七年级数学数轴上的动点问题
- 格式:docx
- 大小:37.83 KB
- 文档页数:4
七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。
1. 用字母表示动点。
- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。
如果向左运动,距离为-vt;如果向右运动,距离为vt。
2. 表示两点间的距离。
- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。
3. 分析运动过程中的等量关系。
- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。
二、题目及解析。
1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。
- 求t秒后点P表示的数。
- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。
- 求t秒后点Q表示的数。
- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。
- 求t秒后PQ的距离。
- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。
2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。
点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。
- 求点C表示的数。
- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。
- 求t秒后点M表示的数。
- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
七年级数轴动点问题经典例题
数轴动点问题是七年级数学中的一个重要知识点,通过解决这类问题,可以帮
助学生加深对数轴和正数、负数的理解,培养学生的逻辑思维能力和解决问题的能力。
下面将介绍一些经典的数轴动点问题例题,希望能帮助同学们更好地掌握这一知识点。
1. 问题描述:小明从数轴上的0点出发,向右走3个单位,再向左走4个单位,最后再向右走2个单位,他最后停在了数轴上的哪个点?
解析:小明从0点出发,向右走3个单位,到达3点;再向左走4个单位,回
到-1点;最后再向右走2个单位,到达1点。
所以小明最后停在数轴上的点是1。
2. 问题描述:小红站在数轴上的点A,向右走5个单位到达点B,再向左走3
个单位到达点C,再向右走2个单位到达点D,最后向左走4个单位到达点E,小
红最后停在了哪个点?
解析:小红从点A向右走5个单位,到达点B;再向左走3个单位,到达点C;再向右走2个单位,到达点D;最后向左走4个单位,到达点E。
所以小红最后停
在数轴上的点是E。
3. 问题描述:小明站在数轴上的点P,向左走7个单位到达点Q,再向右走4
个单位到达点R,最后向左走3个单位到达点S,小明最后停在了哪个点?
解析:小明从点P向左走7个单位,到达点Q;再向右走4个单位,到达点R;最后向左走3个单位,到达点S。
所以小明最后停在数轴上的点是S。
通过解答上面的例题,我们可以发现,数轴动点问题的解决过程其实就是在数
轴上进行正数和负数的加减运算,通过对问题的分析和计算,可以得到最后点的位置。
希望同学们通过练习这些经典例题,掌握数轴动点问题的解题方法,提高数学能力,为学习数学打下坚实的基础。
七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。
(1)当t = 1时,求PQ的长度。
(2)求经过多少秒后,PQ = 5。
解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。
所以公式。
(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。
则公式。
当公式时,即公式。
则公式或公式。
当公式时,公式,公式(舍去,因为时间不能为负)。
当公式时,公式,公式。
2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。
解析:因为点C在点A、B之间,公式,公式。
又因为公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式。
解得公式。
3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。
(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。
解析:(1)点P表示的数为公式。
当点P到点B的距离为2时,公式。
则公式或公式。
解得公式或公式。
(2)点Q表示的数为公式,公式。
当公式时,公式。
即公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。
(1)求t秒后,点M表示的数和点N表示的数。
(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。
(2)当点M与点N相距4个单位长度时,公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
初一数轴动点问题的方法归纳一、引言初一数轴动点问题是初中数学中的一个重要知识点,通过解决这类问题,可以帮助学生理解数轴上点的运动规律,培养其空间思维能力和解决实际问题的能力。
本文将从问题的分析、解题思路和方法归纳三个方面,介绍初一数轴动点问题的解法。
二、问题的分析在初一数轴动点问题中,通常给定初始位置和一个或多个移动规则,要求确定点在数轴上移动后的位置。
问题的关键在于找到移动规则与初始位置的关系,从而确定点的最终位置。
三、解题思路解决初一数轴动点问题的思路主要分为以下几步:1. 确定初始位置:根据题目给出的信息,确定点的初始位置。
初始位置可以是一个确定的点,也可以是一个范围。
2. 分析移动规则:仔细阅读题目,理解移动规则。
移动规则可以是简单的加减法运算,也可以是根据条件进行判断并作出相应的移动。
3. 确定移动次数:根据题目要求,确定点需要移动的次数。
移动次数可以是确定的,也可以是根据条件进行判断。
4. 进行移动操作:根据移动规则和移动次数,进行相应的移动操作。
根据移动操作的类型不同,可以分为直接移动、相对移动和条件移动等。
5. 确定最终位置:根据移动操作后点的位置确定最终位置。
最终位置可以是一个确定的点,也可以是一个范围。
四、方法归纳根据上述解题思路,我们可以总结出以下几种常见的方法来解决初一数轴动点问题:1. 列表法:将初始位置和移动规则按照一定的规律列成表格,根据移动次数逐步计算出点的位置。
这种方法适用于移动规则比较简单的情况。
2. 递推法:根据初始位置和移动规则,通过递推的方式计算出点的位置。
递推法适用于移动规则具有递推性质的情况。
3. 条件法:根据移动规则中的条件,判断点的移动方式,并计算出最终位置。
这种方法适用于移动规则具有条件判断的情况。
4. 图形法:将数轴和点的移动过程绘制成图形,通过观察图形来确定点的最终位置。
这种方法适用于移动规则复杂或移动次数较多的情况。
五、举例说明为了更好地理解上述方法,我们举一个具体的例子来说明:例题:小明从数轴上的位置0出发,每次可以向左或向右移动1个单位,当移动次数为偶数时向右移动,移动次数为奇数时向左移动。
专题02数轴上的四种动点问题【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求动点表示的数例.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C【解析】∵CO=BO,B点表示2,∴点C表示的数为±2,∴a=-2-3=-5或a=2-3=-1,故选:C.【变式训练1】在数轴上,点P从某点A开始移动,先向右移动5个单位长度,再向左移动4个单位长度,-,则点A表示的数是()最后到达1A.3B.1-C.2-D.6-【答案】C【解析】由题意可得:-1+4-5=-2,故选C.【变式训练2】如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点A'的位置,则点A'表示的数是_______;若起点A开始时是与—1重合的,则滚动2周后点A'表示的数是______.【答案】2π或2π-41π-或41π--【解析】因为半径为1的圆的周长为2π,所以每滚动一周就相当于圆上的A 点平移了2π个单位,滚动2周就相当于平移了4π个单位;当圆向左滚动一周时,则A'表示的数为2π-,当圆向右滚动一周时,则A'表示的数为2π;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41π-,若向左滚动两周,则A'表示的数为41π--;故答案为:2π①或2π-;41π-②或41π--.【变式训练3】已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;②数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P 对应的数为___________;【答案】(1)2;(2)①-1;②23-或10;(3)-8和-4【解析】(1)∵点A 对应的数为-6,点B 在点A 右侧,A ,B 两点间的距离为8,∴-6+8=2,即点B 表示的数为2;(2)①设点P 表示的数为x ,当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2-x +2,解得:x =-1;当点P 在点B 右侧,PA -PB =AB =8,不符合;故答案为:-1;②当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2(2-x ),解得:x =23-;当点P 在点B 右侧,x -(-6)=2(x -2),解得:x =10;∴P 对应的数为23-或10;(3)当点P 在点A 左侧时,-6-x +0-x =2-x ,解得:x =-8;当点P 在A 、O 之间时,x -(-6)+0-x =2-x ,解得:x =-4;当点P 在O 、B 之间时,x -(-6)+x -0=2-x ,解得:x =43-,不符合;当点P 在点B 右侧时,x -(-6)+x -0=x -2,解得:x =-8,不符合;综上:点P 表示的数为-8和-4.类型二、求动点的速度例.已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为()A .34B .14或34C .14或32D .32【答案】C【解析】∵多项式x 3-3xy 2-4的常数项是a ,次数是b ,∴a=-4,b=3,设B 速度为v ,则A 的速度为2v ,3秒后点A 在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v ,且OB=3+3v当A 还在原点O 的左边时,OA=0-(-4+6v )=4-6v ,由32OA OB =可得3(46)332v v -=+,解得14v =;当A 还在原点O 的右边时,OA=(-4+6v )-0=6v-4,由32OA OB =可得3(64)332v v -=+,解得32v =.故B 的速度为14或32,选C.故答案为:C类型三、求动点运动的时间例.如图所示,A 、B 是数轴上的两点,O 是原点,AO=10,OB=15,点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 以每秒4个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,设运动的时间为t (t≥0)秒,M 、Q 两点到原点O 的距离相等时,t 的值是()A .1t s =或252t s =B .2t s =或253t s =C .1t s =或253t s =D .2t s =或252t s =【答案】C【解析】∵O是原点,AO=10,OB=15,∴点A表示的数是-10,点B表示的数是15,∵点P以每秒2个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,∴OM=|-10-t|,∵点Q以每秒4个单位长度的速度沿数轴向左匀速运动,∴OQ=|15-4t|,∵M、Q两点到原点O的距离相等,∴|-10-t|=|15-4t|,∴-10-t=15-4t或-10-t=-(15-4t),解得:t=253或t=1,故选:C.【变式训练1】如图,点A在数轴上表示的数是16-,B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当8AB=时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】设当AB=8时,运动时间为t秒,①当点A在点B的左边时,由题意得6t+2t+8=8-(-16),解得:t=2②当点A在点B的右边时,6t+2t=8-(-16)+8,解得:t=4.故选:C.【变式训练2】如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O A O→→以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当2PB=时,则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒【答案】B【解析】∵数轴上的点O和点A分别表示0和10,∴OA=10∵B是线段OA的中点,∴OB=AB=15 2OA=①当点P由点O向点A运动,且未到点B时,如下图所示,2PB=此时点P 运动的路程OP=OB -PB=3,∴点P 运动的时间为3÷2=32s ;②当点P 由点O 向点A 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB+PB=7,∴点P 运动的时间为7÷2=72s ;③当点P 由点A 向点O 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB -PB=13,∴点P 运动的时间为13÷2=132s ;④当点P 由点A 向点O 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB +PB=17,∴点P 运动的时间为17÷2=172s ;综上所述:当2PB =时,则运动时间t 的值为32秒或72秒或132或172秒故选B .【变式训练3】已知数轴上有,,A B C 三点,分别表示数24,10--,10,若两只电子蚂蚁甲、乙分别从,A C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒,(1)甲、乙两点在数轴上哪个点相遇?(2)多少秒后甲到,,A B C 三点的距离之和是40个单位长度?【答案】(1)-10.4;(2)2秒或5秒【解析】(1)设x 秒后甲与乙相遇,则4x +6x =34,解得x =3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;②BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5,综上:2秒或5秒后甲到,,A B C三点的距离之和是40个单位长度.类型四、综合问题例.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为24个单位长度.【答案】(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M、N两点间的距离为24个单位长度【解析】(1)∵点A、B对应的数分别为﹣2、4,∴AB=4-(-2)=6,∵点M到点A、点B的距离相等,∴MA=3,∴点M对应的数是-2+3=1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x)+(x﹣4)=10,解得x=6;故答案为:﹣4或6;(4)①若点N 向右运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4+4t ,MN =|(5t ﹣2)﹣(4+4t )|=|t ﹣6|=24,解得t =30或﹣18(舍去);②若点N 向左运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4﹣4t ,MN =|(5t ﹣2)﹣(4﹣4t )|=|9t ﹣6|=24,解得t =103或﹣2(舍去);答:经过30秒或103秒后,M 、N 两点间的距离为24个单位长度.故答案为:(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M 、N 两点间的距离为24个单位长度【变式训练1】已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t-+-+=-,点N 表示的数为()8233322t t+-+=+,∴MN =333222t t ⎛⎫+-- ⎪⎝⎭=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练2】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是;动点M 对应的数是(用含x 的代数式表示);动点N 对应的数是;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NBRM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON ,∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=,∴MB﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,。
数轴上的动点问题姓名:____________ 1.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合. 研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a-b|,线段AB的中点表示的数为【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t > 0).【综合运用】(1)填空:①A、B两点间的距离AB= ________ ,线段AB的中点表示的数为 ___________ ;②用含t的代数式表示:t秒后,点P表示的数为 ________ ;点Q表示的数为_________(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;1(3)求当t为何值时,PQ= — AB ;2(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.2•如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A与点B的距离是2,记作AB=2,以下类同,BC=3,设点A , B , C所对应数的和是p.(1) ________________________________________ 若以B为原点,则点A所对应的数为,点C所对应的数为 _______________________________ , p的值为_______ ;若以C为原点,则p的值为___________ ;(2) ______________________________________ 若原点0在图中数轴上点C的右边,且CO=28,求p的值;在此基础上,将原点0 向右移动a (a> 0)个单位,则p的值为;(用含a的式子表示)(3)若原点O在点B与C之间,且CO=2,贝U p= _______ ;若原点O从点C出发沿着数轴向左运动,当p=5.5时,求CO的值.3Z ” —“「a J b °厂r _____________________ F 鼻~ B C七年级数学提优训练(二)3. 操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示 _________ 的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示数________ 的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B 两点表示的数是多少.4•已知数轴上有A、B、C三点,分别表示有理数-26, -10, 10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)__________________________________________ 用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC= ___________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回点 A ,①点P、Q冋时运动的过程中有处相遇,相遇时t=秒.P、Q两点间的距离. (友情提醒:注意考虑P、②在点Q开始运动后,请用t的代数式表示Q的位置)A P E工1c. J-26 ” .100105. 如图:在数轴上A点表示数a, B点示数b, C点表示数c, b是最小的正整数,且a、2b 满足|a+2|+ (c—7) =0.(1)a= _____ , b= _____ , c= _____ ;(2) ___________________________________________________ 若将数轴折叠,使得A点与C点重合,则点B与数_______________________________________ 表示的点重合;(3) ____________________________ 点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时, 点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC ,点B与点C 之间的距离表示为BC .则AB= _________ , AC= ____ , BC= .(用含t的代数式表示)(4)请问:3BC —2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变, 请求其值.6. 阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a-b| .理解:(1)数轴上表示2和-3的两点之间的距离是__________ ;(2)数轴上表示x和-5的两点A和B之间的距离是 ___________ ;(3) _________________________________________________________ 当代数式|x —1|+| x+3|取最小值时,相应的x的取值范围是_______________________________ ;最小值是 _______ 应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆数.七年级数学提优训练(二)1•如图1,点0为直线AB 上一点,过点 0作射线0C ,将一直角三角形的直角顶点放在 点0处,一边 0M在射线 0B 上,另一边 ON 在直线 AB 的下方.平分/ B0C ,问:直线 0N 是否平分/ A0C ?请说明理由;(2)若/ B0C=120 ° .将图1中的三角板绕点周,在旋转的过程中,第t 秒时,直线0N 恰好平分锐角/ A0C ,则t 的值为 ________________ .(直 接写出结果);(3) 在(2)的条件下,将图1中的三角板绕点 0顺时针旋转至图3,使0N 在/ A0C 的 内部,请探究:/ A0M 与/ N0C 之间的数量关系,并说明理由.3•如图1,已知线段AB=16cm ,点C 为线段AB 上的一个动点,点 D 、E 分别是AC 和BC 的中点. (1) 若点C 恰为AB 的中点,求DE 的长; (2) 若 AC=6cm ,求 DE 的长;(3) 试说明不论 AC 取何值(不超过 16cm ) , DE 的长不变;(4) 知识迁移:如图 2,已知/ A0B=130 °,过角的内部任一点 C 画射线0C ,若0D 、 0E 分别平分/ A0C 和/ B0C ,试说明/ D0E=65 °与射线 0C 的位置无关.(1)将图1中2,使一边 0M 在/ B0C 的内部,且恰好 0按每秒6°的速度沿逆时针方向旋转0逆时针旋转至图2•如图,/ AOB=120 °,射线0C从OA开始,绕点0逆时针旋转,旋转的速度为每分钟20° ;射线0D从0B开始,绕点0逆时针旋转,旋转的速度为每分钟5°, 0C和0D同时旋转,设旋转的时间为t (0<t w 15).(1)当t为何值时,射线0C与0D重合;(2)当t为何值时,射线0C丄0D;(3)试探索:在射线0C与0D旋转的过程中,是否存在某个时刻,使得射线0C, 0B 与0D中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.4. 已知0为直线AB上的一点,/ C0E是直角,0F平分/ A0E .(1)如图1,若/ C0F=28 °,则/ B0E= __________ ° ;(2)当射线0E绕点0逆时针旋转到如图2的位置时,(1)中/ B0E与/ C0F的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若/ C0F=65 °,在/ B0E的内部是否存在一条射线0D ,使得2 / B0D+1/ A0F= - (/B0E- / B0D) ?若存在,请求出/ B0D的度数;若不存在,请说明理由.。
七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
七年级下册数学动点问题一、动点问题相关知识点1. 数轴上的动点问题在数轴上,点的移动规律是根据移动方向和移动距离来确定新的位置。
如果一个点A表示的数为公式,向右移动公式个单位长度,则移动后的点表示的数为公式;向左移动公式个单位长度,则移动后的点表示的数为公式。
例如:点公式在数轴上表示公式,向右移动公式个单位后,表示的数为公式;向左移动公式个单位后,表示的数为公式。
2. 平面直角坐标系中的动点问题点公式在平面直角坐标系中的移动规律。
如果点公式向右平移公式个单位,其坐标变为公式;向左平移公式个单位,坐标变为公式;向上平移公式个单位,坐标变为公式;向下平移公式个单位,坐标变为公式。
例如:点公式向右平移公式个单位后变为公式;向下平移公式个单位后变为公式。
3. 动点与几何图形的关系在三角形、四边形等几何图形中,动点的运动可能会改变图形的形状、大小或者某些线段的长度、角度等。
例如,在三角形公式中,点公式是公式边上的一个动点,当公式点运动时,三角形公式和三角形公式的面积关系可能会发生变化。
对于线段长度,若点公式,点公式,则线段公式的长度根据两点间距离公式公式来计算。
当点公式或公式为动点时,线段公式的长度会随着动点的运动而变化。
二、典型题目及解析1. 数轴上的动点问题题目:已知数轴上点公式表示的数为公式,点公式表示的数为公式,点公式从点公式出发,以每秒公式个单位长度的速度向右运动,点公式从点公式出发,以每秒公式个单位长度的速度向左运动,设运动时间为公式秒。
(1)当公式时,求点公式和点公式所表示的数。
(2)经过多少秒后,点公式和点公式相遇?(3)当公式时,求公式的值。
解析:(1)点公式从点公式出发,向右运动,速度为每秒公式个单位长度,当公式时,点公式表示的数为公式。
点公式从点公式出发,向左运动,速度为每秒公式个单位长度,当公式时,点公式表示的数为公式。
(2)点公式和点公式相遇时,它们所经过的路程之和等于公式之间的距离。
七年级数轴上的动点问题典型例题一、问题描述1.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。
已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相遇?2.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。
已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相距6个单位?3.小华从数轴上的点A(3)出发,以每秒4个单位的速度向右前进;小明从数轴上的点B(-1)出发,以每秒5个单位的速度向左前进。
问多长时间后他们会相遇?4.数轴上的点A、B、C分别表示3艘船在同一时刻的位置。
A、B船以每小时15公里的速度向左,C船以每小时20公里的速度向右。
问多长时间后他们会相遇?二、解题思路1.我们需要明确小明和小红分别在数轴上的运动方向和速度,查看问题中的关键数据,我们可以发现小明和小红以相对方向运动,因此速度的合成应该是小明和小红速度之差。
那么根据问题描述,小明和小红的速度差为3-2=1个单位/秒,因此他们相遇的时间应该是数轴上两点之间的距离除以他们的速度之差,即\( \frac{3-(-1)}{3-2} =\frac{4}{1} = 4\) 秒。
2.我们来解决小明和小红相距6个单位的问题。
同样根据他们速度之差的关系,我们知道他们每秒之间的距离是1个单位,那么相距6个单位就需要6秒的时间,即\(6 \div 1 = 6\) 秒。
3.对于小华和小明相遇的问题,我们同样需要计算他们的速度之差,即5-4=1个单位/秒,然后计算他们的相遇时间,即\( \frac{(-1)-3}{5-4} = \frac{-4}{1} = -4\) 秒。
但是,由于数轴上无法出现负的时间,因此小华和小明在4秒后相遇。
4.我们解决三艘船的相遇问题。
根据题目描述,我们发现三艘船的速度和运动方向不同,因此要分别计算船与船之间的相遇时间。
初一数轴上的动点问题解题技巧
数轴上的动点问题是一种常见的数学问题,通常涉及到在数轴上找到两个点,它们的相对位置随时间变化。
这种问题在初中数学中很常见,下面介绍一些解题技巧。
1. 确定动点的位置和时间
要解决这个问题,我们需要知道动点的位置和时间。
通常情况下,我们会选择一个初始位置,然后随着时间的推移,选择一个更新的位置。
在时间轴上,我们可以使用箭头来表示动点的运动方向。
2. 确定动点的性质
在解决数轴上的动点问题时,我们需要考虑动点的性质。
例如,我们可以确定动点是否在数轴上移动,是否为零度或最大度数。
我们还可以确定动点是否以某种方式旋转或缩放。
3. 选择合适的方法
在解决数轴上的动点问题时,我们可以选择多种方法。
例如,我们可以使用代数方法,使用几何方法,或使用平均值方法。
我们需要根据问题的特点选择最合适的方法。
4. 特殊情况的处理
在解决数轴上的动点问题时,我们还需要考虑一些特殊情况。
例如,当动点为零时,我们可能需要特殊处理。
当动点在数轴上为最大或最小值时,我们也需要特殊处理。
5. 结论和拓展
综上所述,解决数轴上的动点问题需要确定动点的位置和时间,考虑动点的
性质,选择合适的方法,并考虑一些特殊情况。
通过这些方法,我们可以找到两个点之间的相对位置关系。
初中数学数轴动点问题经典
初中数学中的数轴动点问题是一个常见的问题类型,主要考察学生对于数轴、坐标系以及速度、时间等概念的理解和应用。
以下是一些经典的数轴动点问题:
1. 相遇问题:两个动点在数轴上分别从A、B两点同时向对方移动,求何时何地相遇。
示例:点A从原点出发,以每秒3个单位的速度向左移动,点B从
表示数2的点出发,以每秒1个单位的速度向右移动,求A、B两点相遇的点。
2. 追及问题:一个动点追赶另一个动点,求何时追上。
示例:点A从表示数-1的点出发,以每秒2个单位的速度向右移动,点B从表示数5的点出发,以每秒1个单位的速度向左移动,求A追上B
的时间和位置。
3. 速度与加速度问题:一个动点在数轴上移动,其速度随时间变化,求某时刻的位置或某段时间内的位移。
示例:点A从表示数-3的点出发,初始速度为每秒2个单位,并在接下来的2秒内,速度每秒增加1个单位,求2秒末A的位置。
4. 周期性移动问题:一个动点在数轴上按照某种周期性规律(如正弦、余弦函数)移动,求某时刻的位置或某段时间内的位移。
示例:点A从表示数0的点出发,按照正弦函数的规律上下移动,求5秒内A经过的路径长度。
5. 角度与距离问题:一个动点在数轴上以某个角度和速度移动,求某时刻的位置或某段时间内的位移。
示例:点A从表示数1的点出发,以每秒30°的速度顺时针旋转,求3秒后A移动的距离。
解决这类问题的关键是理解并应用数轴上的距离、速度和时间的关系,以及速度、加速度等物理概念在数学上的表达。
同时,还需要有一定的几何直觉和代数运算能力。
七年级上册数学动点问题压轴题一、数轴上的动点问题。
1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。
(1)若点P到点A、点B的距离相等,求点P对应的数。
解析:因为点P到点A、点B的距离相等,所以PA = PB。
根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。
当x≥3时,x + 1=x 3,方程无解。
当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。
当x≤-1时,-(x + 1)=-(x 3),方程无解。
所以点P对应的数为1。
(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。
解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。
当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。
当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。
当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。
所以存在点P,x=(7)/(2)或x =-(3)/(2)。
2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。
(1)若点P到点A、点B的距离之和为5,求x的值。
解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。
当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。
当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。
当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。
初一数学上册数轴动点问题一、什么是数轴动点问题数轴动点问题呢,就是在数轴这个特定的数学环境里,有一些点是可以动来动去的,然后让我们根据这些点的运动情况去解决各种各样的数学问题。
比如说,一个点从数轴上的某个位置开始,按照一定的速度向左或者向右移动,然后问我们在某个时刻这个点的位置在哪里呀,或者几个点之间的距离是多少啦之类的。
这就像一群小蚂蚁在数轴这条小路上跑来跑去,我们得搞清楚它们的位置变化情况。
二、常见的题型类型1. 求动点表示的数这种题就是给你一个动点在数轴上的初始位置,还有它运动的方向和速度,然后让你求出经过一段时间后这个动点所表示的数。
比如说,一个点在数轴上表示3,它以每秒2个单位长度的速度向右运动,经过5秒后,这个点就向右移动了2×5 = 10个单位长度,那这个点表示的数就变成了3+10 = 13啦。
2. 求两点之间的距离有时候会给你两个动点,它们分别在数轴上运动,然后问你在某个时刻这两个动点之间的距离是多少。
这就需要我们先算出这两个动点在那个时刻分别在数轴上的位置,然后用较大的数减去较小的数(如果是求绝对值距离的话就直接求两个数差的绝对值)。
就像两个人在数轴这条跑道上跑,我们要看看他们之间隔了多远。
3. 动点与线段的关系还有一种题型是关于动点和线段的关系的。
比如说,一个动点在数轴上运动,问这个动点什么时候会在线段的中点上,或者什么时候这个动点会把某条线段分成一定比例的两段。
这就比较复杂啦,我们要综合考虑线段的端点位置、动点的运动情况等很多因素呢。
三、解决数轴动点问题的小技巧1. 画数轴这可是超级重要的一步哦。
把题目中的情况在数轴上画出来,这样我们就能很直观地看到各个点的位置关系啦。
就像画画一样,把那些抽象的数字和动点变成我们能看得见的东西。
比如说,题目里说一个点在 -2的位置,另一个点在4的位置,我们就把它们在数轴上标出来,然后再根据动点的运动情况,一点一点地画出它们的新位置。
专题03数轴上动点问题综合的三种考法【知识点精讲】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求运动的时间()2,C D 两点间距离=____;,B C 两点间距离=;()2,C D 之间的距离为3.51 2.5-=,B ,C 两点间距离为()12--()a b -﹣在数轴上表示的数,【答案】(1)a=12,b=﹣20;(2)12﹣6t,﹣20+2t;((1)b=,c=.故答案是:1或9;(3)①点A 表示的数是-3-mt ;点B 表示的数是-1+2t ;点C 所表示的数是4+5t .故答案是:-3-mt ;-1+2t ;4+5t ;②∵点A 表示的数是-3-mt ;点B 表示的数是-1+2t ;点C 所表示的数是4+5,∴d 1=4+5t-(-1+2t)=3t+5,d 2=-1+2t-(-3-mt)=(m+2)t+2,∴2d 1-d 2=2(3t+5)-[(m+2)t+2]=(4-m )t+12,∵2d 1-d 2的值不会随着时间t 的变化而改变∴4-m=0,∴m=4,故当m=4时,2d 1-d 2的值不会随着时间t 的变化而改变,此时2d 1-d 2的值为12.【点睛】本题考查了数轴上两点间的距离及动点问题,掌握距离公式及平移规律是解决问题的关键.本题体现了数形结合的数学思想.例2.如图,在数轴上A 点表示的数是-8,B 点表示的数是2.动线段4CD =(点D 在点C 的右侧),从点C 与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒.(1)①已知点C 表示的数是-6,试求点D 表示的数;②用含有t 的代数式表示点D 表示的数;(2)当2AC BD =时,求t 的值.(3)试问当线段CD 在什么位置时,AD BC +或AD BC -的值始终保持不变?请求出它的值并说明此时线段CD 的位置.【答案】(1)①-2;②24t -;(2)6或2;(3)当线段CD 在线段AB 上时或当点B 在线段CD 内,AD BC +值保持不变,值为14,当线段CD 在点B 的右侧时AD BC -的值保持不变,值为14【分析】(1)①已知点C 表示的数是-6,4CD =(点D 在点C 的右侧),即可得到点D 的坐标;②点C 与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒.AC=2t,AD=2t+4,即可表示点D 表示的数;(2)先求出2AC t =,再分当点D 在点B 左侧和当点D 在点B 右侧讨论,列方程求解即可;(3)分当线段CD 在线段AB 上时(图1)或当点B 在线段CD 内时(图2)和当线段CD 在点B 的右侧时(图3)讨论,求出AD BC +或AD BC -的值即可得出结论.【详解】解:(1)①已知点C 表示的数是-6,4CD =(点D 在点C 的右侧),∴点D 表示的数是-2;②∵点C 从与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒,∴AC=2t,AD=2t+4,∵2AC BD =,∴()22224t t =--⎡⎤⎣⎦∴2t =②当点D 在点B 右侧(图2,3)∵2AC BD =,∴()22242t t =--⎡⎤⎣⎦∴6t =综上所述,6t =或2t =(3)①当线段CD 在线段AB 上时(图1)或当点AD BC +的值保持不变,且14AD BC AB CD +=+=②当线段CD 在点B 的右侧时(图3)AD BC -的值保持不变,且AD BC AC CD BC -=+-【点睛】此题主要考查了数轴和一元一次方程的应用决问题的关键.【变式训练1】如图:在数轴上A 点表示数,a B 在B 左边两个单位长度处,C 在B 右边5个单位处A B C三点,点P从数轴上表示4的点开始往左运动,速度为1例.如图所示,在数轴上有,,个单位/s,运动时间为ts.(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数数的点重合;的左侧),求A,B两点所表示的数分别是多少?③在②的条件下,在数轴上找到一点P,设点P表示的数为x.当PA+PB=12时,直接写出x的值.【答案】(1)-4(2)①-5;②A、B两点表示的数分别是-3,7;③x的值为-4或8.【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是5,即可求出答案;③根据点P在数轴上的位置,分类讨论,当点P在点A的左侧时,当点P在点A、B之间时,当点P在点A的右侧时,根据各种情形求解即可.【详解】(1)解:∵折叠纸面,使数字1表示的点与-1表示的点重合,可确定中心点是表示0的点,∴4表示的点与-4表示的点重合,故答案为∶-4;(2)解:①∵折叠纸面,使表示数6的点与表示数﹣2的点重合,可确定中心点是表示2的点,∴表示数9的点与表示数-5的点重合;故答案为∶-5;②∵折叠后,数轴上的A,B两点也重合,且A,B两点之间的距离为10(点A在点B的左侧),∴A、B两点距离中心点的距离为10÷2=5,∵中心点是表示2的点,∴A、B两点表示的数分别是-3,7;③当点P在点A的左侧时,∵PA+PB=12,∴-3-x+7-x=12,解得x=-4;当点P在点A、B之间时,此时PA+PB=12不成立,故不存在点P在点A、B之间的情形;当点P在点A的右侧时,∵PA+PB=12,∴x-(-3)+x-7=12,解得x=8,综上x的值为-4或8.【点睛】本题考查了数轴的应用,能求出折叠后的中心点的位置是解此题的关键.两点之间的距离表示两点对应的数分别为P,Q停止运动求出运动时的运动方向和运动速度已知,利用路程=速度的值比较即可得出结论,如图2所示,当N在A点左侧,M在A点右侧时,x=时,点P到点A的距离PA=______;此时点(1)当6(2)当点P运动到B点时,点Q同时从A点出发,以每秒4移动几秒时恰好与点。
数轴上的动点问题目录解题知识必备..................................................................................................................................................1压轴题型讲练.. (2)类型一、点的运动时间问题 (2)类型二、单点的规律运动问题 (5)类型三、定值问题 (6)类型四、双点往返运动问题 (10)类型五、数轴的折叠问题................................................................................................................................15压轴能力测评(11题).. (20)1.数轴:规定了原点、单位长度、正方向的直线叫做数轴。
2.数轴的三要素:原点、正方向、单位长度3.任何有理数都可以用数轴上的点表示.4.数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.5.数轴上两点间的距离如图,A 、B 表示的数为a 、b ,则A 与B 间的距离AB=|a -b|;当a ,b 的大小已知时,“大减小(右减左)”,不知大小时,“绝对值”(两数差的绝对值).6.数轴上两点间中点表示的数如图,C 是AB 的中点,则C 表示的数x=2a b +;理由:AC=BC ,则x -a=b -x ,∴x=2a b +.7.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.例:P从A出发,以2个单位/秒速度向右运动,t秒后达到的点表示的数为:a+2t.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系.类型一、点的运动时间问题例1.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P 从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是_______,点P表示的数是_______(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:当点P运动多少秒时,点P与点Q相遇?【答案】(1)―4;6―6t.(2)当点P运动5秒时,点P与点Q相遇.【分析】此题考查的知识点是两点间的距离及数轴,根据题意得出各线段之间的等量关系是解题关键.(1)由题意知OA=6,OB=AB―OA=10―6=4,因为B点在原点左边,从而得出数轴上点B表示的数;动点P从点A出发沿数轴向左匀速运动,根据题意则得出点P表示的数;(2)设P点运动t秒时追上点Q,根据题意列方程6t=10+4t,解得t值.【详解】(1)解:∵数轴上点A表示的数为6,∴OA=6,则OB=AB―OA=10―6=4,又∵点B在原点左边,∴数轴上点B所表示的数为―4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6―6t.(2)设点P运动t秒时追上点Q,根据题意,得6t=10+4t,解得:t=5,答:当点P运动5秒时,点P与点Q相遇.变式1-1.已知数轴上有三个点A,B,C,点A表示的数是8,点B到点A的距离为12,点C到A点的距离为7.(1)点B表示的数为 ;(2)点C表示的数为 ;(3)若点A在点B右侧,动点R从点B以每秒2个单位长度的速度沿数轴向右匀速运动,动点P从点C以每秒1个单位长度的速度沿数轴向右匀速运动,点P,R同时出发,点R运动多少秒时追上点P?【答案】(1)20或―4(2)1或15(3)5秒或19秒【分析】(1)分点B在点A的左边和右边两种情况求解即可;(2)分点C在点A的左边和右边两种情况求解即可;(3)分点C表示1和15两种情况,然后分别求出路程差,再根据路程差列方程求解即可.【详解】(1)解:当点B在点A的左边,点B表示的数为8―12=―4;当点B在点A的右边,点B表示的数为8+12=20;综上,点B表示的数为20或―4.故答案为:20或―4.(2)解:当点C在点A的左边,点C表示的数为8―7=1;当点C在点A的右边,点C表示的数为8+7=15;综上,点C表示的数为1或15.故答案为:1或15.(3)解:设点R运动a秒时追上点P,当C表示1时,则BC的距离为1―(―4)=5,则有2a―a=5,解得:a=5;当C表示15时,则BC的距离为15―(―4)=19,则有2a―a=19,解得:a=19综上,点R运动多少秒时追上点P所需时间为5秒或19秒.答:点R运动5秒或19秒时追上点P.【点睛】本题主要考查了在数轴上表示数、数轴上的动点问题等知识点,掌握分类讨论思想是解答本题的关键.变式1-2.已知a、b为常数,且满足|a―12|+(b+20)2=0,其中a、b分别为点A、点B在数轴上表示的数,如图所示,动点E、F分别从A、B同时开始运动,点E以每秒6个单位向左运动,点F以每秒2个单位向右运动,设运动时间为t秒.(1)求a 、b 的值;(2)请用含t 的代数式表示点E 在数轴上对应的数为:______;点F 在数轴上对应的数为:______;(3)当E 、F 相遇后,点E 继续保持向左运动,点F 在原地停留4秒后向左运动且速度变为原来的5倍,在整个运动过程中,当E 、F 之间的距离为2个单位时,请求出运动时间t 的值.【答案】(1)a =12,b =―20(2)12―6t ,2t ―20(3)154,133,272,292【分析】本题主要考查了一元一次方程的应用,列代数式,(1)根据绝对值和平方式的非负性得出a 和b 的值即可;(2)根据点的运动得出代数式即可;(3)分四种不同情况进行分类讨论,根据路程=速度×时间,列方程求解即可.解题的关键是要运用分类讨论的思想.【详解】(1)解: ∵|a ―12|+(b +20)2=0,|a ―12|≥0,(b +20)2≥0,∴a ―12=0,b +20=0,∴a =12,b =―20;(2)解:由题意可知,E 点对应的数为:12―6t ,F 对应的数为―20+2t =2t ―20,故答案为:12―6t ,2t ―20;(3)解:在相遇前:t =[20―(―12)―2]÷(2+6)=154,设t ′时E 、F 相遇,即12―6t ′=2t ′―20;解得t ′=4,①当E 点在F 点左侧时,且F 点没动时,由题意可得,6(t ―4)=2,解得:t =133,②当E 点在F 点左侧时,且F 点已动时,6×(t ―4)―2×5×(t ―4―4)=2,解得:t =272,③当点E 在点F 右侧时,由题意2×5×(t ―4―4)―6×(t ―4)=2,解得:t =292,综上所述,符合条件的t 的值为:154,133,272,292.类型二、单点的规律运动问题例2.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n 表示第n 秒时机器人在数轴上的位置所对应的数,给出下列结论(1)x 3=3;(2)x 5=1;(3)x 76>x 77;(4)x 103<x 104;(5)x 2018<x 2019其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B【分析】机器人每5秒完成一个循环,每个循环前进1步,n÷5的整数值即前进的步数,余数是1,总步数加1,是2加2,是3加3,是4加2.【详解】依题意得:机器人每5秒完成一个前进和后退,即前5秒对应的数是1,2,3,2,1;根据此规律即可推导判断:(1)和(2),显然正确;(3)中,76÷5=15……1,故x76=15+1=16,77÷5=15……2,故x77=15+2=17,16<17,故错误;(4)中,103÷5=20……3,故x103=20+3=23,104÷5=20……4,故x104=20+2=22,23>22,故错误;(5)中,2018÷5=403……3,故x2018=403+3=406,2019÷5=403……4,故错误.故选:B .【点睛】本题考查的是归纳探索能力,确定循环次数和第n 次的对应数字是解题的关键.变式2-1.一动点p 从数轴上的原点出发,沿数轴的正方向以前进5个单位,后退3个单位的程序运动,已知p 每秒前进或后退1个单位.设x n 表示第n 秒点p 在数轴的位置所对应的数,如x 4=4,x 5=5,x 6=4,则x 2019为( )A .504B .505C .506D .507【答案】D【分析】先解出点P 每8秒完成一个循环,解出对应的数值,再根据规律推导出答案.【详解】解:依题意得,点P 每8秒完成一组前进和后退,前8个对应的数是1、2、3、4、5、4、3、2;9∼16对应的数是3、4、5、6、7、6、5、4;∵2019=8×252+3,故x 2019=252×2+3=507.故选:D .【点睛】此题主要考查了数轴上点对应数字的规律探索,弄清题中的基本循环规律是解本题的关键.变式2-2.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△O A 2A 2019的面积是( )A .504B .10092C .20112D .505【答案】B【分析】根据图可得移动4次完成一个循环,观察图形得出OA4n=2n ,处在数轴上的点为A4n 和A4n-1.由OA2016=1008,推出OA2019=1009,由此即可解决问题.【详解】解: 观察图形可知: OA4n=2n ,且点A4n 和点A4n-1在数轴上,又2016=504×4,∴A2016在数轴上,且OA2016=1008,∵2019=505×4-1,∴点A2019在数轴上,OA2019=1009,∴△OA2A2019的面积=12×1009×1=10092,故选:B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.类型三、定值问题例3.如图:在数轴上A 点表示数―3,B 点表示数1,C 点表示数9.(1)若将数轴折叠,使得A 点与C 点重合,则点B 与______表示的点重合;(2)若点A 、点B 和点C 分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动.①若t 秒钟过后,A ,B ,C 三点中恰有一点为另外两点的中点,求t 值;②当点C 在B 点右侧时,是否存在常数m ,使mBC ―2AB 的值为定值,若存在,求m 的值,若不存在,请说明理由.【答案】(1)5;(2)① t =1或4或16;②存在,m =―23.【分析】(1)求出AC 的长度和中点,然后求出中点到点B 的距离即中点到点B 的重合点的距离,即可求得点B 的重合点;(2)①分别以A、B、C为中点,列出方程求解即可;②使mBC―2AB的值为定值,列出等式中的含t项合并为0,从而求出m的值.【详解】(1)AC=9―(―3)=12,12÷2=6,∴AC的中点表示的数为:9―6=3,∵3―1=2,点B的重合点为3+2=5,故答案为:5;(2)解:①由题意可知,t秒时,点A所在的数为:―3―2t,点B所在的数为:1―t,点C所在的数为:9―4t,(1)若B为AC中点,,则1―t=(―3―2t)+(9―4t)2解得t=1;(2)若C为AB中点,,则9―4t=(―3―2t)+(1―t)2解得t=4;(3)若A为BC中点,,则―3―2t=1―t+9―4t2解得t=16;综上,当t=1或4或16时,A、B C②假设存在.∵C在B右侧,B在A右侧,∴BC=9―4t―(1―t)=8―3t,AB=1―t―(―3―2t)=t+4,∴mBC―2AB=m(8―3t)―2(t+4)=8m―8―(3m+2)t,当3m+2=0即m=―2时,3mBC―2AB=8×―8=―40,为定值,3使mBC―2AB的值为定值.故存在常数m=―23【点睛】此题考查了数轴上两点间距离,数轴上动点问题,一元一次方程的应用,解题的关键是能用两点间的距离公式列出方程.变式3-1.若点A在数轴上对应的数为a,点B在数轴上对应的数为b,我们把A、B两点之间的距离表示为AB,记AB=|a―b|,且a,b满足|a―1|+(b+2)2=0.(1)a=;b=;线段AB的长=;(2)点C在数轴上对应的数是c,且c与b互为相反数,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时点A和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,t秒钟后,若点A和点C之间的距离表示为AC,点A和点B之间的距离表示为AB,那么AB―AC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出AB―AC的值.【答案】(1)1,―2,3;(2)―3或―1;(3)AB―AC的值不随着时间t的变化而变化,值为2.【分析】(1)根据绝对值及平方的非负性,求出a,b的值,从而求出线段AB的长;(2)设P对应的数为y,再由PA+PB=PC,可得出点P对应的数;(3)根据A,B,C的运动情况即可确定AB,AC的变化情况,即可确定AB―AC的值.【详解】(1)∵|a―1|+(b+2)2=0,∴a―1=0,b+2=0,解得:a=1,b=―2,∴线段AB的长为:1―(―2)=3,故答案为:1,―2,3;(2)由(1)得:b=―2,∴c=2,设P对应的数为y,由图知:①P在A右侧时,不可能存在P点;②P在B左侧时,1―y―2―y=2―y,解得: y=―3,③当P在A、B中间时,3=2―y,解得: y=―1,故点P对应的数是―3或―1;(3)AB―AC的值不随着时间t的变化而变化,理由如下:t秒钟后,A点位置为:1+4t,∴B点的位置为: ―2―t,C点的位置为: 2+9t,∴AB=1+4t―(―2―t)=5t+3AC=2+9t―(1+4t)=5t+1,∴AB–AC=5t+3―(5t+1)=2,∴AB―AC的值不随着时间t的变化而变化,值为2.【点睛】此题考查了非负数的应用,数轴的应用,数轴上的距离,理解数轴上点的距离是解题的关键.变式3-2.如图,一个点从数轴上的原点开始,先向左移动4cm到达A点,再向右移动5cm到达B点,然后再向右移动3cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上标出A、B、C三点的位置,并填空:A表示的数为_______,B表示的数为_______,C表示的数为______.(2)把点A到点C的距离记为AC,则AB=_____cm,AC=______cm;(3)若点A从(1)中的位置沿数轴以每秒1cm匀速向右运动,经过多少秒使AC=3cm?【答案】(1)―4,1,4(2)5,8(3)5或11【分析】本题考查数轴上点的表示,数轴上两点间距离,数轴上动点问题.(1)根据题意利用观察即可得到本题答案;(2)根据题意利用两点间距离即可得到;(3)分情况讨论当点A在点C的左侧时和当点A在点C的右侧时,分别列式即可得到本题答案.【详解】(1)解:由题意得:A点对应的数为―4,B点对应的数为1,点C对应的数为4,点A,B,C在数轴上表示如图:A表示的数为―4,B表示的数为1,C表示的数为4,故答案为:―4,1,4;(2)解:∵A点对应的数为―4,B点对应的数为1,点C对应的数为4,∴AB=1―(―4)=5cm,AC=4―(―4)=8cm,故答案为:5,8;(3)解∶①当点A在点C的左侧时,设经过x秒后点A到点C的距离为3cm,由题意得:8―x=3,解得:x=5;②当点A在点C的右侧时,设经过x秒后点A到点C的距离为3cm,由题意得:x―8=3,解得:x=11,综上,经过5或11秒后点A到点C的距离为3cm.类型四、双点往返运动问题例4.如图,数轴上点A表示的数为―10,点B表示的数为20.点P从点O出发,以每秒1个单位长度的速度沿数轴正方向运动,点P出发的同时点Q从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设P、Q 两点运动的时间为t秒(t>0).(1)点P表示的数为________,点Q表示的数为________.(用含t的代数式表示)(2)当t=3,t=12时,分别求线段PQ的长.(3)当PQ=5时,求所有符合条件的t的值.(4)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,以原速度沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,当PQ=8时,直接写出t的值.【答案】(1)t,―10+2t;(2)当t=3时,PQ=7;当t=12时,PQ=2;(3)t=5或t=15;(4)t=2或t=58.3【分析】本题主要考查了两点间的距离,数轴,一元一次方程的应用,解题的关键是熟记两点间的距离公式,找到等量关系.(1)根据点的运动方向列代数式即可求解;(2)先根据两点间的距离公式求出PQ,再把t值代入求解;(3)根据两点间的距离公式列方程求解;(4)根据t的取值范围,分类讨论,列方程求解.【详解】(1)解:点P表示的数为t,点Q表示的数为―10+2t,故答案为:t,―10+2t;(2)PQ=|t―(―10+2t)|=|10―t|,当t=3时,PQ=|10―3|=7,当t=12时,PQ=|10―12|=2;(3)由题意得:|10―t|=5,解得:t=5或t=15;(4)当0≤t≤15时,PQ=|10―t|=8,解得:t=2或t=18(不符合题意,舍去),当15<t≤30时,PQ=|t―[20―2(t―15)]|=|t―(50―2t)|=8,或t=14(不符合题意,舍去),解得:t=583综上所述,t =2或t =583.变式4-1.如图,O 是数轴的原点,A 、B 是数轴上的两个点,A 点对应的数是―1,B 点对应的数是8,C 是线段AB 上一点,满足AC BC =54.(1)求C 点对应的数;(2)动点M 从A 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,当点M 到达C 点后停留2秒钟,然后继续按原速沿数轴向右匀速运动到B 点后停止.在点M 从A 点出发的同时,动点N 从B 点出发,以每秒1个单位长度的速度沿数轴匀速向左运动,一直运动到A 点后停止.设点N 的运动时间为t 秒.①当MN =4时,求t 的值;②在点M ,N 出发的同时,点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,当点P 与点M 相遇后,点P 立即掉头按原速沿数轴向右匀速运动,当点P 与点N 相遇后,点P 又立即掉头按原速沿数轴向左匀速运动到A 点后停止.当PM =2PN 时,请直接写出t 的值.【答案】(1)4(2)①53或173;②t 的值为73或197或5.5【分析】(1)根据A 点,B 点对应的数,得到AB =9,根据AC 与BC 的比值,得到AC =5,BC =4,得到C 点对应的数是8―4=4;(2)①当M 、N 未相遇, M 表示的数是―1+2t , N 表示的数是8―t ,得到8―t ―(―1+2t)=4,解得t =53;当M 、N 相遇后,M 在BC 上运动,M 表示的数是4+2t ―52―2=2t ―5, N 表示的数是8―t ,得到2t ―5―(8―t)=4,解得t =173;②当P 与M 还未第一次相遇时,P 表示的数是4―3t ,M 表示的数是―1+2t ,N 表示的数是8―t ,得到4―3t ―(―1+2t)=2[8―t ―(4―3t)],解得t =―13,此种情况不存在;当P 与M 第一次相遇后,相遇后P 掉头按原速沿数轴向右匀速运动,在未遇到N 前,P 表示的数是(4―3×1)+3(t ―1)=3t ―2,得到3t ―2―(―1+2t)=2[8―t ―(3t ―2)],解得t =73;当P 与N 相遇后,未与M 第二次相遇时,P 表示的数是(8―2.5)―3(t ―2.5)=13―3t ,13―3t ―4=2[8―t ―(13―3t)],解得t =197;当P 与M 在点C 处第二次相遇后直到到达A 点前,P 表示的数是13―3t , M表示的数是4,得到4―(13―3t)=2[8―t ―(13―3t)],解得t =1,根据2.5<t ≤4.5,得到这种情况不存在;当P 运动到A 后,若N 为PM 的中点,此时PM =2PN ,―1+(2t ―5)=2(8―t),解得t =5.5.本题主要考查了数轴上动点问题,熟练掌握数轴上动点表示的数,两点间的距离公式,相遇与追及问题,列代数式,列方程,分类考虑动点的位置,是解题关键.【详解】(1)∵A 点对应的数是―1,B 点对应的数是8,∴AB =8+1=9,∵AC BC =54,∴AC =5,BC =4,∴C 点对应的数是8―BC =8―4=4,答:C 点对应的数是4;(2)①∵运动t 秒时,MN =4当M 、N 未相遇,则M 在AC 上运动,M 表示的数是―1+2t ,N 在BC 上运动,N 表示的数是8―t ,∴8―t ―(―1+2t)=4,解得t =53,当M 、N 相遇后,M 在BC 上运动,M 表示的数是4+2t ―52―2=2t ―5,N 在AC 上运动,N 表示的数是8―t ,∴2t ―5―(8―t)=4,解得t =173,综上所述,t 的值为53或173;②当P 与M 还未第一次相遇时,4―3t ,M 表示的数是―1+2t ,N 表示的数是8―t ,∵PM =2PN∴4―3t ―(―1+2t)=2[8―t ―(4―3t)],解得t =―13(舍去),此种情况不存在,由已知得,P 与M 在t =1时第一次相遇,相遇后P 掉头按原速沿数轴向右匀速运动,在未遇到N 前,P 表示的数是(4―3×1)+3(t ―1)=3t ―2,∴3t ―2―(―1+2t)=2[8―t ―(3t ―2)],解得t =73,由已知可知,当P 与M 在表示1的点处相遇,此时N 运动到表示7的点处,再经过7―13+1=1.5秒,即t =2.5时,P 与N 相遇,此时M 正好运动到C ,P 与N 相遇后又立即掉头按原速沿数轴向左匀速运动,未与M 第二次相遇,此时P 表示的数是(8―2.5)―3(t ―2.5)=13―3t ,∴13―3t ―4=2[8―t ―(13―3t)],解得t =197,当P 与M 在点C 处第二次相遇后直到到达A 点前,P 表示的数是13―3t ,M 在C 点处,M 表示的数是4,次情况2.5<t ≤4.5,∴4―(13―3t)=2[8―t ―(13―3t)],解得t =1,不合,∴这种情况不存在,当P 运动到A 后,若N 为PM 的中点,此时PM =2PN ,∴―1+(2t ―5)=2(8―t),解得t =5.5,综上所述,t 的值为73,或197,或5.5.变式4-2.已知数轴上有A 、B 、C 三个点,分别表示有理数―24、―10、10,动点P 从A 出发,以每秒1个单位长度的速度向终点C 移动,设移动时间为t 秒.若用PA ,PB ,PC 分别表示点P 与点A 、点B 、点C 的距离,试回答以下问题.(1)当点P 运动10秒时,PA =______,PB =______,PC =______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.【答案】(1)10,4,24;(2)t,|―14+t|,|―34+t|;(3)―7;(4)―5,―1,2.5,4.5.【分析】(1)根据题意求得t=10时,P点的位置,进而求得两点距离;(2)先表示出P点的位置表示的数,进而求得两点距离;(3)根据题意,列一元一次方程,解方程求解即可;(4)分Q点到达C点之前,和Q点到达C点之后,两种情形,根据两点距离为,建立一元一次方程解方程求解即可;此题考查了数轴上动点问题,数轴上两点距离问题,一元一次方程的应用,数形结合是解题的关键.【详解】(1)∵A、B、C三个点,分别表示有理数―24、―10、10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒,∴t=10时,P点表示的数为―24+10=―14,∴当P点运动10秒时,PA=|―14―(―24)|=10,PB=|―14―(―10)|=4,PC=|―14―10|=24,故答案为:10,4,24;(2)依题意,当P点运动了t秒时,则PA=t,点P表示的数为―24+t,∴PB=|―24+t―(―10)|=|―14+t|,PC=|―24+t―10|=|―34+t|,故答案为:t,|―14+t|,|―34+t|;(3)∵PA=PC,∴t=|―34+t|,即t=―34+t或―t=―34+t,解得:t=17,∴点P表示的数为―24+17=―7;(4)根据题意,设经过x秒后P、Q两点之间的距离为4个单位长度,P点运动到C点需要的时间为:20÷1=20(秒)①当Q点未到达C点,此时AQ =3x ,BP =x ,则Q 点表示的数为―24+3x ,点P 表示的数为―10+x ,则PQ =|―10+x ―(―24+3x)|=|14―2x|=4,即14―2x =4或14―2x =―4,解得:x =5或x =9,∴点表示的数为―5或―1;②当Q 点从C 点返回后,此时AQ =AC ―QC =|34―(3x ―34)|=|68―3x|,BP =x ,则Q 点表示的数为―24+68―3x =―3x +44,点P 表示的数为―10+x ,则PQ =|―10+x ―(―3x +44)|=|4x ―54|=4,即4x ―54=4或4x ―54=―4,解得x =292或x =252,∴点P 表示的数为4.5或2.5,综上所述,点P 表示的数为―5,―1,2.5,4.5.类型五、数轴的折叠问题例5.综合与探究数轴可以将数与形完美结合.请借助数轴,结合具体情境解答下列问题:(1)平移运动一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依此规律跳,当它跳完5次时,落在数轴上的点表示的数是 ;当它跳完2024次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠数轴所在纸条,表示―1的点与表示3的点重合,则表示5的点与表示 的点重合.②若数轴上D 、E 两点经折叠后重合,两点之间的距离为2024(D 在E 的左侧,且折痕与①折痕相同),则D点表示,E点表示.③一条数轴上有点M、N、P,其中点M、N表示的数分别是―17、8,现以点P为折点,将数轴向右对折,若点M对应的点M′落在点N的右边,并且线段M′N的长度为3,请直接写出点P表示的数.【答案】(1)―3;1012(2)①―3;②―1011;1013;③―3【分析】本题考查图形变化的规律,熟知折叠后能重合的两个点到折点的距离相等是解题的关键.(1)根据机器人的运动方式,依次求出每次跳完落在数轴上时所表示的数,发现规律即可解决问题.(2)根据折叠后重合的点到折点的距离相等即可解决问题.【详解】(1)解:根据机器人的运动方式可知,它跳完第1次时,落在数轴上的点表示的数是:―1;它跳完第2次时,落在数轴上的点表示的数是:1;它跳完第3次时,落在数轴上的点表示的数是:―2;它跳完第4次时,落在数轴上的点表示的数是:2;它跳完第5次时,落在数轴上的点表示的数是:―3;它跳完第6次时,落在数轴上的点表示的数是:3;…,由此可见,它跳完第2n次时,落在数轴上的点表示的数是n,它跳完第(2n―1)次时,落在数轴上的点表示的数是―n;当2n―1=5,即n=3时,―n=―3,所以它跳完第5次时,落在数轴上的点表示的数是―3;当2n=2024,即n=1012时,可得它跳完第2024次时,落在数轴上的点表示的数是1012;故答案为:―3,1012.(2)①由表示―1的点与表示3的点重合可知,―1+3=1,2则折点所表示的数为1.因为5―1=1―(―3),所以表示5的点与表示―3的点重合.故答案为:―3.②因为折痕与①的折痕相同,所以这次折叠的折点所表示的数也为1.又因为2024÷2=1012,1+1012=1013,1―1012=―1011,所以点D表示的数为―1011,点E表示的数为1013.故答案为:―1011,1013.③由折叠可知,MP=M′P,因为点M、N表示的数分别是―17、8,所以MN=8―(―17)=25.又因为点M′落在点N的右边,并且线段M′N的长度为3,所以MM′=25+3=28.因为28÷2=14,―17+14=―3,所以点P表示的数为―3.故答案为:―3.变式5-1.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示―10,点B 表示10,点C表示17,我们称点A和点C在“折线数轴”上相距27个单位长度.动点P,Q同时出发,点P从点A出发,以2个单位长度/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1个单位长度/秒的速度沿着“折线数轴”的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,问:(1)动点P从点A运动至点C需要多少时间?(2)当P,Q两点相遇时,求出相遇点M所对应的数是多少?(3)当P,O两点在“折线数轴”上相距的长度与Q,B两点在“折线数轴”上相距的长度相等时,t的值为(直接写出结果).【答案】(1)18.5秒(2)143(3)3或6或9或18【分析】本题考查了数轴上两点之间距离,一元一次方程与路程问题的应用,读懂题意,找到等量关系,列出方程是解题的关键.,分段求出每段折线上的时间再求和即可;(1)根据时间=路程速度(2)P、Q两点相遇时,所用时间相等,根据等量关系建立一元一次方程;(3)根据P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等可以判断时间相等,根据等量关系建立一元一次方程,同时需要分情况讨论,即虽然PO=OP,但PO和OP不是同一条射线.【详解】(1)解:点P 从点 A 运动至 C 点需要的时间为:t=10÷2+10÷1+(17―10)÷2=18.5(秒).答:点P 从点 A 运动至 C 点需要的时间是18.5 秒;(2)解:由题可知,P,Q 两点相遇在线段OB上于M 处,设OM=x,则10÷2+x÷1=7÷1+(10―x)÷2,解得:x=143.∴OM=143表示P,Q 两点相遇在线段OB上于M 处,即相遇点M 所对应的数是143.(3)解:P、O 两点在数轴上相距的长度与Q、B 两点在数轴上相距的长度相等有 4 种可能:①当动点Q 在CB上,动点P在AO上时,则:7―t=10―2t,解得:t=3;②当动点Q 在CB上,动点P在OB上时,则:7―t=(t―5)×1,解得:t=6;③当动点Q 在BO上,动点P 在OB上时,则:2(t―7)=(t―5)×1,解得:t=9;④当动点Q 在OA上,动点P 在BC上时,则:(t―7―5)×1=2(t―5―10),解得:t=18.综上所述:t 的值为 3 或 6 或9或18.故答案为: 3 或 6 或9或18.变式5-2.七年级数学兴趣小组成员自主开展数学微项目研究,他们决定研究“折线数轴”.探索“折线数轴”:素材1 如图,将一条数轴在原点O,点B,点C处折一下,得到一条“折线数轴”.图中点A表示―9,点B表示12,点C表示24,点D表示36,我们称点A与点D在数轴上的“友好距离”为45个单位长度,并表示为AD=45.素材2 动点P从点A出发,以2个单位长度/秒的初始速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为初始速度的一半.当运动到点B与点C之间时速度变为初始速度的两倍.经过点C后立刻恢复初始速度.问题解决:探索1 :动点P从点A运动至点B需要多少时间?探索2 :动点P从点A出发,运动t秒至点B和点C之间时,求点P表示的数(用含t的代数式表示);探索3 :动点P从点A出发,运动至点D的过程中某个时刻满足PB+PC=16时,求动点P运动的时间.【答案】探索1:P从点A运动至点B的时间为16.5秒;探索2:P表示的数为4t―54;探索3:动点P运动的时间是14.5秒或20.5秒.【分析】本题考查数轴上动点计算问题及数轴上两点间距离问题,解题的关键是理解题意并掌握相关的知识.探索1:根据时间=路程÷速度,即可求解;探索2:由探索1可得P在BC段运动时间为:(t―16.5)秒,进而得到BP=4t―66,结合点B表示12,即可求解;探索3:分两种情况:①当P在BO上时,②当P在CD上时,根据线段的和差以及时间=路程÷速度,即可求解.【详解】解:探索1:∵点A表示―9,点B表示12,∴OA=9,OB=12,∵P在AO段初始速度为2个单位长度/秒,P在OB段速度为初始速度的一半,∴P在OB段速度为1个单位长度/秒,∴P从点A运动至点B的时间为:92+121=16.5(秒);探索2:∵P的初始速度为2个单位长度/秒,P在BC段速度为初始速度的两倍,∴P在BC段速度为4个单位长度/秒,由探索1可得:P在BC段运动时间为:(t―16.5)秒,∴BP=4(t―16.5)=4t―66,∵点B表示12,∴P表示的数为:12+(4t―66)=4t―54;探索3:设t秒后PB+PC=16,①当P在BO上时,∵PB+PC=16,∴PB+(PB+BC)=16,∵BC=12,∴PB=2,∴PO=OB―BP=12―2=10,∵OA=9,∴t=92+101=4.5+10=14.5(秒);②当P在CD上时,。
七年级上册数学数轴动点问题一、数轴动点问题题目。
1. 已知数轴上点A表示的数为 -2,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动。
设运动时间为t秒。
- 当t = 2时,求PQ的长度。
- 当PQ = (1)/(2)AB时,求t的值。
- 在点P、Q运动的过程中,是否存在某一时刻t,使得点P是线段BQ的中点?若存在,求出t的值;若不存在,请说明理由。
解析:- 当t = 2时,点P表示的数为-2 + 1×2=0,点Q表示的数为6-2×2 = 2,则PQ=|0 - 2|= 2。
- AB=|-2 - 6| = 8,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,当PQ=(1)/(2)AB = 4时,即|3t-8| = 4,则3t-8 = 4或3t - 8=-4,解得t = 4或t=(4)/(3)。
- 若点P是线段BQ的中点,则BP = PQ,点P表示的数为-2+t,点Q表示的数为6-2t,BP=|(-2 + t)-6|=| t-8|,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,所以| t - 8|=|3t - 8|,即t-8=3t - 8(无解)或t - 8=-(3t - 8),解得t=(8)/(2)=4。
2. 数轴上点A对应的数为 -1,点B对应的数为3,点C对应的数为5,点P在数轴上对应的数为x。
- 若点P到点A、点B的距离相等,求x的值。
- 若PA + PB = PC,求x的值。
- 设点P在点A左侧,点M从点P出发,以每秒1个单位长度的速度向点A运动;同时点N从点A出发,以每秒2个单位长度的速度向点B运动,设运动时间为t 秒。
当点M与点N之间的距离为1个单位长度时,求t的值。
解析:- 因为点P到点A、点B的距离相等,所以| x-(-1)|=| x - 3|,即x + 1=-(x - 3)或x+1=x - 3(无解),解得x = 1。
七年级数轴动点问题解题技巧
数轴上的动点问题一直以来是初中数学中的重点和难点。
这类问题往往涉及到数轴上的移动、速度、距离等概念,需要学生灵活运用数学知识进行解决。
下面我们将从几个方面探讨七年级数轴动点问题的解题技巧。
一、明确问题背景和要求
在解决数轴动点问题时,首先需要明确题目的问题背景和要求。
动点问题常常涉及到速度、时间、距离等物理量的变化,因此我们需要先理解这些概念,并能够将问题抽象为数学模型。
二、画图分析
在解决数轴动点问题时,画图分析是非常重要的。
通过画图可以将抽象的问题具体化,帮助学生更好地理解题意。
在画图时,需要注意以下几点:
1. 确定原点和其他关键点的位置;
2. 标明速度方向和大小;
3. 画出运动轨迹和时间轴;
4. 标注已知量和未知量。
三、运用数学公式解决问题
在解决数轴动点问题时,需要运用数学公式进行计算。
常用的数学公式包括距离公式、速度公式等。
在运用公式时,需要注意以下几点:
1. 确定公式中的变量和参数;
2. 正确代入已知量进行计算;
3. 注意单位的统一;
4. 计算时要仔细认真,避免出现计算错误。
四、验证答案
在得出答案后,需要验证答案的正确性。
可以通过代入原题进行检验,或者使用其他方法进行验证。
如果答案不正确,需要仔细检查解题过程中存在的问题,并进行修正。
综上所述,七年级数轴动点问题的解题技巧包括明确问题背景和要求、画图分析、运用数学公式解决问题以及验证答案。
通过这些技巧的应用,可以帮助学生更好地解决数轴动点问题,提高数学素养和应用能力。
初一数学数轴上的动点问题
初一数学中的数轴上的动点问题通常涉及一个或多个点在数轴上按照一定的速度和方向移动,需要解决的问题可能包括:
1.计算动点在某个时间点的坐标;
2.求解动点从一个位置运动到另一个位置所需的时间;
3.计算两个动点之间的距离或者它们何时会相遇;
4.解决涉及到动点与线段、射线或圆等图形关系的问题。
要解答这些问题,可以遵循以下基本步骤:
1.找出基准坐标:确定每个动点开始运动时所在的初始位置(即基准坐标)。
2.计算动点运动后的坐标:
(1)向右运动时,新的坐标= 基准坐标+ 运动的距离(或速度×时间)。
(2)向左运动时,新的坐标= 基准坐标- 运动的距离(或速度×时间)。
3.表示线段长度:线段长度可以通过线段右端点的数减去线段左端点的数来
表示。
4.列方程:根据题目给出的条件,建立包含未知量(如时间t、速度V或所
求坐标)的方程。
可能需要用到的关系有速度=距离/时间,以及两点间的距离公式。
5.解方程:使用代数方法解出所需的未知量。
6.检验答案:确保得到的答案满足题目中的所有条件。
如果题目中提到分类讨论的思想,可能意味着你需要考虑不同的情况,例如动点向不同方向移动的情况,或者有两个动点同时移动的情况。
对于这类问题,你可能需要为每种情况分别建立并解方程,然后将结果合并起来。
在解题过程中,注意运用数形结合的思想,通过画图来帮助理解问题和检查答案的合理性。
七年级数学数轴上的动点问题数轴上的线段与动点问题
一、与数轴上的动点问题相关的基本概念
数轴上的动点问题离不开数轴上两点之间的距离.主要涉及以下几个概念:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数—左边点表示的数.
2.两点中点公式:线段AB中点坐标=(a+b)÷2.
3.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度.这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b.
4.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系.
二、数轴不动点问题求解的基本思路和方法:
1.标明题目中动点的坐标(一般用含时间t的公式表示)。
2.根据两点间的距离公式,表示问题中相关线段的长度(一般用含时间t的公式表示)。
3.根据题中线段的等价关系(一般是和差关系)列出绝对值方程。
4、解绝对值方程并根据实际问题验算结果.
注:数轴上线段的动点问题方法类似
1.已知数轴上点a和b对应的数是-2和4,p是数轴上的动点,对应的数是x.
A B
-2-1 0 1 2 3 4
(1)若P为AB线段的三等分点,求P对应的数;
(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,
说明理由.
(3)如果a点、b点和p点(p点在原点)同时向左移动,它们的速度分别为1、2和1。
个长度单位/分,则第几分钟时,P为AB的中点?
2、已知:b是最小的正整数,且a、b、c满足(c-5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5|.(3)若点A、点C分别以每秒1个单位和2个单位长度的速度向左运动,请问几秒时,A,C之间的距离为1个单位长度?
(4)点a、b、c开始在数轴上移动。
如果a点以每秒1个单位长度的速度向左移动,而b点和c点分别以每秒2个单位长度和每秒5个单位长度的速度向右移动,假设t秒后,如果b 点和c点之间的距离为bc,则a点和b点之间的距离为ab。
请问:bc-ab的值是否随时间t的变化而变化?如果有,请说明原因;如果没有,求其价值。
22.如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足
2
|a+2|+(b-1)=0.AB(1)求线段AB的长;
1
(2)点C在数轴上对应的数为x,且x是方程2x-1=x +2的根,在数轴上是否存在
2
点P,使PA+PB=PC,若存在,求出点P对应的数;若不存在,说明理由.(3)若P是A左侧的一点,PA的中点为M,PB的中点为N,当P点在A点左侧运动时,
有两个结论:①PM+PN的值不变;②PN-PM的值不变,其中只有一个结论正确,
请判断正确结论,并求出其值.
33、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发.
(1)当PA=2PB时,点Q运动到的位置恰好是线段AB 的三等分点,求点Q运动的速度;(2)若点Q运动的速度为
3cm/s,经过多长时间P、Q两点相距70cm;
(3)当点P运动到线段AB上时,取OP和AB的中点E、F,求。