脱硫、脱碳等步骤,以提高合成气的纯度和质量。
4.合成氨的制备:经过气体净化的合成气通过催化转化,使其转化为
合成氨。
这个步骤通常被称为“组合反应”或“氨合成”,需要使用高温
高压的环境条件和合适的催化剂。
5.尿素合成:将制备好的合成氨与二氧化碳进行反应,生成尿素。
尿
素合成反应通常是在低温下进行的,需要通过反应器、冷凝器、渗透器等
设备来控制反应温度、压力和流体流动等参数。
6.尿素精制:尿素合成反应生成的产物中含有一些杂质和副产物,需
要进行精制以提高尿素产物的纯度和质量。
精制过程通常包括结晶、纯化
和脱水等步骤。
7.产品包装和储存:经过精制的尿素产物通常以固体形式进行包装,
并进行适当的储存和运输,以便销售和使用。
以上是煤制尿素的主要工艺流程。
在实际操作中,还需要考虑原料和
中间产物的输送、控制和再利用,以及废气、废水和废渣的处理等环保问题。
此外,还需要对整个工艺流程进行安全检查和控制,以确保操作人员
及设备的安全。
煤制尿素工艺的技术和经济指标也是关键的研究和改进对象,涉及到原料利用率、能耗、产品质量和成本等方面的考虑。
第一章公司简介湖北新洋丰肥业股份有限公司是一家以生产高浓度复合肥为主导产品的大型民营磷化工企业,在湖北荆门、湖北宜昌、山东菏泽和四川雷波建有大型的现代化生产基地;历经多年的快速发展,公司现有资产总额35亿元,员工近5000名,年生产高浓度复合肥能力400万吨,并配套了18万吨/年的合成氨、160万吨/年的硫酸、3000万条编织袋等生产原料项目;公司前身是荆门市第二磷肥厂,成立于1982年,是一个投资总额50万元、员工20名、年产普钙5000吨、年销售额不足100万元的手工作坊式乡办小磷肥厂;经过20多年的发展,公司顺利实现了由单质肥向复合肥、由低浓度向高浓度、由单一产品向系列产品的转型,产品质量、安全生产、环境治理齐头并进,企业规模不断扩大,行业地位显着前移,位居“中国化工100强”、“中国化肥十强”、“全国磷复肥企业前三强”,是湖北省磷复肥领头企业, 荆门市属工业企业第一名,其三元复合肥和磷酸一铵产销量连续多年全国第一;公司先后荣获“中国名牌产品”、“中国驰名商标”、“国家免检产品”、“全国科技进步先进单位”、“全国守合同重信用企业”等荣誉称号;“洋丰”牌、“澳特尔”牌复合肥畅销全国,并远销日本和东南亚,深受用户青睐;第二章公司文化理念作为全国知名的磷复肥企业,公司以服务“三农”为己任,以“百年洋丰、百亿洋丰”为目标,根据行业现状、发展规律,并积极响应湖北省委、省政府要做大做强我省磷化工产业、变资源优势为经济优势和市委、市政府“加快荆门崛起”的号召,结合企业实际,调整制定了“十一五”发展规划,力争到2010年全面实现“1221工程”一主、二辅、二牌、一股:一主就是持续做大磷化工主业,并在精细化工上有所突破,使化工产业实现年销售收入100亿元;二辅就是把矿产业和房地产业作为两大辅业,发展与公司主业相匹配的磷矿、硫矿、煤矿等矿业,增强主业核心竞争力,确保主业顺利实现目标;发展房地产业,力争实现年销售收入20亿元,成为公司新的经济增长点;二牌就是创“中国名牌”和“中国驰名商标”2007年9月,已经获得“中国名牌”和“中国驰名商标”;在此基础上,力争使洋丰商标成为世界着名商标;一股就是确保有一支股票上市;“十二五”和“十三五”期间,公司将继续做大做强磷化工主业,进一步推进矿产和房地产两大辅业发展,并树立房地产品牌,增强主业核心竞争力,提高抗风险的能力,力争到2012年使“两产”产生3个亿的利润,到2015年使主业实现利润10亿元,到2020年使辅业年销售收入达到100亿元,整个洋丰公司实现年销售收入200亿元;第三章合成氨厂简介湖北新洋丰肥业股份有限公司合成氨厂于2005年4月动工兴建,2006年3月份一次开车成功,总投资4亿元,占地400亩,年生产合成氨15万吨,年生产蒸汽50万吨,循环利用热能发电2500万KWH;本厂共有7个车间型煤车间、造气车间、净化车间、压缩车间、合成车间、锅炉车间、电仪车间,以无烟煤和水蒸汽为原料,在高温、高压和催化剂的作用下,通过一系列的物理和化学反应合成制取液氨,直接供生产复合肥使用;本厂技术先进,设备一流,采用国内最先进的DCS控制系统,对生产环节实行电脑全程控制,自动化程度很高;本厂管理科学,效益显着,产品全部供公司所用,可大大降低生产成本,极大增强了洋丰产品的市场竞争力;第四章合成氨厂工艺流程1.工艺流程简述原料车间制做的煤棒烘干后送到造气岗位,以空气、水蒸气为气化剂,在高温条件下制得合成氨所需的半水煤气;经脱硫岗位罗茨鼓风机加压后送到压缩岗位;经压缩机一、二段加压到送到变换岗位,制得合格的变换气;再到压缩机三、四段加压到送到脱碳岗位,制得合格的净化气,返回压缩机五段入口;经压缩机六段加压12MPa后送至铜洗岗位,制取合格的精炼气,然后再到压缩七进,经七出加压32MPa后送至合成岗位进行合成反应形成氨;造气岗位操作规程一、岗位任务和生产原理1.岗位任务以煤为原料,蒸汽、空气为气化剂,在高温高压,催化剂的条件下,经过固定层间歇气化法制得合成氨所需的半水煤气;2.生产原理C+O2=CO2+Q 2C+O2=2CO+Q 2CO+O2=2CO2+QCO2+C=2CO-Q C+2H2O=CO2+2H20-Q CO2+C=2CO-QC+H2O汽=CO+H2-Q C+2H2=CH4-Q CO+H2O汽=CO2+H2+Q二、工艺流程1.蒸汽流程:从大小锅炉,潜热锅炉和复合肥来的蒸汽经过减压后进入蒸汽缓冲罐,在罐内与来自煤气夹套汽包的蒸汽混合后,通过蒸汽总阀和上下吹蒸汽阀,分别从炉底和炉顶交替进入煤气发生炉;2.制气过程:向煤气炉内交替通入空气和蒸汽与灼烧的碳进行气化反应,吹风阶段生成的空气煤气,经除尘器后送入吹风气回收系统,或者直接经烟囱放空,或者根据需要回收一部分至气柜,用来调节氢氮比,上下吹阶段生成的水煤气经过除尘,显热回收,冷却除尘后去脱硫岗位,上述制气过程在微机控制下,往复循环进行,每一个循环六个阶段,其流程如下:A 上吹阶段加氮蒸汽通过蒸汽上吹阀,空气经过加氮阀→从炉底进入煤气炉→炉上部出→旋风分离器→总除尘器→联合废锅→洗气塔→气柜B 下吹阶段蒸汽通过下吹蒸汽阀→从上部进入煤气炉→炉下部出→旋风分离器→总除尘器→联合废锅→洗气塔→气柜C 二次上吹阶段蒸汽经上吹蒸汽阀→从炉底进入煤气炉→炉上部出→旋风分离器→总除尘器→联合废锅→洗气塔→气柜D 空气吹净阶段鼓风机来的空气→从炉底进入煤气炉→炉上部出→旋风分离器→吹风气回收系统或者放空三、岗位工艺指标一压力减压前蒸汽压力≦减压后蒸汽压力— MPa汽包夹套压力≦油泵油压5—16 MPa空气空管压力20—30KPa 气柜压力— KPa二成份1.半水煤气 O2≦% CO2≦11%2.合成循环氢根据合成反应情况而定3.夹套汽包炉水总碱度≦20mmol/L三温度煤气炉上行温度280—400℃煤气炉下行温度200—300℃洗气塔出口煤气温度≦50℃联合废锅出口软水温度≦100℃四其它汽包液位液位计1/2—2/3气柜高度 4000—7200m3鼓风机电机电流≦四、事故预案及处理一夹套汽包渴水视渴水轻重分别进行处理1.若汽包液位计无水,但夹套排污有水,夹套外形正常,立即停炉,向夹套缓慢进水至正常液位后开炉;2.若重度渴水,夹套排污无水,夹套外壳烧红,应立即停炉,拉空炭层,采用蒸汽降温严禁向汽包进水;净化车间分有四个岗位半脱岗位、变换岗位、变脱岗位、脱碳岗位一工艺指标1.脱硫出口压力≤≤350mmHg 脱硫进口压力≥200mmHg2.脱硫后H2S 90—110mg/Nm3.再生压力— MPa4.再生温度 30—45℃5.脱硫压差≤40 mmHg6.精脱后H2S 20mg/Nm7.变换中触媒温度由实际决定8.低变进口温度由实际决定,由生产科下达9.变换后 CO≤%10.变换气体出口温度≤38℃11.饱和温度145—150℃12.饱和热水总固体≤500mg/L13.变换蒸汽压力— MPa14.变换系统进口压力≤ MPa15.脱碳后CO2≤%16.脱碳系统进口压力≤ MPa17.碳酸丙烯酯成分≥98%18.稀液碳丙8—12%19.闪蒸压力— MPa20.真解风机出口压力 MPa脱硫岗位操作规程一、岗位任务和生产原理1.岗位任务将气柜来的半水煤气中硫化氢含量降到20mg/Nm 以下,以便维持整个生产工艺的稳定性;2.生产原理吸收反应:Na 2CO 3+H 2S=NaHS+NaHCO 3再生反应:NaHS+NaHCO 3+O 2=NaCO 3+S ↓+H 2O二、工艺流程气体流程:来自气柜的气体经过除尘塔除尘,然后到干式静电触焦塔,经罗茨鼓风机送到净氨塔吸收氨,吸收后到预脱硫塔进行脱硫除去大部分H 2S 气体,接着送到脱硫塔进一步脱除H 2S 防止H 2S 气体进入下一工段,经湿式静电触焦塔后进入出口气缓冲罐,最后去压缩;循环流程:碱液经泵从旧贫液槽输送到脱硫塔,吸收H 2S 气体后返回到旧富液槽,经再生泵送到喷射器喷射到旧再生糟,最后回到旧贫液槽;碱液经预脱硫泵送到预脱硫塔吸收H 2S 气体,后返回到新富液槽,经新再生泵打到喷射器喷射到新再生槽,最后回到新贫液槽,最后再生槽出来的液体到泡沫池,再到熔硫釜提硫;变换岗位操作规程一、岗位任务和生产原理1.岗位任务2.生产原理CO+H2O →CO2+H2+Q二、工艺流程气体流程:来自压缩工段的半水煤气,经除油器除油后由塔底进入饱和塔与热水逆流接触增湿升温后由塔顶出来,与适量蒸汽一起经汽水分离器分离水滴,然后进入主热交换热器内,由变换气加热至反应所需的温度,再通过电加热器进入中变炉上段进行变换反应,为调节床层温度,经中变炉上段变换反应后的气体进入中变炉下段,完成变换反应;变换气从中变炉下段出来后依次进入主热交管间冷却降温,进入第一水加热器进行调温后从顶部进入低变炉进一步完成变换反应,其中一小部分变换气不经一段冷却器而直接进入低变炉上段以调节上段床层温度,从上段出来的变换气经第二水加热器换热后进入低变炉下段,其中一小部分变换气不经二段冷却器换热直接进入低变炉下段以调节下段床层温度,出低变炉的变换气依次进入第一水加热器,热水塔,加热本系统循环水后进入第二水加热器,加热来自供水岗位的脱盐水以回收热量,变换气再经过冷却器降温,经过分离器分离液滴后去变脱工段;液体流程:循环热水从饱和热水塔底部通过“U”型水封溢流至热水塔,再由热水泵打入第一水加热器,二段冷却器,一段冷却器,加热后进入饱和塔循环使用;变脱岗位操作规程一、岗位任务和生产原理1.岗位任务2.生产原理吸收反应:Na2CO3+H2S=NaHS+NaHCO3再生反应:NaHS+NaHCO3+O2=NaCO3+S↓+H2O二、工艺流程从变换岗位来的变换气首先进入变脱塔进行合成前的最后一次脱硫,此工段的脱硫要求更高;从变脱塔出来后依次经过气体分离器和液体分离器,最后到精脱塔,出来后去压缩机;脱碳岗位操作规程一、岗位任务和生产原理1.岗位任务2.生产原理在不同压力下,碳酸丙烯酯吸收CO2的能力不同,加压吸收减压解析;二、工艺流程吸收:由压缩机四段出口来的变换气进入变换冷却器,冷却后的变换气进入变换分离器,分离夹带的油水后从脱碳塔底部进入脱碳塔与塔顶喷淋下来的碳丙液在填料段进行传质吸收,脱除CO2后的净化气经碳丙分离器分离气体中夹带的部分碳丙液后进入闪蒸洗涤塔,分离夹带的稀液后进入精脱硫槽,脱除硫化氢,脱硫后的净化气送入压缩机五段;解析再生:吸收CO2后的碳丙富液从脱碳塔出来,进入涡轮机进行能量回收后减压至 MPa 后,进入闪蒸槽进行闪蒸,使溶液在碳丙液中的大部分气体闪蒸出来,然后溶液进入再生塔,经过常解、真解、气提后的液体回到循环槽,通过涡轮机送到冷却器后再进入脱碳塔以此循环;三、岗位工艺指标一压力MPa进系统变换气压力≤ MPa 脱碳塔压差≤ MPa闪蒸压力— MPa二温度℃进入系统变换气温度冬≤30℃夏<40℃进入系统碳丙液温度冬20—30℃夏30—40℃罗茨鼓风机出口温度<80℃三成分变换气CO2 25—27% 净化气CO2≤%PC浓度>98% 含水<2%稀液浓度:高8—12% 低4—6%四液位脱碳塔1/2—2/3 闪蒸槽1/2—2/3洗涤塔1/2—2/3 循环槽>20%铜洗岗位操作规程一、岗位任务和生产原理1.岗位任务在高压、低温条件下用醋酸铜氨液以下简称铜液吸收来自压缩六段出口气中的一氧化碳、二氧化碳、氧气及硫化氢等有害气体制得合格的精炼气,吸收气体后的铜液经过减压,加热再生后循环使用,解吸的再生气经高位吸氨器净氨塔吸氨后送罗茨风机进口,净氨塔稀氨水送氨回收;2.生产原理2NH 3+CO 2+H2O →NH 42CO 3+QNH 42CO 3+CO 2+H 2O →2NH 4HCO 3+Q2NH 4HCO 3+H 2S=NH 42S +2H 2O+Q2CUNH 32AC+H 2S=CU 2S+2NH 4AC+2NH 3二、工艺流程本岗位的重要任务是将六段气在适当的温度和压力条件下用铜液洗去一氧化碳、二氧化碳等有害气体,使铜洗出口微量低于20ppm,确保合成触媒正常运行;1气体部分由压缩机加压至的原料气经六段油分分离油水后,进入铜洗塔底部与塔顶喷淋下来的铜液逆流接触,使气体中的一氧化碳、二氧化碳、氧气、硫化氢等被铜液吸收,铜洗后的精炼气,由塔顶导出,进入铜液分离器分离夹带的少量铜液后,回压缩工段; 2铜液部分生产原理铜液吸收了气体中的一氧化碳、二氧化碳、氧气、硫化氢等后,从塔底部流出,经减压阀减压后,送至回流塔顶部,喷淋而下与再生器解吸出来的再生气逆流相遇;吸收了再生气中的80%左右的氨,并回收大部分热量,铜液温度预热到60℃左右,铜液由回流塔出来从下加热器的底部进入列管内,被管间的热铜液间接加热,沿升液管向上,进入中间还原器再进入上加热器继续用蒸气在列管外加热后进入再生器,经过再生后的铜液由再生器下侧出来,进入化铜桶,然后进入下加热器,与回流塔下来的铜液逆流换热后,进入氨反应罐,补充气氨,然后部分进入铜液过滤器滤去铜液中的油污及沉淀物,再经过氨冷器降温降温进入铜液缓冲罐,通过铜液泵加压后进入铜洗塔循环使用;3再生部分铜液中有60%左右的一氧化碳、二氧化碳在回流塔内解析出来与再生气一道,从回流塔上部出来放空或回收,回收时再生气与高位吸氨器打上来的稀氨水混合后送至净氨塔底部上升与净氨塔顶部下来的脱盐水或稀氨水在填料层中逆流接触,吸氨后从顶部出进入再生气气液分离器分离水份后送至脱硫岗位罗茨鼓风机进口;回收的稀氨水通过氨水泵加压进入氨水冷却器、高位吸氨器、净氨塔打循环,达到合格的滴度送到氨回收岗位;三、岗位工艺指标一压力MPa铜塔进出口压差≤ MPa 铜泵进口压力:— MPa减压后蒸汽压力:— MPa 空压机出口压力≥再生压力:200—700mm水柱铜塔压力≤ MPa二温度℃回流塔进口温度:25—38 ℃回流塔出口温度:40—55℃下加热器出口温度:60—68℃上加热器出口温度:74—78℃再生器出口温度:74—78℃氨冷器出口温度:8—15℃电机温升:≤65℃三成份精炼气微量CO+CO2≤25ppm再生后铜液:TCU2:-L ;TNH3:9 mol/L;HAC:-L;残余CO2≤ MOl/L ;铜比5—8 净氨塔氨水滴度:由生产科另行下达指标四其它铜塔液位:料位计30—70% 净氨塔液位:1/3—4/5处电机电流:≤额定电流分析结果:1次/小时过滤器、缓冲罐排气、油分排油:1次/2小时铜分排放、铜塔液位计检查:1次/半小时四、正常操作要点一保证铜液质量1.按工艺指标要求调整铜液各组份,正常操作时,以控制铜比、入塔铜液温度符合工艺指标要求为主;2.调节再生器系统加热、温度,保证再生效果;3.收集后的铜液要求过滤后方可补入系统;二保证微量合格1.加强有关岗位间联系,发现来气质量变化采取补氨,增加铜液流量,加强再生效果,降低氨冷温度,以保证净化气体质量合格;2.根据系统负荷变化调节铜液流量,降低消耗;三严防铜塔带液和回流塔喷液1.保证铜液时时过滤,保持铜液的干净;2.定时检查,确保电容式液位计的准确性;3.开停车时,操作要平稳,防止带液和倒液;4.注意减压后压力的变化,防止高压气倒入低压系统,再生回流塔温度不易猛升,以防再生气压力突然升高,造成回流塔冒液;四巡回检查1.根据操作记录表,按时检查及记录;2.注意控制好各压力、温度、液位的变化;3.按时检查铜泵、氨水泵的运转情况;4.按时检查各设备厂、管道、阀门的运行情况;5.按时对铜分、油分、液位计排放检查五、事故预案及处理一铜液泵抽空事故1事故发生的现象1.铜液泵出口压力波动很大;2.电机电流下降;3.精炼气微量突然增高;2事故发生的原因1.向铜氨液中加氨操作不当,如过快过猛,使一部分液氨蒸发产生气氨,形成气阻引起铜泵抽空;另外,加氨时液氨已加完而未能及时向氨瓶补充液氨或关闭加氨阀,使气氨直接混入铜氨液中也会引起抽空;2.铜液氨冷器盘管泄漏引起铜泵抽空;铜液氨冷器盘管泄漏后,当氨总管压力高于管内铜氨液压力时,便有大量气氨漏入铜氨液中引起铜泵抽空;3.从液氨中解吸出来的氢气、氮气及惰性气体在管道内聚集,也可能造成铜泵抽空;4.铜泵出口止回阀失灵,倒泵操作时不协调,则可能使高压气倒入铜泵入口,造成铜泵抽空;5.铜泵开车时,过滤器放空阀未开,过滤器内贮存有气体会使铜泵抽空;6.化铜桶或过滤器堵塞;因铜液中的硫化铜、油污、填料纤维等杂物不断在化铜桶或过滤器中累积,若不及时清理,则造成铜泵入口压力下降,严重时便引起铜泵抽空;7.氨冷器盘管堵塞;当氨冷器温度控制过低时,铜液黏度便增大,同时会析出碳酸铵盐结晶将盘管堵塞,使铜泵进口压力降低而造成抽空;当氨冷温度低到一定程度时,还会使盘管内铜液冻结,直接造成铜泵抽空;8.水冷器排管堵塞;如果使用时间长或安装检修后未将铁屑、焊渣等杂质除净,有时也会造成排管被堵塞;9.再生器铜液出口管被堵;10.再生器出口至铜泵入口任一阀门阀头脱落均有可能引起铜泵抽空;3事故应急处理措施1.铜泵抽空后,中控应注意铜洗塔液位微量,并联系调度减量,如微量过高,停止向合成送气;2.铜洗现场人员检查各设备的排气阀、加氨阀、加空气阀,消除故障后,开启备机,降低微量,加量生产;二铜洗塔出口气体带铜液事故1事故发生的现象1.铜洗现场鼓泡瓶停止鼓泡或者排出铜液;2.铜洗中控自调阀不正常关小,系统压差增大;3.再生液位下降,再生压力升高;4.铜分排出大量铜液;5.铜液带入合成,导入阀前鼓泡瓶断气,并且有蓝色铜液溢出,油分可排出铜液,氨分离器液位计的液位变蓝;气体流经管道阻力增加,循环机压差增大;6.铜液带入合成塔,塔温剧降,系统压力上升;2事故发生的原因1.铜洗塔内填料层太高,塔顶分离空间太小;2.铜洗塔内填料局部堵塞,使阻力增大;3.铜洗塔内控制液面太高或产生假液位;4.铜液严重污染,严格控制进铜塔H2S、CO2气体含量,加强油分排污;5.铜液温度过低,或铜液总铜浓度过高;6.铜洗岗位控制不当;开关阀门过猛、过快,开停车加量过猛、过快;7.铜塔除沫器损坏;3事故应急处理措施1.铜洗岗位中控迅速降低铜洗塔液位,并联系调度减量或停车;2.铜洗现场人员迅速打开铜分排放,排净铜分铜液,防止继续带液;3.合成现场人员切导,开导入放空根据导入压力,若不超压,可在油分排油阀处排;4.合成现场人员紧停CC机,加强冷交放氨监控,开大近路;5.合成现场人员关合成塔进气阀和冷副阀,同时打开导入油分、循环气油分排净铜液;6.工长通知车间并协助现场人员处理,堵住处流沟道,并回收铜液;7.放掉油分铜液,塔前吹净后,以彻底清除系统内铜液;8.如铜液已进入合成塔,使催化剂中毒,则可在高温低压下用新鲜气进行置换和还原,以恢复催化剂活性;如处理无效,则只有更换催化剂;三铜洗塔出现假液位事故1事故发生的现象在操作中,关小或开大铜液减压阀时,铜洗塔液位计的液位不变化或升降速度迟缓,而且液面跳动不正常,同时再生器液位有显着变化2事故发生的原因1.液面计气、液相管线被油污等杂物堵塞;2.液面计气相阀填料少量泄漏,致使沿塔壁下淋的铜液串入液位计气相管而使液位计指示偏高;3.塔内严重堵塞,造成塔内液位分层,使液位计反映失灵;4.气体成分不好,硫化氢含量较高,造成铜液起泡,致使液面波动很大,液位计指示不准确;3事故应急处理措施1.事故发生后,铜洗中控应立即通知仪表工将液位计气、液相管线的气体排除,消除管道的堵塞,保证管线畅通,然后根据正确的液位进行操作;2.铜洗中控通知工长及现场,现场加强铜分排放,防止带液;3.铜洗中控密切监视再生器液位,阀门调节不能波动变化过大;4.铜洗中控密切监视减压阀门开启度,监视减压后的压力、铜塔进出口压差的变化;5.铜洗现场人员密切监视鼓泡瓶,防止带液;6.合成现场勤排导出油分,防止带液;四铜洗还原器近路阀泄漏1事故发生的现象当发现还原器近路阀兰,阀体大量泄漏,钳工无法处理时,需及时向中控、调度、当班工长汇报并要求紧急停车;2事故应急处理措施1.铜洗现场人员关铜洗塔进出口阀;2.铜洗现场人员停铜泵,关铜洗塔减压阀;3.铜洗现场人员关下加热器至氨反应罐连通阀;4.关加气氨、液氨阀,关导淋、排气阀;5.中控、工长迅速直到现场协助处理、上报及做好铜液回收;注意:如果开化铜桶迅速停用,切断进出口阀;五铜洗塔液位计指示读数与塔内真实液位不符1事故发生的现象在操作中,关小或开大铜液减压阀时,铜洗塔液位计的液位不变化或升降速度迟缓,而且液面跳动不正常,同时再生器液位有显着变化2事故发生的原因1.液面计气、液相管线被油污等杂物堵塞;2. 液面计气相阀填料少量泄漏,致使沿塔壁下淋的铜液串入液位计气相管而使液位计指示偏高;3. 塔内严重堵塞,造成塔内液位分层,使液位计反映失灵;4.气体成分不好,硫化氢含量较高,造成铜液起泡,致使液面波动很大,液位计指示不准确;3事故应急处理措施1. 事故发生后,铜洗中控应立即通知仪表工将液位计气、液相管线的气体排除,消除管道的堵塞,保证管线畅通,然后根据正确的液位进行操作;2.铜洗中控通知工长及现场,现场加强铜分排放,防止带液;3.铜洗中控密切监视再生器液位,阀门调节不能波动变化过大;4. 铜洗中控密切监视减压阀门开启度,监视减压后的压力、铜塔进出口压差的变化;5.铜洗现场人员密切监视鼓泡瓶,防止带液;6.合成现场勤排导出油分,防止带液;六回流塔喷液1 事故发生的现象铜氨液从回流塔喷出2事故发生的原因1.假液位或铜洗塔控制液位太低,高压气串入低压系统,使回流塔压力突然升高,气体流速过快将铜氨液喷出回流塔;2.原料气中CO、CO2含量高,铜氨液吸收了大量CO、CO2在再生器解吸逸出造成再生压力升高,将铜氨液喷出;3.空气鼓入量过多,使再生压力升高;4.加氨量太多,使再生压力升高;5.再生器温度突然升高,造成大量气体从铜氨液中解吸出来,将再生压力升高;6.铜洗塔升气管底部泄漏,高压气体随铜氨液一起进入回流塔,使再生压力升高;7.回流塔局部被结晶或其他杂质堵塞,使气液通道减小,气体流速过快,以致引起回流塔喷液;。
合成氨生产工艺合成氨生产原理:氨是一种重要的化工原料,特别是生产化肥的原料,它是由氢和氮合成。
合成氨工业是氮肥工业的基础。
为了生产氨,一般均以各种燃料为原料。
首先,制成含H2和CO等组分的煤气,然后,采用各种净化方法,除去气体中的灰尘、H2S、有机硫化物、CO、CO2等有害杂质,以获得符合氨合成要求的洁净的1:3的氮氢混合气,最后,氮氢混合气经过压缩至15Mpa以上,借助催化剂合成氨。
1、合成氨生产工艺介绍造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。
具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。
原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。
所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。
造气工艺流程示意图2、脱硫工段煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。
气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。
脱硫液再生后循环使用。
脱硫工艺流程图3、变换工段变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。
河南中科化工有限责任公司采用的是中变串低变工艺流程。
经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。
变换工艺流程图4、变换气脱硫与脱碳经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。
脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。
来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。
1.合成氨生产主要分几个工序?各部分任务如何?答:1)原料气制备即制备含有氢、氮的原料气。
用煤、原油、或天然气作原料,制备含氮、氢气的原料气。
(将煤和天然气等原料制成含氢和氮的粗原料气。
一般焦炭、无烟煤等固体燃料通常采用气化的方法制取合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
渣油可采用非催化部分氧化的方法获得合成气。
)2)净化因为无论用何种方法造气,原料气中都含有对合成氨反应过程有害的各种杂质,必须采取适当的方法除去这些杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
(1)脱硫过程无论以焦炭还是天然气为原料获得的原料气中,都含有一氧化碳、二氧化碳、硫化物等不利于合成反应的成分,需要在进入合成塔之前除去。
其中硫化物对蒸气转化都是有害的,故在原料气进入界区后,首先进行脱硫。
氧化锌脱硫就是H2S气体在固体ZnO上进行反应,生成H2O进入气相,ZnS则沉积在ZnO固体表面上。
脱无机硫温度约200℃。
(2)一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。
合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。
变换反应如下:CO+H2O→H2+CO2 ,ΔH=-41.2kJ/mol 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。
第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。
因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
(3)脱碳过程粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。
CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。
因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。
根据吸收剂性能的不同,可分为两大类。
合成氨工业综述1.氨的性质氨与酸或酸酐可以直接作用,生成各种铵盐;氨与二氧化碳作用可生成氨基甲铵,脱水成尿素;在铂催化剂存在的条件下,氨与氧作用生成一氧化氮,一氧化氮继续氧化并与水作用,便能得到硝酸。
氨在高温下(800℃以上)分解成氮和氢;氨具有易燃易爆和有毒的性质。
氨的自燃点为630℃,氨在氧中易燃烧,燃烧时生成蓝色火焰。
氨与空气或氧按一定比例混合后,遇明火能引起爆炸。
常温下氨在空气中的爆炸范围为15.5~28%,在氧气中为13.5~82%。
液氨或干燥的气氨,对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等有腐蚀作用【2】。
合成氨工艺流程在200MPa的高压和500℃的高温和催化剂作用下,N2+3H2====2NH3,经过压缩冷凝后,将余料在送回反应器进行反应,合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。
世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。
合成氨主要用作化肥、冷冻剂和化工原料生产方法生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。
天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。
随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
以无烟煤为原料生成合成氨常见过程是:造气 -> 半水煤气脱硫 -> 压缩机1,2工段 -> 变换 -> 变换气脱硫 ->压缩机3段 -> 脱硫 ->压缩机4,5工段 -> 铜洗 -> 压缩机6段 -> 氨合成 -> 产品NH3采用甲烷化法脱硫除原料气中CO. CO2 时, 合成氨工艺流程图如下: 造气 ->半水煤气脱硫 ->压缩机1,2段 ->变换 -> 变换气脱硫 -> 压缩机3段 ->脱碳 -> 精脱硫 ->甲烷化 ->压缩机4,5,6段 ->氨合成 ->产品NH32.合成氨工艺2.1依据合成条件—压力的不同的几种合成方法氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。
概述氮肥生产是高能耗的工业,其生产成本主要取决于系统的能耗,系统能耗除了与采用的工艺流程有关外,在很大程度上取决于系统控制的算法及稳定性,因此,化肥生产过程的控制系统对整个生产成本具有关键意义。
氮肥生产系统是由一个个相对独立的单元(工段)组成的。
各单元之间具有密切关系。
上一单元的产品或输出,即为下一单元的原料或输入,各个单元相互紧密联系形成一个连续的生产过程。
各个单元在地域上相互分散,但距离又不很远。
整个生产过程可以分为造气、脱硫、压缩、变换、脱碳、合成、甲醇、尿素等主要单元(工段)。
上述各单元(工段)的操作在工艺上密切联系,但在地域上分散、在控制上相对独立。
浙江威盛DCS在氮肥生产过程控制方面具有许多特点:●生产工艺的优化控制。
●各单元工艺参数的集中监控。
●在紧急情况下的遥控措施(阀门、马达等)。
●必要的报警和联锁。
●方便地查阅实时趋势和历史趋势。
●可以与企业管理网相连,实现数据共享。
1、造气造气一般是以块煤为原料,采用间歇式固定层常压气化法,在高温和程控机油传动控制下,交替与空气和过热蒸汽反应。
反应方程式:吹风C+O2→CO2+QCO2+C→2CO-Q上、下吹C+H2O(g)→CO+H2-QA、吹风阶段吹风阶段的主要作用是产生热量,提高燃料温度。
B、上吹(加氮)阶段上吹阶段的主要作用是置换炉底空气,吸收热量、制造半水煤气,同时加入部分氮气。
C、下吹阶段下吹阶段作用是制取半水煤气,吸收热量,使上吹后上移的气化层下移。
D、二上吹阶段二上吹的主要作用是将炉底及进风管道中煤气吹净并回收,确保生产安全。
E、吹净阶段吹净的主要作用是回收造气炉上层空间的煤气及补充适量的氮气,以满足合成氨生产对氮氢比的要求。
造气工艺流程图控制方案在生产中,一般均是多个造气炉组成一组。
在多台造气炉同时投入运行时,为了保证造气炉在吹风阶段的风量,必须对造气炉的吹风阶段进行顺序控制。
对造气炉进行吹风排序,也就是要实现吹风时间自寻优及动态跟踪。
合成氨的⼯艺流程.doc合成氨的⼯艺流程氨是重要的⽆机化⼯产品之⼀,在国民经济中占有重要地位。
除液氨可直接作为肥料外,农业上使⽤的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。
合成氨是⼤宗化⼯产品之⼀,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨⽤来⽣产化学肥料,20%作为其它化⼯产品的原料。
德国化学家哈伯从1902年开始研究由氮⽓和氢⽓直接合成氨。
于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。
这是⽬前⼯业普遍采⽤的直接合成法。
反应过程中为解决氢⽓和氮⽓合成转化率低的问题,将氨产品从合成反应后的⽓体中分离出来,未反应⽓和新鲜氢氮⽓混合重新参与合成反应。
合成氨反应式如下:N2+3H2=2NH3(该反应为可逆反应,等号上反应条件为:"⾼温,⾼压",下为:"催化剂")合成氨的主要原料可分为固体原料、液体原料和⽓体原料。
经过近百年的发展,合成氨技术趋于成熟,形成了⼀⼤批各有特⾊的⼯艺流程,但都是由三个基本部分组成,即原料⽓制备过程、净化过程以及氨合成过程。
合成氨是由氮和氢在⾼温⾼压和催化剂存在下直接合成的氨。
别名:氨⽓。
分⼦式NH3英⽂名:synthetic ammonia。
世界上的氨除少量从焦炉⽓中回收副产外,绝⼤部分是合成的氨。
1.合成氨装置模型图:⼯业⽣产上合成氨装置图2、合成氨⼯艺流程叙述:(1)原料⽓制备将煤和天然⽓等原料制成含氢和氮的粗原料⽓。
对于固体原料煤和焦炭,通常采⽤⽓化的⽅法制取合成⽓;渣油可采⽤⾮催化部分氧化的⽅法获得合成⽓;对⽓态烃类和⽯脑油,⼯业中利⽤⼆段蒸汽转化法制取合成⽓。
(2)净化对粗原料⽓进⾏净化处理,除去氢⽓和氮⽓以外的杂质,主要包括变换过程、脱硫脱碳过程以及⽓体精制过程。
①⼀氧化碳变换过程在合成氨⽣产中,各种⽅法制取的原料⽓都含有CO,其体积分数⼀般为12%~40%。
半水煤气合成氨的工艺流程半水煤气合成氨是一种重要的化学工艺流程,它用于生产氨气。
下面我将详细介绍该工艺流程。
半水煤气合成氨的工艺流程主要包括煤气制备、煤气净化、合成氨反应以及冷凝回收等步骤。
首先是煤气制备。
煤气制备通常采用煤气化工艺,将固体燃料(如煤炭、石油焦、生物质等)在高温和缺氧条件下转化为气体混合物。
这个过程称为煤气化,它可以生成一种叫做合成气的混合气体,主要成分是一氧化碳(CO)和氢气(H2)。
合成气是半水煤气合成氨的原料。
接下来是煤气净化。
煤气化过程生成的合成气中会含有一些杂质,如灰尘、硫化物、氮化物等。
这些杂质对催化剂有毒性,并且会影响到合成氨反应的效果。
因此,在合成氨反应之前,需要对煤气进行净化处理。
主要的净化方法包括除尘、脱硫和脱氮等操作。
除尘可以通过过滤或者电除尘等方式进行;脱硫可以采用化学吸收剂吸收下来,或者利用金属催化剂进行转化;脱氮则主要是通过催化剂将氮化物转化为氮气。
经过净化之后,煤气中的杂质含量将显著降低。
然后是合成氨反应。
合成氨反应是指将一氧化碳和氢气在一定条件下催化氧化生成氨气。
这一反应通常采用工业上最常用的铁催化剂作为反应催化剂。
合成氨反应是一个放热反应,需要一定的温度和压力条件。
在工业上,常用的合成氨反应温度约为380-500摄氏度,而压力则通常在100-200大气压之间。
这一反应的化学方程式为:3H2 + N2 ↔2NH3这个反应是一个可逆反应,反应达到平衡时会有一定的反应产物和反应物存在。
最后是冷凝回收。
合成氨反应产生的氨气中还会含有一些未反应的合成气和副产物,需要进行冷凝回收。
冷凝回收主要采用制冷系统进行,当氨气被冷却到低温时,其中的水蒸气和二氧化碳会凝结成液体,形成所谓的“半水”,而氨气则被收集起来。
冷凝回收过程中的“半水”可以进一步用作冷凝剂或用于其他工业应用中。
以上就是半水煤气合成氨的工艺流程。
通过这一化学工艺,可以高效地生产出氨气,氨气在农业、化工、制药等领域有广泛的应用。
合成氨氨气分子式为NH3,英文名:syntheticammonia。
合成氨是指由氮和氢在高温高压和催化剂存在下直接合成的氨。
世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。
合成氨主要用作化肥、冷冻剂和化工原料。
一、合成氨基本简介生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①哈伯法合成氨。
在600℃的高温、200个大气压、含铅镁促进剂的铁催化剂的条件下,在炽热的焦炭上方吹人水蒸汽,可以获得几乎等体积的一氧化碳和氢气的混和气体。
其中的一氧化碳在催化剂的作用下,进一步与水蒸汽反应,得到二氧化碳和氢气。
然后将混和气体在一定压力下溶于水,二氧化碳被吸收,就制得了较纯净的氢气。
同样将水蒸汽与适量的空气混和通过红热的炭,空气中的氧和碳便生成一氧化碳和二氧化碳而被吸收除掉,从而得到了所需要的氮气。
②天然气制氨。
天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
以石脑油为原料的合成氨生产流程与此流程相似。
③重质油制氨。
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
④煤(焦炭)制氨。
随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
合成氨反应式如下:N2+3H2 2NH3该反应具有以下的特点:A可逆反应B熵减小的反应ΔH=-92.4kJ/molC正反应是放热反应D正反应气体体积缩小E要有催化剂反应的适宜温度:700K反应的适宜压力:2×107∽5×107Pa催化剂:铁触媒,以铁为主体的多成分催化剂,使反应在较低温度下较快进行合成氨的主要原料可分为固体原料、液体原料和气体原料。
煤化工合成氨生产硝酸工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!标题:煤化工合成氨生产硝酸工艺流程引言煤化工合成氨是一项关键的化工工艺,为制造硝酸提供了重要的原料。
合成氨发展的三个典型特点:1. 生产规模大型化2。
能量的合理利用。
用过程余热自产蒸汽推动蒸汽机供动力,基本不用电能3。
高度自动化Chp2。
原料气的制取2。
1 固体燃料气化法氢气的主要来源有:气态烃类转化、固体燃料气化和重质烃类转化。
煤气化技术装置的分类:(1)固定床气化(2)流化床气化(3)气流床气化固定床气化:UGI炉,鲁奇(Lurgi)炉和液态排渣的鲁奇炉流化床气化:Winkler气化炉;Lurgi循环流化床气化炉;U—Gas灰团聚流化床气化炉气流床气化:常压气流床粉煤气化即Koppers—Totzek(柯柏斯—托切克,简称K-T)炉;水煤浆加压气化,即Texaco(德士古)炉和Destec(现E-Gas)炉;粉煤加压气化,即SCGP(Shell 煤气化工艺).固定床间歇制气:采用间歇法造气时,空气和蒸汽交替通入煤气发生炉.通入空气的过程称为吹风,制得的煤气叫空气煤气;通入水蒸气的过程称为制气,制得的煤气叫水煤气;空气煤气与水煤气的混合物称为半水煤气。
间歇式制半水煤气流程:a.空气吹风b.上吹制气c.下吹制气d.二次上吹e.空气吹净德士古气化装置包括煤浆制备、气化、灰水处理。
煤浆气化采用德士古水煤浆加压气化的激冷流程.气化工段关键设备气化炉(参见p56图1-2-39)气化炉分上下两部分,上部为燃烧室,燃烧室内安装三层耐火砖用来防止炉壁烧坏;下部为激冷室。
从燃烧室出来的工艺气通过下降管进入激冷室,激冷室上部有激冷环,下部下降管浸入水中,工艺气在水中冷激。
气化炉是德士古装置核心设备.碳洗塔的作用是洗涤从气化炉来的粗煤气,除去粗煤气中的含杂的灰分以及可容水的反应副产物,保证干净、含灰分少的粗煤气送到下一工段进行使用。
碳洗塔下部主要作用是洗涤,碳洗塔合成气入口管线伸入水下,粗煤气进入碳洗塔水下后,经过塔内灰水的洗涤再进入上部;碳洗塔上部有塔盘,采用筛板结构,用来对合成气进行可溶性气体以及灰分进行吸收.碳洗塔是德士古气化装置中,一个非常重要的中间过程装置.从气化炉出来的粗煤气经过碳洗塔的洗涤送到变换岗位,进行变换反应,或者送到火炬管线进行放空,所有这就对碳洗塔液位的稳定要求很高,碳洗塔液位高了,容易将水带到火炬管线中去;碳洗塔液位低,就会影响粗煤气的洗涤效果,会影响到变换炉的运行。
以煤为原料合成氨工艺流程
以煤为原料合成氨是一种重要的工业化学过程,它可以将煤中的碳和氮转化为氨,用于肥料、化学制品等行业。
下面我们将介绍一种常见的以煤为原料合成氨的工艺流程。
首先要明确的是,以煤为原料合成氨的工艺流程包括煤气化、气体净化、合成气制氨和氨净化四个主要步骤。
首先是煤的气化过程。
将煤炭与空气或氧气进行反应,生成一系列的气体,包括一氧化碳(CO)、氢气(H2)和氮气
(N2)。
这一步骤可以通过多种方式实现,包括煤气和水蒸
气反应、氧气和煤气反应等。
接下来是气体净化的过程。
这个步骤主要是去除煤气中的杂质和不纯物质,以保证合成氨的质量。
常见的净化方法包括凝结、洗涤、吸附和吸收等。
然后是合成气制氨的过程。
在这个步骤中,通过加压和加热将合成气中的氢气和氮气进行反应,生成氨气(NH3)。
这一步骤的核心是催化剂的使用,常用的催化剂有铁、钼等金属催化剂。
最后是氨气的净化过程。
在这个步骤中,主要是去除合成氨中的杂质和不纯物质,以提高合成氨的纯度和质量。
常见的净化方法包括吸附、洗涤和蒸馏等。
总的来说,以煤为原料合成氨的工艺流程是一个复杂而连续的
过程。
通过煤气化、气体净化、合成气制氨和氨净化,可以将煤中的碳和氮转化为氨气。
这个工艺流程不仅可以有效利用煤炭资源,还可以为农业、化工以及能源等行业提供重要的原料和产品。
同时,这个工艺流程还面临着许多的技术挑战和环境问题,需要不断的研究和改进。