2022年吉林省中考数学试题及解析
- 格式:docx
- 大小:46.87 KB
- 文档页数:22
吉林省2023年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.月球表面的白天平均温度零上126C ︒,记作+126C ︒,夜间平均温度零下150C ︒,应记作()A.+150C︒ B.150C-︒ C.+276C︒ D.276C-︒2.图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()A.B.C. D.3.下列算式中,结果等于5a 的是()A.23a a + B.23a a ⋅ C.23()a D.102a a ÷4.一元二次方程2520x x -+=根的判别式的值是()A.33B.23C.17D.175.如图,在ABC 中,点D 在边AB 上,过点D 作DE BC ∥,交AC 于点E .若23AD BD ==,,则AEAC的值是()A.25B.12C.35D.236.如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是()A.70︒B.105︒C.125︒D.155︒二、填空题(每小题3分,共24分)7.计算:=_________.8.不等式480x ->的解集为__________.9.计算:(3)a b +=_________.10.如图,钢架桥的设计中采用了三角形的结构,其数学道理是__________.11.如图,在ABC 中,AB AC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两孤交于点D ,作直线AD 交BC 于点E .若=110BAC ∠︒,则BAE ∠的大小为__________度.12.《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱.问合伙人数是多少?为解决此问题,设合伙人数为x 人,可列方程为__________.13.如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径r 为15m ,点A ,B 是圆上的两点,圆心角120AOB ∠=︒,则 AB 的长为_________m .(结果保留π)14.如图,在Rt ABC △中,90C BC AC ∠=︒<,.点D ,E 分别在边AB ,BC 上,连接DE ,将BDE 沿DE 折叠,点B 的对应点为点B '.若点B '刚好落在边AC 上,303CB E CE '∠=︒=,,则BC 的长为__________.三、解答题(每小题5分,共20分)15.下面是一道例题及其解答过程的一部分,其中M 是单项式.请写出单项式M ,并将该例题的解答过程补充完整.例先化简,再求值:211a a aM -++,其中100a =.解:原式()()2111a a a a a =-++……16.2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A ,B ,C ,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.17.如图,点C 在线段BD 上,在ABC 和DEC 中,A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.18.2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.四、解答题(每小题7分,共28分)19.图①、图②、图③均是55⨯的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图①、图②、图③中以AB为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.20.笑笑同学通过学习数学和物理知识,知道了电磁波的波长λ(单位:m)会随着电磁波的频率f(单位:MHz)的变化而变化.已知波长λ与频率f是反比例函数关系,下面是它们的部分对应值:频率f(MHz)101550波长λ(m)30206(1)求波长λ关于频率f的函数解析式.f=时,求此电磁波的波长λ.(2)当75MHz21.某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示准备皮尺.【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角α.测出眼睛到地面的距离AB .测出所站地方到古树底部的距离BD .α=________.1.54m AB =.10m BD =.【步骤四】计算古树高度CD .(结果精确到0.1m )(参考数据:sin 400.643cos 400.766tan 400.839︒=︒=︒=,,)请结合图①、图④和相关数据写出α的度数并完成【步骤四】.22.为了解20182022-年吉林省粮食总产量及其增长速度的情况,王翔同学查阅相关资料,整理数据并绘制了如下统计图:20182022-年吉林省粮食总产量及其增长速度(以上数据源于《2022年吉林省国民经济和社会发展统计公报》)注:-=100%⨯本年粮食总产量去年粮食总产量增长速度去年粮食总产量.根据此统计图,回答下列问题:(1)2021年全省粮食总产量比2019年全省粮食总产量多__________万吨.(2)20182022-年全省粮食总产量的中位数是__________万吨.(3)王翔同学根据增长速度计算方法得出2017年吉林省粮食总产量约为4154.0万吨.结合所得数据及图中信息对下列说法进行判断,正确的画“√”,错误的画“×”①20182022-年全省粮食总产量增长速度最快的年份为2019年,因此这5年中,2019年全省粮食总产量最高.()②如果将20182022-年全省粮食总产量的中位数记为a 万吨,20172022-年全省粮食总产量的中位数记为b 万吨,那么a b <.()五、解答题(每小题8分,共16分)23.甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和()m y 与甲组挖掘时间x (天)之间的关系如图所示.(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.24.【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN .转动其中一张纸条,发现四边形EFMN 总是平行四边形其中判定的依据是__________.【探究提升】取两张短边长度相等的平行四边形纸条ABCD 和EFGH (AB BC <,FG BC ≤),其中AB EF =,B FEH ∠=∠,将它们按图②放置,EF 落在边BC 上,FG EH ,与边AD 分别交于点M ,N .求证:EFMN 是菱形.【结论应用】保持图②中的平行四边形纸条ABCD 不动,将平行四边形纸条EFGH 沿BC 或CB 平移,且EF 始终在边BC 上.当MD MG =时,延长CD HG ,交于点P ,得到图③.若四边形ECPH 的周长为40,4sin 5EFG ∠=(EFG ∠为锐角),则四边形ECPH 的面积为_________.六、解答题(每小题10分,共20分)25.如图,在正方形ABCD 中,4cm AB =,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA AB -于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(04x <<),四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm ,CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.26.如图,在平面直角坐标系中,抛物线22y x x c =-++经过点(0,1)A .点P ,Q 在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ ∠的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m -=时,直接写出m 的值.。
2022年长春市中考数学模拟考试试卷一、选择题(本大题共8小题,每小题3分,共24分)1.比﹣3大2的数是( )A .﹣5B .﹣1C .1D .52.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为( )A .1.56×109B .1.56×108C .15.6×108D .0.156×10103.下列图形中,可以是正方体表面展开图的是( )A .B .C .D .4.下列计算正确的是( )A .a +2a =3a 2B .a •a 2=a 3C .(2a )2=2a 2D .(﹣a 2)3=a 65.一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的部分展开,展开后的这个图形的内角和是多少度?( )A .1080°B .360°C .180°D .900°6.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( )A .3×4+2x <24B .3×4+2x ≤24C .3x +2×4≤24D .3x +2×4≥247.如图,在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x 、y 的方程组{kx =y −b mx +n =y的解是( )A .{x =−1y =2B .{x =2y =−1C .{x =1y =2D .{x =2y =1 8.如图,点A 在函数y =2x (x >0)的图象上,点B 在函数y =4x (x >0)的图象上,且AB∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)9.计算:√18+√2= .10.分解因式:a 2﹣ab = .11.如图AB ∥CD ,点E 是CD 上一点,EF 平分∠AED 交AB 于点F ,若∠AEC =42°,则∠AFE 的大小是 .12.如图,为了绿化荒山,在坡角∠BAC 为31°的山坡上修建扬水站,扬水站中出水口B的高度BC 为50m ,现在打算从山脚下的机井房A 沿山坡铺设水管,则铺设水管AB 的长度约为 m (结果精确到1m )(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60)13.如图,在△ACB 中,∠ACB =90°,点D 为AB 的中点,将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.若AC =6,BC =8,则DB 1的长为 .14.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽AB =1.6m 时,涵洞顶点与水面的距离是2.4m .这时,离开水面1.5m 处,涵洞的宽DE 为 .三、解答题(本大题共10小题,共78分)15.(6分)先化简x 2+2x+1x 2−1−x x−1,再选一个合适的x 值代入求值.16.(6分)将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?17.(6分)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.18.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E(1)求证:AC平分∠DAB(2)连接CE,若CE=6,AC=8,直接写出⊙O直径的长.19.(7分)如图,在每个小正方形的边长均为1的网格中,点A,B均在格点上.(1)线段AB的长为;(2)请利用网格,用无刻度的直尺在AB上作出点P,使AP=4√53,要求保留作图痕迹(不要求证明).20.(7分)某家装公司为新建小区做家装设计,调查员设计如下问卷,对家装风格进行专项调查.【收集数据】通过随机抽样调查50家客户,得到如下数据:A B B A B B A C A C A B A D AA BB A A D B A B AC A C B A A DA AA B B D A A A B A C A B D A BA【整理、描述数据】调查员根据数据绘制了下面不完整的家装风格统计表修划记户数A正正正正正25B正正正C5D正5合计/50(1)补全统计表【分析数据】(2)根据抽样调查的结果,将估计出的整个小区的1000户家住户的家庭装修风格绘制成合适的统计图(绘制一种即可).【得出结论】(3)如果公司准备招聘10名装修设计师(每名装修设计师只擅长一种设计风格),根据统计数据预测招收A种装修风格的设计师的人数.21.(8分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?22.(9分)[教材呈现]图是华师版九年级上册数学教材第103页的部分内容.已知:如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=12AB.通过该问题的证明,得出了直角三角形的一条性质:直角三角形斜边上的中线等于斜边的一半.请根据教材内容,结合图①,写出完整的解题过程.[结论应用](1)如图②,在Rt△ABC中,F是AD中点,∠ACB=90°,∠BAC=60°,点D在BC上(点D不与B、C重合),DE⊥AB于点E,连结CE、CF、EF.当AD=4时,S△CEF=.(2)如图③,AD是⊙O直径,点C、E在⊙O上(点C、E位于直径AD两侧),在⊙O上,且sin∠DAC=13,CD=2.当四边形OCDE有一组对边平行时,直接写出AE的长.23.(10分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,点D、E分别是BC、AB 的中点,连结DE.点P从点A出发以每秒4个单位的速度沿AC向点C运动,过点P 作AC的垂线交AB于点M,以PM为直角边向PM下方作△PMN,使∠PMN=90°,且PM=2MN.设点P的运动时间为t(秒).(1)填空:AB=,AM=.(2)当点N落在线段BC上时,求t的值.(3)当△PMN与△BDE重合部分的图形是四边形时,设这个重叠部分的四边形的面积为S平方单位,求S与t的函数关系式,并写出自变量t的取值范围.(4)将△PMN绕点M逆时针旋转90°得到△P′MN′,当△P′MN′与△BDE重合部分的图形是三角形时,直接写出t的取值范围.24.(12分)规定:当二次函数y=x2﹣mx﹣m﹣1与直线y=﹣2m有两个不同交点时(m 为常数),将函数在直线上方的图象沿直线y=﹣2m翻折,翻折后的图象记为G1,函数在直线y=﹣2m及其下方的图象记为G2,G1和G2合起来组成图象G.(1)当m=﹣1时,请直接写出图象G所对应的函数表达式.(2)若点(﹣2,﹣2)在图象G上,求m的值;(3)当m=﹣1时,若图象G所对应的函数的自变量满足﹣2≤x≤2,求函数值y的取值范围.(4)当图象G所对应函数在﹣m﹣1≤x≤−12m+3上函数值y随自变量x的增大,先增大后减小时,直接写出m的取值范围.2022年长春市中考数学模拟考试试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.比﹣3大2的数是()A.﹣5B.﹣1C.1D.5【解答】解:﹣3+2=﹣(3﹣2)=﹣1.故选B.2.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为()A.1.56×109B.1.56×108C.15.6×108D.0.156×1010【解答】解:1 560 000 000用科学记数法表示为1.56×109.故选:A.3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.【解答】解:下列图形中,可以是正方体表面展开图的是,故选:D.4.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a6【解答】解:A、a+2a=3a,故本选项错误;B、a•a2=a3,故本选项正确;C、(2a)2=4a2,故本选项错误;D、(﹣a2)3=﹣a6,故本选项错误.故选:B.5.一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的部分展开,展开后的这个图形的内角和是多少度?( )A .1080°B .360°C .180°D .900°【解答】解:展开图的这个图形是八边形,故内角和为:(8﹣2)×180°=1080°. 故选:A .6.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( ) A .3×4+2x <24B .3×4+2x ≤24C .3x +2×4≤24D .3x +2×4≥24【解答】解:根据题意,得3×4+2x ≤24.故选B .7.如图,在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x 、y 的方程组{kx =y −b mx +n =y的解是( )A .{x =−1y =2B .{x =2y =−1C .{x =1y =2D .{x =2y =1【解答】解:∵一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1), ∴关于x 、y 的方程组{kx =y −b mx +n =y 的解为{x =2y =−1.故选:B .8.如图,点A 在函数y =2x (x >0)的图象上,点B 在函数y =4x (x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为( )A.1B.2C.3D.4【解答】解:如图,延长BA交y轴于D,则四边形OCBD为矩形.∵点A在双曲线y=2x上,点B在双曲线y=4x上,∴S△OAD=1,S矩形OCBD=4,∴四边形ABCO的面积=S矩形OCBD﹣S△OAD=4﹣1=3.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.计算:√18+√2=4√2.【解答】解:原式=3√2+√2=4√2.10.分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).11.如图AB∥CD,点E是CD上一点,EF平分∠AED交AB于点F,若∠AEC=42°,则∠AFE的大小是69°.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣42°=138°,∵EF平分∠AED,∴∠DEF=12∠AED=69°,∵AB∥CD,∴∠AFE=∠DEF=69°.故答案为69°.12.如图,为了绿化荒山,在坡角∠BAC为31°的山坡上修建扬水站,扬水站中出水口B 的高度BC为50m,现在打算从山脚下的机井房A沿山坡铺设水管,则铺设水管AB的长度约为96m(结果精确到1m)(参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60)【解答】解:在△ABC中,∵∠BAC=31°,BC=50m,∴sin31°=BC AB,∴AB=500.52≈96(m),故答案为96.13.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为3.【解答】解:∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴AB=√BC2+AC2=√62+82=10,∵点D为AB的中点,∴CD=12AB=5,∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.∴CB1=BC=8,∴DB 1=8﹣5=3, 故答案为:3.14.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽AB =1.6m 时,涵洞顶点与水面的距离是2.4m .这时,离开水面1.5m 处,涵洞的宽DE 为2√65.【解答】解:∵抛物线y =ax 2(a <0), 点B 在抛物线上,将B (0.8,﹣2.4), 它的坐标代入y =ax 2(a <0), 求得a =−154,所求解析式为y =−154x 2.再由条件设D 点坐标为(x ,﹣0.9), 则有:﹣0.9=−154x 2., 解得:x =±√65, 所以宽度为2√65, 故答案为:2√65. 三、解答题(本大题共10小题,共78分) 15.(6分)先化简x 2+2x+1x 2−1−xx−1,再选一个合适的x 值代入求值.【解答】解:原式=(x+1)2(x+1)(x−1)−xx−1 =x+1x−1−xx−1 =1x−1.当x =2时,原式=1.16.(6分)将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率. (2)摸出的两个球上数字之和为多少时的概率最大? 【解答】解:(1)或甲袋 和 乙袋 2 3 42 4 5 6 4678摸出的两个球上数字之和为5的概率为16.(2)从表看,摸出的两个球上数字之和为6时概率最大.17.(6分)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.【解答】解:设这两年的年平均增长率为x %,根据题意列方程得5(1+x %)2=7.2 即1+x %=±1.2 解得x 1=20,x 2=﹣220经检验x 2=﹣220不符合题意,舍去,所以x =20. 答:这两年的年平均增长率为20%.18.(7分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E (1)求证:AC 平分∠DAB(2)连接CE ,若CE =6,AC =8,直接写出⊙O 直径的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:∵∠CAD=∠CAO,̂=CB̂,∴CE∴CE=BC=6,∵AB为直径,∴∠ACB=90°,由勾股定理得:AB=√AC2+BC2=√82+62=10,即⊙O直径的长是10.19.(7分)如图,在每个小正方形的边长均为1的网格中,点A,B均在格点上.(1)线段AB的长为2√5;(2)请利用网格,用无刻度的直尺在AB上作出点P,使AP=4√53,要求保留作图痕迹(不要求证明).【解答】解:(1)由勾股定理得,AB=√42+22=2√5,故答案为:2√5;(2)∵AB=2√5,所以,AP=4√53时,AP:BP=2:1.点P如图所示.取格点M,N,连接MN交AB于P,则点P即为所求.20.(7分)某家装公司为新建小区做家装设计,调查员设计如下问卷,对家装风格进行专项调查.【收集数据】通过随机抽样调查50家客户,得到如下数据:A B B A B B A C A C A B A D AA BB A A D B A B AC A C B A A DA AA B B D A A A B A C A B D A BA【整理、描述数据】调查员根据数据绘制了下面不完整的家装风格统计表修 划记 户数 A 正正正正正 25 B 正正正 15 C 正 5 D 正 5 合计 /50(1)补全统计表 【分析数据】(2)根据抽样调查的结果,将估计出的整个小区的1000户家住户的家庭装修风格绘制成合适的统计图(绘制一种即可). 【得出结论】(3)如果公司准备招聘10名装修设计师(每名装修设计师只擅长一种设计风格),根据统计数据预测招收A 种装修风格的设计师的人数. 【解答】解:(1)补全的统计表为 装修风格划记 户数 A 正正正正正 25 B 正正正 15 C 正 5 D 正 5 合计 /50(2)A .2550×360°=50%×360°=180°;B .1550×360°=30%×360°=108°; C .550×360°=10%×360°=36°; D .550×360°=10%×360°=36°;扇形统计图如图所示.(3)∵10×2550=5, ∴中式设计师可招约5人.21.(8分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是 330 件,日销售利润是 660 元. (2)求y 与x 之间的函数关系式,并写出x 的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【解答】解:(1)340﹣(24﹣22)×5=330(件), (8﹣6)×330=660(元). 故答案为:330;660.(2)设直线OD 的函数关系式为y =kx +b , 将(0,0)、(17,340)代入y =kx +b , {b =017k +b =340,解得:{k =20b =0, ∴直线OD 的函数关系式为y =20x .设直线DE 的函数关系式为y =mx +n , 将(22,340)、(24,330)代入y =mx +n , {22m +n =34024m +n =330,解得:{m =−5n =450, ∴直线DE 的函数关系式为y =﹣5x +450. 联立两函数解析式成方程组, {y =20x y =−5x +450,解得:{x =18y =360,∴点D 的坐标为(18,360).∴y 与x 之间的函数关系式为y ={20x(0≤x ≤18)−5x +450(18≤x ≤30).(3)640÷(8﹣6)=320(件),当y =320时,有20x =320或﹣5x +450=320, 解得:x =16或x =26, ∴26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵折线ODE 的最高点D 的坐标为(18,360),360×2=720(元), ∴当x =18时,日销售利润最大,最大利润为720元.22.(9分)[教材呈现]图是华师版九年级上册数学教材第103页的部分内容.已知:如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线.求证:CD =12AB .通过该问题的证明,得出了直角三角形的一条性质:直角三角形斜边上的中线等于斜边的一半.请根据教材内容,结合图①,写出完整的解题过程. [结论应用](1)如图②,在Rt △ABC 中,F 是AD 中点,∠ACB =90°,∠BAC =60°,点D 在BC 上(点D 不与B 、C 重合),DE ⊥AB 于点E ,连结CE 、CF 、EF .当AD =4时,S △CEF=√3.(2)如图③,AD是⊙O直径,点C、E在⊙O上(点C、E位于直径AD两侧),在⊙O上,且sin∠DAC=13,CD=2.当四边形OCDE有一组对边平行时,直接写出AE的长.【解答】解:[教材呈现]已知:△ABC中,∠ACB=90°,CD是中线,求证:CD=12AB.证明:作DE⊥BC于E,DF⊥AC于F,则DF∥BC,DE∥AC,∵CD是中线,∴AF=FC,BE=EC,∴直线DE是线段AC的垂直平分线,直线DE是线段BC的垂直平分线,∴DA=DC,DB=DC,∴CD=DA=DB=12AB;[结论应用](1)CF、FE分别是Rt△ACD、Rt△ADE的中线,则CF=EF=12AD=2,设:∠CAF=α=∠ACF,∠F AE=β=∠AEF,∠CAB=α+β=60°,∠CFE=∠FCA+∠F AC+∠FEA+∠F AE=2α+2β=120°,故△CEF为腰长为2,顶角为120°的等腰三角形,过点F作FH⊥CE,则S△CEF=12×CE×FH=12×2√3×1=√3,故答案为:√3;(2)设sin∠DAC=13=sinα,CD=2,则AD=6,OC=OE=12AD=3,①当CD∥OE时,如图③(左侧图),则∠ADC=∠DOE=∠β,sinα=13=cosβ,过点D作DH⊥OE交OE于点H,OH=OD cosβ=3×13=1,则HE=3﹣1=2,同理DH=2√2,DE=√DH2+HE2=2√3,AE=√AD2−DE2=√36−12=2√6;②当OC∥DE时,如图③(右侧图),则∠COD=∠ODE=2α,过点O作ON⊥DE于点N,则DN=EN,DE=2DN=2×OD cos2α=2×3×79=143(注:cos2α的求法见备注),AE=√AD2−DE2=√36−2569=8√23;综上,AE =2√6或8√23;备注:等腰三角形ABC ,AB =AC ,作AD ⊥BC 于点D ,过点C 作CE ⊥AB 于点E ,设∠BAD =∠CAD =α,设sin α=13, 设BD =CD =a ,则AB =AC =3a ,则AD =2√2a , S △ABC =12AD ×BC =12AB ×CE , 即2√2a ×2a =3a ×CE ,则CE =4√2a3, sin2α=CE AC =4√29,则cos2α=79. 23.(10分)如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,点D 、E 分别是BC 、AB 的中点,连结DE .点P 从点A 出发以每秒4个单位的速度沿AC 向点C 运动,过点P 作AC 的垂线交AB 于点M ,以PM 为直角边向PM 下方作△PMN ,使∠PMN =90°,且PM =2MN .设点P 的运动时间为t (秒). (1)填空:AB = 10 ,AM = 5t . (2)当点N 落在线段BC 上时,求t 的值.(3)当△PMN 与△BDE 重合部分的图形是四边形时,设这个重叠部分的四边形的面积为S 平方单位,求S 与t 的函数关系式,并写出自变量t 的取值范围.(4)将△PMN 绕点M 逆时针旋转90°得到△P ′MN ′,当△P ′MN ′与△BDE 重合部分的图形是三角形时,直接写出t 的取值范围.【解答】解:(1)如图1中,在Rt △ACB 中,∵∠C =90°,AC =8,BC =6, ∴AB =√AC 2+BC 2=√82+62=10, ∵PM ⊥AC ,∴∠APM =∠C =90°, ∴PM ∥BC , ∴PA AC =AM AB =PM BC ,∴4t 8=AM 10=PM 6,∴AM =5t ,PM =3t . 故答案为10,5t .(2)如图2中,当点N 落在BC 上时,∵∠CPM =∠PMN =∠C =90°, ∴四边形PMNC 是矩形, ∴PC =MN =12PM =32t , ∵P A +PC =8, ∴4t +32t =8, ∴t =1611.(3)如图3﹣1中,当1<t ≤1611时,重叠部分是四边形MNKH ,S =S △PMN ﹣S △PHK =12×3t ×32t −12×3×32=94t 2−94t .如图3﹣2中,当138≤t <2时,重叠部分是四边形KMHD ,S =KM •MH =(3t ﹣3)×(8﹣4t )=﹣12t 2+36t ﹣24.(4)如图4﹣1中,当直线P′N′经过点E时,作ET⊥MN′于T.∵△MTE∽△BCA,∴EM:TE:MT=AB:AC:BC=5:4:3,设MT=3k,TE=4k,EM=5k,∵TE∥MP′,∴∠TEN′=∠P′,∴tan∠TEN′=tan∠P′=12=TN′TE,∴TN′=2k,∵MN′=32t,ME=5﹣5t,∴3k+2k=32t,5﹣5t=5k,解得t=10 13.如图4﹣2中,当直线P′N′经过点B时,作BT⊥MN′于T.同法可得:3k +2k =32t ,5k =10﹣5t , 解得t =2013, 如图4﹣3中,当点P ′落在BC 上时,4t +3t =8,解得t =87观察图象可知满足条件的t 的值为1013<t ≤87或2013≤t <2.24.(12分)规定:当二次函数y =x 2﹣mx ﹣m ﹣1与直线y =﹣2m 有两个不同交点时(m 为常数),将函数在直线上方的图象沿直线y =﹣2m 翻折,翻折后的图象记为G 1,函数在直线y =﹣2m 及其下方的图象记为G 2,G 1和G 2合起来组成图象G . (1)当m =﹣1时,请直接写出图象G 所对应的函数表达式. (2)若点(﹣2,﹣2)在图象G 上,求m 的值;(3)当m =﹣1时,若图象G 所对应的函数的自变量满足﹣2≤x ≤2,求函数值y 的取值范围.(4)当图象G 所对应函数在﹣m ﹣1≤x ≤−12m +3上函数值y 随自变量x 的增大,先增大后减小时,直接写出m 的取值范围.【解答】解:(1)y =x 2﹣mx ﹣m ﹣1=x 2+x ,顶点为:(−12,−14), y =2,x 2+x =2,解得:x =1或﹣2,由中点公式,则翻折后的图象顶点坐标为:(−12,174),故翻折后的图象表达式为:y =﹣(x +12)2+174; 故图象G 所对应的函数表达式为:y ={x 2+x(−2≤x ≤1)−(x +12)2+174(x <−2或x >1);(2)y =x 2﹣mx ﹣m ﹣1,顶点坐标为:(m2,−14m 2﹣m ﹣1),由中点公式得,翻折后的顶点坐标为:(m 2,14m 2﹣3m +1),故翻折后的图象表达式为:y ′=﹣(x −12m )2+14m 2﹣3m +1=﹣x 2+mx ﹣3m +1, 当点(﹣2,﹣2)落在y ′上时,将该点坐标代入上式并解得:m =−15; 当点(﹣2,﹣2)落在y =x 2﹣mx ﹣m ﹣1上时,同理可得:m =﹣5, 故m =﹣5或−15;(3)由(1)知,图象G 所对应的函数表达式为:y ={x 2+x(−2≤x ≤1)−(x +12)2+174(x <−2或x >1), 当﹣2≤x ≤1时,−14≤y ≤2, 当1<x ≤2时,﹣2≤y ≤2, 故﹣2≤y ≤2;(4)由(2)知,翻折后的图象表达式为:y ′=﹣x 2+mx ﹣3m +1, 联立y =x 2﹣mx ﹣m ﹣1与直线y =﹣2m 并解得:x =m±|m−2|2, ①当m ≥2时,x =1或m ﹣1,如下图,故y ={x 2−mx −m −1(1≤x ≤m −1)−x 2+mx −3m +1(x <1或x >m −1),当x 在对称轴左侧时,在点A 两侧图象G 所对应函数在﹣m ﹣1≤x ≤−12m +3上函数值y 随自变量x 的增大,先增大后减小, 故{−m −1≤11<−12m +3≤12m,解得:3≤m <4;当x 在对称轴右侧时,在点B 两侧图象G 所对应函数在﹣m ﹣1≤x ≤−12m +3上函数值y 随自变量x 的增大,先增大后减小,即{12m ≤−m −1≤m −1m −1>−12m +3,解得:m >83;故:83<m <4;②当m <2时,x =m ﹣1或1,故y ={x 2−mx −m −1(m −1≤x ≤1)−x 2+mx −3m +1(x <m −1或x >1),当x 在对称轴左侧时, 同理可得:{−m −1<m −1m −1<−12m +3≤12m,解得:无解;当x 在对称轴右侧时,同理可得:{12m ≤−m −1<1−12m +3>1,解得:﹣2<m ≤−23;故:﹣2<m ≤−23.综上,﹣2<m ≤−23或3≤m <4.。
2022年吉林省长春市中考数学模拟考试 A 卷 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列命题错误的是( ) A .所有的实数都可用数轴上的点表示B .两点之间,线段最短C .无理数包括正无理数、0、负有理数D .等角的补角相等 2、在2,1,0,-1这四个数中,比0小的数是( ) A .2 B .0 C .1 D .-13、若关于x 的不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩有且仅有3个整数解,且关于y 的方程2135a y a y --=+的解为负整数,则符合条件的整数a 的个数为( ) A .1个 B .2个 C .3个 D .4个4、若实数m 使关于x 的不等式组5232212x m x +⎧-≤⎪⎪⎨-⎪≤-⎪⎩有解且至多有3个整数解,且使关于y 的分式方程34222y m y y -=+--1的解满足﹣3≤y ≤4,则满足条件的所有整数m 的和为( ) A .17 B .20 C .22 D .25 ·线○封○密○外5、如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,10AB =,BD 平分ABC ∠,如果点M ,N 分别为BD ,BC 上的动点,那么CM MN +的最小值是( )A .6B .8C .10D .4.86、下列各数中,是不等式12x +>的解的是( )A .﹣7B .﹣1C .0D .97、到三角形三个顶点距离相等的点是( )A .三边垂直平分线的交点B .三条高所在直线的交点C .三条角平分线的交点D .三条中线的交点8、如图所示,该几何体的俯视图是A .B .C .D .9、如图,点P 是▱ABCD 边AD 上的一点,E ,F 分别是BP ,CP 的中点,已知▱ABCD 面积为16,那么△PEF 的面积为( )A .8B .6C .4D .2 10、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程为( )A .8374x x +=-B .8374x x -=+C .3487x x -+=D .3487x x +-= 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个暗箱里放有x 个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x 的值大约是______.2、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x 千米/小时,则所列方程是________.3、在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.4、当代数式235x x ++的值为7时,2262x x +-的值为__________.5、如图,AB ∥CD ∥EF ,如果AC =2,CE =3,BD =1.5,那么BF 的长是_____. ·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC 外作正方形CDEF,分别联结AE、BE,BE与AC交于点G(1)当AE⊥BE时,求正方形CDEF的面积;(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;(3)当AG=AE时,求CD的长.2、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:(1)生产110万片口罩需要鼻梁条箱,耳带箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案, 方案一:全部大包销售; 方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务. 请你通过计算,为口罩厂做出决策. 3、解方程 (1)5361x x --=-+(2)12136x x +--= 4、芳芳家有一种伸缩挂衣架(如图1),伸缩挂衣架中有3个菱形组成,每个菱形边长为10cm .伸缩挂衣架打开时,每个菱形的锐角度数为60°(如图2);伸缩挂衣架收拢时,每个菱形的锐角度数从60°缩小为10°(如图3).问:伸缩挂衣架从打开到收拢共缩短了多少cm?(结果精确到1cm ,参考数据:sin50.0872︒≈,cos50.9962︒≈,sin100.1736︒≈,cos100.9848︒≈).5、如图,在平面直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >1),连接BC ,以线段BC 为边在第四象限内作等边△CBD ,连接DA 并延长交y 轴于点E . ·线○封○密○外(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?-参考答案-一、单选题1、C【分析】根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.【详解】解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;B、两点之间,线段最短,该命题正确,故本选项不符合题意;C、0不是无理数,该命题错误,故本选项符合题意;D、等角的补角相等,该命题正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键. 2、D 【分析】根据正数大于零,零大于负数,即可求解.【详解】解:在2,1,0,-1这四个数中,比0小的数是-1 故选:D 【点睛】 本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键. 3、C【分析】 解不等式组得到227x a x <⎧⎪+⎨≥⎪⎩,利用不等式组有且仅有3个整数解得到169a -<≤-,再解分式方程得到152a y +=-,根据解为负整数,得到a 的取值,再取共同部分即可. 【详解】 解:解不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩得:227x a x <⎧⎪+⎨≥⎪⎩, ∵不等式组有且仅有3个整数解, ∴2217a +-<≤-, 解得:169a -<≤-, ·线○封○密○外解方程2135a y a y --=+得:152a y +=-, ∵方程的解为负整数, ∴1502a +-<, ∴15a >-,∴a 的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a 为:-13,-11,-9,共3个,故选C .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.4、B【分析】根据不等式组求出m 的范围,然后再根据分式方程求出m 的范围,从而确定的m 的可能值.【详解】解:由不等式组可知:x ≤5且x ≥22m +, ∵有解且至多有3个整数解, ∴2<22m +≤5, ∴2<m ≤8,由分式方程可知:y =m -3,将y =m -3代入y -2≠0,∴m ≠5,∵-3≤y ≤4,∴-3≤m -3≤4,∵m 是整数,∴0≤m ≤7,综上,2<m ≤7,∴所有满足条件的整数m 有:3、4、6、7,共4个,和为:3+4+6+7=20.故选:B .【点睛】 本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m 的范围,本题属于中等题型. 5、D 【分析】 如图所示:过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于点N ,则CM MN CM ME CE +=+=,此时最小,再利用等面积法求解最小值即可. 【详解】 解:如图所示: 过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于点N , BD 平分ABC ∠,·线○封○密○外ME MN ∴=,CM MN CM ME CE ∴+=+=.在Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,10AB =,CE AB ⊥,Δ1122ABC S AB CE AC BC ∴=⋅=⋅, 1068CE ∴=⨯,4.8CE ∴=.即CM MN +的最小值是4.8,故选:D .【点睛】本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定CM MN +取最小值时点,M N 的位置是解本题的关键.6、D【分析】移项、合并同类项,得到不等式的解集,再选取合适的x 的值即可.【详解】解:移项得:1x >,∴9为不等式的解,故选D .【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.7、A【分析】根据线段垂直平分线上的点到两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键. 8、D 【分析】 根据俯视图是从物体上面向下面正投影得到的投影图,即可求解. 【详解】 解:根据题意得:D 选项是该几何体的俯视图. 故选:D 【点睛】 本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键. 9、D【分析】根据平行线间的距离处处相等,得到=8PBC S △,根据EF 是△PBC 的中位线,得到△PEF ∽△PBC ,EF =12BC ,得到1=4PEF PBC S S △△计算即可. ·线○封○密○外【详解】∵点P 是▱ABCD 边AD 上的一点,且 ▱ABCD 面积为16, ∴1==82PBC ABCD S S △平行四边形;∵E ,F 分别是BP ,CP 的中点,∴EF ∥BC ,EF =12BC , ∴△PEF ∽△PBC , ∴21=()4PEF PBC PBC EF S S S BC =△△△, ∴1=824PEF S ⨯=△,故选D .【点睛】本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.10、D【分析】设这个物品的价格是x 元,根据人数不变列方程即可.【详解】解:设这个物品的价格是x 元,由题意得3487x x +-=, 故选D .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.二、填空题1、20【分析】根据摸到黄球的频率稳定在0.2列式求解即可.【详解】解:由题意得50.25x =+, 解得x =20, 经检验x =20符合题意, 故答案为:20.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率. 2、1010122x x -= 【分析】 根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,即可列出方程. 【详解】 由题意,骑自行车的学生所用的时间为10x 小时,乘汽车的学生所用的时间为102x 小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,得方程: 1010122x x -= ·线○封○密○外故答案为:1010122x x -= 【点睛】 本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.3、4或254【分析】点B 在x 轴上,所以90AOB ∠≠︒ ,分别讨论,90∠=︒ABO 和90OAB ∠=︒两种情况,设(),0B x ,根据勾股定理求出x 的值,即可得到OB 的长.【详解】解:∵B 在x 轴上,∴设(),0B x ,∵()4,3A ,∴5OA ,①当90∠=︒ABO 时,B 点横坐标与A 点横坐标相同,∴4x = ,∴()14,0B ,∴4OB = ,②当90OAB ∠=︒时,222OA AB OB += ,∵点A 坐标为()4,3,(),0B x , ∴()222243825AB x x x =-+=-+ , ∴2225825x x x +-+= , 解得:254x = , ∴225,04B ⎛⎫ ⎪⎝⎭ , ∴254OB =, 故答案为:4或254. 【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.4、2【分析】由条件可得232x x +=,而222622(3)2x x x x ,从而可求得结果的值. 【详解】 解:∵2357x x ++=, ∴232x x +=, ∴222622(3)22222x x x x . 故答案为:2. 【点睛】 ·线○封○密·○外本题是求代数式的值,关键是由条件求得232x x+=,运用了整体思想.5、15 4【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵AB∥CD∥EF,AC=2,CE=3,BD=1.5,∴AC BDAE BF=,即2 1.523BF=+,解得:BF=154,故答案为:154.【点睛】本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键.三、解答题1、(1)494(2)119169(3)1【分析】(1)证明△ADE ≌△BFE (ASA ),推出AD =BF ,构建方程求出CD 即可.(2)过点A 作AM ⊥BE 于M ,想办法求出AB ,AM 即可解决问题.(3)如图3中,延长CA 到N ,使得AN =AG .设CD =DE =EF =CF =x ,则AD =12﹣x ,DN =BF =5+x ,在Rt △ADE 中,利用勾股定理求出x 即可解决问题. (1)如图1中,∵四边形ABCD 是正方形, ∴CD =DE =EF =CF ,∠CDE =∠DEF =∠F =90°, ∵AE ⊥BE , ∴∠AEB =∠DEF =90°, ∴∠AED =∠BEF , ∵∠ADE =∠F =90°,DE =FE , ∴△ADE ≌△BFE (ASA ), ∴AD =BF , ∴AD =5+CF =5+CD , ∵AC =CD +AD =12, ∴CD +5+CD =12, ·线○封○密·○外∴CD=72,∴正方形CDEF的面积为494.(2)如图2中,∵∠ABG=∠EBH,∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,∵∠BCG=∠ACB,∠CBG=∠BAG,∴△CBG∽△CAB,∴2CB=CG•CA,∴CG=25 12,∴BG 65 12,∴AG=AC﹣CG=119 12,过点A作AM⊥BE于M,∵∠BCG=∠AMG=90°,∠CGB=∠AGM,∴∠GAM =∠CBG ,∴cos ∠GAM =cos ∠CBG =1213BC AM BG AG ==, ∴AM =11913, ∵AB=, ∴sin ∠ABM =119169AM AB =. (3) 如图3中,延长CA 到N ,使得AN =AG .∵AE =AG =AN , ∴∠GEN =90°, 由(1)可知,△NDE ≌△BFR , ∴ND =BF , 设CD =DE =EF =CF =x ,则AD =12﹣x ,DN =BF =5+x , ∴AN =AE =5+x ﹣(12﹣x )=2x ﹣7, ·线○封○密○外在Rt △ADE 中,∵222AE AD DE =+,∴222(12)(27)x x x =-+-,∴x =11(舍弃),∴CD =1+. 【点睛】本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键. 2、(1)44,22(2)0.2元(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利【分析】(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;(3)方案一:先确定天数440000800 5.5100÷=天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数44000020002210÷=天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x ,根据等量关系小包口罩片数×每天完成包数×天数x +大包口罩片数×每天完成包数×(7-小包天数x )=44万,列方程()1020001008007440000x x ⨯+⨯⨯-=,解方程求出 2x =.再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可(1)解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,故答案为44;22;(2)解:1300021470044902223049720⨯++⨯+⨯=(元).4972011000000.0452÷=(元). 0.04520.15480.2+=(元). 答:每片口罩的成本是0.2元. (3) 方案一:全部大包销售: 440000800 5.5100÷=天. ∴44000045.8620000.2440000100⨯-⨯-⨯ 2015201200088000101520=--=(元). 方案二:全部小包销售: 44000020002210÷=天>7天(舍去). 方案三:设包装小包的天数为x , 由题意得:()1020001008007440000x x ⨯+⨯⨯-=. 解得:2x =. ∴4400001020002400000-⨯⨯=(片). ∴22000 5.840000010045.8620000.2440000⨯⨯+÷⨯-⨯-⨯, =23200+183200-12000-88000, 2064001200088000=--, ·线○封○密·○外=(元).104400∵104400101520>,∴选择方案三.答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.【点睛】本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键.3、(1)x=4(2)x=2【解析】(1)解:移项得:-5x+6x=1+3,合并得:x=4;(2)解:去分母得:2(x+1)-(x-2)=6,去括号得:2x+2-x+2=6,移项合并得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.4、伸缩衣架从打开到收拢共缩短了25cm【分析】连接AC 、BD ,交于点O ,然后根据菱形的性质及三角函数可求得BD 的长,同理可求11B D 的长,进而问题可求解. 【详解】 解:连接AC 、BD ,交于点O ,如图所示:∵四边形ABCD 是菱形, ∴BD AC ⊥,BO =OD ,30BAO DAO ∠=∠=︒, ∵10cm AB =, ∴10sin30210cm BD =⨯︒⨯=,∴打开时:10sin302330cm ⨯︒⨯⨯=, 连接11B D ,11A C ,交于点1O ,如图所示: 同理可得1110sin 52 1.744cm B D =⨯︒⨯=, ∴收拢时:10sin523 5.2cm ⨯︒⨯⨯≈∴缩短了:30 5.224.825cm -=≈·线○封○密○外答:伸缩衣架从打开到收拢共缩短了25cm.【点睛】本题主要考查菱形的性质及解直角三角形,熟练掌握菱形的性质及解直角三角形是解题的关键.5、(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【分析】(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;(2)由△AOB是等边三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根据∠CAD=180°-∠OAB-∠BAD可得结论;(3)由(2)易求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC 是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C 的位置.【详解】解:(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABD,在△OBC和△ABD中,∵OB ABOBC ABDCB DB=⎧⎪∠=∠⎨⎪=⎩,∴△OBC≌△ABD(SAS);(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC ≌△ABD ,∴∠BAD =∠BOC =60°,∴∠CAD =180°-∠OAB -∠BAD =60°;(3)由(2)得∠CAD =60°,∴∠EAC =180°-∠CAD =120°,∴∠OEA =∠EAC -90°=30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰, 在Rt △AOE 中,OA =1,∠OEA =30°,∴AE =2, ∴AC =AE =2, ∴OC =1+2=3, ∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形. 【点睛】 本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C 的坐标. ·线○封○密○外。
2022年全国中考数学试题真题汇编实数专题一、单选题1.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【来源】2022年吉林省长春市中考数学真题【答案】B【解析】【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意;∴0ab <,故D 错误,不符合题意;故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.2)A .±3B .3C .±9D .9【来源】第15讲实数全章复习与测试-2022年新八年级数学暑假精品课(北师大版)【答案】A【解析】【分析】【详解】解:,9的平方根是±3,±3,【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.3.实数9的相反数等于( )A .﹣9B .+9C .19D .﹣19【来源】2022年湖北省鄂州市中考数学真题【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,进行求解即可.【详解】解:实数9的相反数是-9,故选A .【点睛】本题主要考查了相反数的定义,熟知相反数的定义是解题的关键.4.秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下,下列估算正确的是( )A .205<<B .2152<<C .12<<1D 1> 【来源】2022年山东省潍坊市中考数学试题【答案】C【解析】【分析】用夹逼法估算无理数即可得出答案.解:4<5<9,∴23,∴11<2,∴1<1,2故选:C.【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.5.如图,数轴上点E对应的实数是()A.2-B.1-C.1D.2【来源】2022年湖南省永州市中考数学真题【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.6.如图,数轴上的点A表示的数是1-,则点A关于原点对称的点表示的数是()A.2-B.0C.1D.2【来源】2022年广西北部湾经济区中考数学真题【答案】C【解析】【分析】根据数轴上表示一对相反数的点关于原点对称即可求得答案.【详解】∴数轴上的点A表示的数是−1,∴点A关于原点对称的点表示的数为1,故选:C.【点睛】本题考查了实数与数轴之间的对应关系,熟练掌握对称的性质是解题的关键.7,0,1-,2这四个实数中,最大的数是()A.0B.1-C.2D【来源】2022年辽宁省营口市中考数学真题【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∴2>0>-1,∴0,-1,2这四个实数中,最大的数是2.故选:C.【点睛】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.8)AB C D【来源】2022年贵州省铜仁市中考数学真题【答案】C【解析】根据有理数的定义进行求解即可.【详解】2=,其他都是无理数,故选C .【点睛】本题主要考查了实数的分类,熟知有理数和无理数的定义是解题的关键.91,12,3中,比0小的数是( ) AB .1C .12 D .3【来源】2022年四川省雅安市中考数学真题【答案】A【解析】【分析】根据实数的大小比较法则(正数大于0,0大于负数,正数大于一切负数)及无理数的估算进行分析求解.【详解】解:∴12<1<3∴1,12,3中,比0 故选:A .【点睛】此题考查了实数大小的比较,解题的关键是理解实数的概念.10.实数c ,d 在数轴上的对应点如图所示,则下列式子正确的是( )A .c d >B .||||c d >C .c d -<D .0c d +< 【来源】2022年黑龙江省大庆市中考数学真题【答案】C【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.解:由数轴上的点表示的数右边的总比左边的大,得c <0<d ,A 、c d <,原结论错误,故此选项不符合题意;B 、||||c d <,原结论错误,故此选项不符合题意;C 、∴c <0<d ,且||||c d <,∴c d -<,原结论正确,故此选项符合题意;D 、∴c <0<d ,且||||c d <,∴0c d +>,原结论错误,故此选项不符合题意; 故选:C .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.11.下列判断正确的是( )A .01<<B .12<<C .23<<D .34【来源】2022年江苏省泰州市中考数学真题【答案】B【解析】【分析】 根据1342即可求解. 【详解】 解:由题意可知:1342,故选:B .【点睛】本题考查了无理数的估值,属于基础题.12.在1,-2,0)A .1B .-2C .0 D【来源】2022年湖北省江汉油田、潜江、天门、仙桃中考数学真题【答案】D【解析】【分析】根据实数的大小比较法则“正数>0>负数;两个负数比大小,绝对值大的反而小”进行解:∴201-<<<∴故选:D .【点睛】本题考查实数的大小比较,理解“正数>0>负数;两个负数比大小,绝对值大的反而小”是解题关键.13.如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是( )A. B C D .π【来源】2022年福建中考数学真题【答案】B【解析】【分析】先根据数轴确定点P 对应的数的大小,再结合选项进行判断即可.【详解】解:由数轴可得,点P 对应的数在1与2之间, A.221,故本选项不符合题意;B. 12<<,故此选项符合题意;C. 23<<,故本选项不符合题意;D. 34π<<,故本选项不符合题意;故选:B【点睛】本题主要考查了实数与数轴,无理数的估算,正确确定点P 对应的数的大小是解答本题的关键.14.下列各数中为无理数的是( )AB .1.5C .0D .1-【来源】2022年广西玉林市中考数学真题【分析】根据无理数是无限不循环小数可直接进行排除选项.【详解】解:A选项是无理数,而B、C、D选项是有理数,故选A.【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.15.实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是()A.a与d B.b与d C.c与d D.a与c【来源】2022年湖北省荆州市中考数学真题【答案】C【解析】【分析】互为相反数的两个数(除0在外)它们分居原点的两旁,且到原点的距离相等,根据相反数的含义可得答案.【详解】解:,c d分居原点的两旁,且到原点的距离相等,,c d互为相反数,故选C【点睛】本题考查的是相反数的含义,掌握“互为相反数的两个数在数轴上的分布”是解本题的关键.16.若实数a的相反数是-3,则a等于()A.-3B.0C.13D.3【来源】2022年四川省广元市中考数学真题【答案】D【解析】根据相反数的概念:只有符号不同的两个数叫做互为相反数.即可求出a 的值.【详解】解:∴3的相反数是-3,∴a =3.故选:D .【点睛】本题考查了实数的性质、相反数,解决本题的关键是掌握相反数的概念.17.在3317π,2022这五个数中无理数的个数为( ) A .2 B .3 C .4 D .5【来源】2022年湖南省常德市中考数学试题【答案】A【解析】【分析】根据无理数的概念,无限不循环小数是无理数即可判断.【详解】解:在3317π,2022π,共2个. 故选:A .【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键.18.下面四个数中,比0小的数是( )A .-2B .1 CD .π【来源】2022年四川省乐山市中考数学真题【答案】A【解析】【分析】根据负数比0小即可求解.【详解】解:201π-<<,故选:A .【点睛】本题考查了实数的大小比较,掌握负数小于0是解题的关键.19.在0、13、-1这四个数中,最小的数是( ) A.0 B .13 C .-1 D 【来源】2022年湖南省株洲市中考数学真题【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】1013>>>-,∴在0、13、-11. 故选C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.实数2-,02中,为负数的是( )A .2-B .0 CD .2【来源】2022年四川省眉山市中考数学真题【答案】A【解析】【分析】根据负数的定义,找出这四个数中的负数即可.【详解】解:∴2-<0∴负数是2-故选A .【点睛】此题主要考查实数的分类,区分正负,解题的关键是熟知实数的性质:负数小于零. 21.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A .a b >B .a b =C .a b <D .a b =-【来源】2022年江西省中考数学真题【答案】C【解析】【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,0a <,0b >,∴a b <,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,a b -<,故D 错误.故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.22.下列各数中,负数是( )A.1- B .0 C .2 D 【来源】2022年江西省中考数学真题【答案】A【解析】【分析】根据负数的定义即可得出答案.【详解】解:-1是负数,2是正数,0既不是正数也不是负数,故选:A .【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键.23.对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:∴不存在任何“加算操作”,使其结果与原多项式之和为0;∴所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【来源】2022年重庆市中考数学真题(B 卷)【答案】D【解析】【分析】给x y -添加括号,即可判断∴说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断∴说法是否正确;列举出所有情况即可判断∴说法是否正确.【详解】解:∴()x y z m n x y z m n ----=----∴∴说法正确∴0x y z m n x y z m n -----++++=又∴无论如何添加括号,无法使得x 的符号为负号∴∴说法正确∴当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴∴说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.24.下列四个数中,最小的数是( )【来源】2022年四川省达州市中考数学真题【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∴201-<<<∴最小的数是2-,故选B .【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.25 )A .4和5之间B .3和4之间C .2和3之间D .1和2之间【来源】2022年浙江省舟山市中考数学真题【答案】C【解析】【分析】根据无理数的估算方法估算即可.【详解】∴23<故选:C .【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.26.在12,2-中,是无理数的是( ) A .2- B .12 C D .2【来源】2022年浙江省金华市中考数学真题【答案】C根据无理数的定义判断即可;【详解】,2解:∴-2,1故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.27.下列为负数的是()A.2-BC.0D.5-【来源】2022年安徽省中考数学真题【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、2-=2是正数,故该选项不符合题意;BC、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.28)A.±2B.-2C.4D.2【来源】2022年四川省凉山州中考数学真题【答案】D【解析】【分析】22==,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.29.()A.2-B.12-C.12D.2【来源】2022年四川省泸州市中考数学真题【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.304的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【来源】2022年重庆市中考数学真题(B卷)【答案】D【解析】【分析】根据49<54<64,得到78<,进而得到344<<,即可得到答案.【详解】解:∴49<54<64,∴78<<,∴344<<4的值在3到4之间,此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.31.实数3的相反数是()A.3-B.3C.13-D.13【来源】2022年山西省太原师范学院附属中学九年级中考数学模拟试题【答案】A【解析】【分析】直接利用相反数的定义分析得出答案.【详解】解:实数3的相反数是:-3.故选:A.【点睛】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.32.下列各数为负分数的是()A.-1B.12-C.0D【来源】2022年山东省青岛市中考数学真题【答案】B【解析】【分析】根据负分数的定义,在正分数前面加负号的数叫做负分数,即可判断.【详解】解:A、-1是负整数,故本选项不符合题意;B、12-是负分数,故本选项符合题意;C、0是整数,故本选项不符合题意;D是无理数,故本选项不符合题意;故选:B.【点睛】本题主要考查了负分数的概念,解题的关键是要熟练掌握负分数的定义.A.-2B C.1D.02【来源】2022年山东省日照市中考真题数学试卷【答案】B【解析】【分析】根据实数的大小比较方法进行比较即可.【详解】解:正数大于0,负数小于0,正数大于负数,1>>>-,022故选:B.【点睛】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.34)A.3B.4C.5D.6【来源】2022年四川省绵阳市中考真题数学试卷【答案】C【解析】【分析】=,即可得=65出结果.【详解】=,<545∴<,又<6=,∴<,56456∴<<,故选:C.本题考查了估算无理数的大小,立方根,解决本题的关键是用有理数逼近无理数,求无理数的近似值.35.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .0a b +>B .a b ->C .0a b -<D .b a -<【来源】2022年山东省济南市中考数学试题【答案】B【解析】【分析】根据数轴可得12,2a b <<=-,由此可排除选项.【详解】解:由数轴可得12,2a b <<=-,∴0a b +<,故A 选项错误;a b ->,故B 选项正确;0a b ->,故C 选项错误;b a ->,故D 选项错误;故选B .【点睛】本题主要考查数轴及实数的运算,熟练掌握数轴上数的表示及实数的运算是解题的关键.36.下列实数最小的是( )A .-2B .-3.5C .0D .1【来源】辽宁省鞍山市2022年中考真题数学试卷【答案】B【解析】【分析】根据实数大小比较的方法进行求解即可.【详解】解:因为 3.5201-<-<<,所以最小的实数是-3.5.故选:B .【点睛】本题主要考查了实数的大小比较,熟练掌握应用实数大小的比较方法进行求解是解题的37.下列4个实数中,为无理数的是()A.-2B.0C D.3.14【来源】广西河池市2022年中考数学真题【答案】C【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可解答.【详解】解:-2,0是整数,属于有理数;3.14是有限小数,属于无理数,故C符合题意.故选:C.【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.38.在下列四个实数中,最小的实数是()A.B.0C.3.14D.2022【来源】贵州省遵义市2022年中考数学真题试卷【答案】A【解析】【分析】正数大于负数,负数小于零.【详解】故选:A【点睛】此题考查的是实数的大小的比较,掌握正数大于负数,负数小于零是解题的关键.39.下列四个选项中,为负整数的是()A-C.D.2-.0B.0.5【来源】广东省广州市2022年中考数学真题【答案】D【解析】根据整数的概念可以解答本题.【详解】解:A、0既不是正数,也不是负数,故选项A不符合题意;B、−0.5是负分数,故选项B不符合题意;C、不是负整数,故选项C不符合题意;D、-2是负整数,符合题意.故选:D.【点睛】本题主要考查了大于0的整数是正整数,小于0的整数是负整数,本题熟记负整数的概念是解题的关键.40.下列各数中,为无理数的是()A.πB.227C.0D.2-【来源】贵州省毕节市2022年中考数学真题【答案】A【解析】【分析】根据无理数的定义逐项判断即可.【详解】A、π是无理数,符合题意;B、223.1428577=小数点后的142857是无限循环的,则227是有理数,不符题意;C、0是整数,属于有理数,不符题意;D、2-是有理数,不符题意,故选:A.【点睛】本题考查了无理数的定义,熟记定义是解题关键.41.下列无理数,与3最接近的是()A B C D 【来源】江苏省徐州市2022年中考数学真题【答案】C先比较各个数平方后的结果,进而即可得到答案. 【详解】解:∴32=9,)2=6,2=7,2=10,2=11,∴与3, 故选C . 【点睛】本题主要考查无理数的估计,理解算术平方根与平方的关系,是解题的关键. 42.在实数0,,2,1π--中,最小的数是( ) A .2-B .0C .1-D .π【来源】内蒙古鄂尔多斯2022年中考数学试题 【答案】C 【解析】 【分析】先计算绝对值,再根据实数大小的比较法则得出答案; 【详解】 解:∴|-2|=2, ∴-1<0<|-2|<π ∴最小的数为:-1 故选:C 【点睛】本题考查了实数的大小比较和算术平方根,能根据实数的大小比较法则比较数的大小是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.43.实数a 、b 、c 在数轴上对应点的位置如图所示.如果0a b +=,那么下列结论正确的是( )A .a c >B .0a c +<C .0abc <D .1ab= 【来源】内蒙古赤峰市2022年中考数学真题 【答案】C【分析】根据a +b =0,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:∴a +b =0, ∴原点在a ,b 的中间, 如图,由图可得:|a |<|c |,a +c >0,abc <0,1ab=-, 故选:C . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置. 44.在1-,0,11的实数是( ) A.1-B .0C .1D 【来源】贵州省贵阳市2022年中考数学真题 【答案】D 【解析】 【分析】根据实数的大小关系,即可求解. 【详解】解:在1-,0,11 故选D . 【点睛】≈1.414,是解题的关键. 45.下列各数是有理数的是( )A .πBC D .0【来源】广西北部湾经济开发区2022年中考数学真题 【答案】D 【解析】 【分析】利用有理数和无理数的定义判断即可.【详解】解:四个选项的数中:π0是有理数,故选项D符合题意.故选:D.【点睛】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.46.在π,12,3-,47这四个数中,整数是()A.πB.12C.3-D.47【来源】黑龙江省大庆市2022年中考数学真题【答案】C【解析】【分析】根据整数分为正整数、0、负整数,由此即可求解.【详解】解:选项A:π是无理数,不符合题意;选项B:12是分数,不符合题意;选项C:3-是负整数,符合题意;选项D:47是分数,不符合题意;故选:C.【点睛】本题考查了有理数的定义,熟练掌握整数分为正整数、0、负整数是解决本题的关键.471在数轴上的对应点可能是()A.A点B.B点C.C点D.D点【来源】四川省达州市2022年中考数学真题【答案】D【解析】【分析】1的近似值,再判定它位于哪两个整数之间即可找出其对应点. 【详解】解: 1.414≈,1 2.414≈,∴它表示的点应位于2和3之间, 所以对应点是点D , 故选:D . 【点睛】1的整数部分,本题较基础,考查了学生的基本功. 48.下列实数中是无理数的是( )A .3.14BC D .17【来源】湖北省江汉油田(仙桃市、潜江市、天门市)2022年中考数学真题 【答案】C 【解析】 【分析】根据算术平方根、无理数的定义即可得. 【详解】A 、3.14是有限小数,属于有理数,此项不符题意;B 3=,是有理数,此项不符题意; CD 、17是分数,属于有理数,此项不符题意;故选:C . 【点睛】本题考查了算术平方根、无理数,熟记定义是解题关键. 49.在实数3,12,0,2-中,最大的数为( ) A .3B .12C .0D .2-【来源】广西柳州市2022年中考数学真题试卷 【答案】A 【解析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可. 【详解】根据有理数的比较大小方法,可得:12032,因此最大的数是:3, 故选:A . 【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数. 50.实数2021的相反数是( ) A .2021B .2021-C .12021D .12021-【来源】黑龙江省齐齐哈尔市2022年中考数学真题 【答案】B 【解析】 【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案. 【详解】解:2021的相反数是:2021-. 故选:B . 【点睛】本题主要考查相反数的定义,正确掌握其概念是解题关键.51.若0a =,则ab =( )AB .92C .D .9【来源】广东省2022年中考真题数学试卷 【答案】B 【解析】 【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.∴0a ≥,且0a -+=∴0a =0=即0a ,且320a b -=∴a =b∴92ab == 故选:B . 【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.52.已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23-B .13C .12-D .23【来源】湖北省鄂州市2022年中考数学真题 【答案】D 【解析】 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+,2021223a a ∴==, 故选:D . 【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.53.实数6的相反数等于()A.6-B.6C.6±D.1 6【来源】湖北省鄂州市2022年中考数学真题【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】由相反数的定义可得6的相反数是-6.故选A.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.5412,0,1-中,最小的数是()A.1-B.0C.12D 【来源】福建省2022年中考数学试卷【答案】A【解析】【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小.【详解】12,0,1-中,12为正数大于0,1-为负数小于0,∴最小的数是:1-.故选:A.【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来.55.已知2222431849,441936,452025,462116====.若n为整数且1n n<+,则n 的值为( ) A .43B .44C .45D .46【来源】北京市2022年中考数学真题试题 【答案】B 【解析】 【分析】由题意可直接进行求解. 【详解】解:∴2222431849,441936,452025,462116====, ∴2244202145<<,∴4445<, ∴44n =; 故选B . 【点睛】本题主要考查算术平方根,熟练掌握算术平方根是解题的关键.56.实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a >-B .a b >C .0a b +>D .0b a -<【来源】北京市2022年中考数学真题试题 【答案】B 【解析】 【分析】由数轴及题意可得32,01a b -<<-<<,依此可排除选项. 【详解】解:由数轴及题意可得:32,01a b -<<-<<, ∴,0,0a b a b b a >+<->, ∴只有B 选项正确, 故选B . 【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.57.在实数1-,0,12 )A.1-B .0C .12D 【来源】湖北省荆州市2022年中考数学真题 【答案】D 【解析】 【分析】根据无理数的定义,即可求解. 【详解】解:在实数1-,0,12 故选D . 【点睛】本题主要考查无理数的定义,掌握“无限不循环小数是无理数”,是解题的关键. 58.根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .169【来源】湖北省随州市2022年中考数学真题 【答案】B 【解析】 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 【详解】解:根据图中数据可知: 1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∴第n 个图中的143q =, ∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ∴2=121p n =, 故选:B . 【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.59.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( ) A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【来源】江苏省南京市2022年中考数学试卷 【答案】C 【解析】 【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案. 【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y == 则155153232,28,x y ==== 1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意. 故选C . 【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.60.下列实数是无理数的是( )A .2-B .1CD .2【来源】新疆维吾尔自治区、生产建设兵团2022年中考数学试题【答案】C【解析】【分析】无理数是指无限不循环小数,据此判断即可.【详解】2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.61.下列四个实数中,最大的数是( )A .3-B .1-C .πD .4【来源】湖南省长沙市2022年中考试数学真题【答案】D【解析】【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键. 62-1,0,2中,为负数的是( )AB .-1C .0D .2。
2022年吉林省第二实验学校中考数学一模试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列选项中,−2的倒数是( )A. 12B. −12C. 2D. −22. 疫情以来长春市陆续接到各地捐赠的蔬菜,据统计4月3日长春市蔬菜企业库存约为3896000千克,各部门协调将逐步送往居民家中.其中3896000用科学记数法表示为( )A. 3.896×105B. 3.896×106C. 38.96×105D. 0.3896×1063. 一个正方体的六个面分别标有六个不同的点数,其展开图如图所示,则该正方体可能是( )A.B.C.D.4. 若关于x的一元二次方程x2−x+m=0有两个不相等的实数根,则m的值有可能是( )A. 2021B. 2C. 1D. 05. 我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是100,小正方形面积是20,则sinθ⋅cosθ的值是多少( )A. 15B. 25C. √55D. 2√556. 如图,过直径AB延长线上的点C作⊙O的切线,切点为D,若AC=7,AB=4,则sinC=( )A. 47B. 25C. √215D. 237. 如图.在△ABC中,AB=AC,分别以点A,B为圆心.大于12AB的长为半径画弧,两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若∠C=52°.则∠CAD的度数是( )A. 22°B. 24°C. 26°D. 28°8. 如图,矩形ABCD的边CD在x轴的正半轴上,顶点A在反比例函数y=kx的图象上,连接BD 并延长交y轴于点E,且S△COE=3,则k的值为( )A. 3B. 4C. 5D. 6二、填空题(本大题共6小题,共18.0分)9. 计算:(√2)2−(√6)0=______.10. 解不等式组{−12x≤13(x−2)<x+2的正整数解为______.11. 若命题“若a>b,则ac>bc”是假命题,举一个反例,则反例中C=______.(写出一个即可)12. 如图,正五边形ABCDE和正六边形EFGHMN的边CD、FG在直线l上,正五边形在正六边形左侧,两个正多边形均在l的同侧,则∠DEF的大小是______度.13. 如图,直线y=−√33x+1与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点p(a,12),且△ABP的面积与△ABC的面积相等,则a的值为______.14. 在平面直角坐标系xOy中,已知抛物线:y=ax2−2ax+4(a>0).若A(m−1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y3>y1>y2.结合图象,则m的取值范围是______.三、解答题(本大题共10小题,共78.0分。
2022年吉林省中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( ) A .先变大后变小 B .先变小后变大 C .一直变大 D .保持不变2、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( ) ·线○封○密○外A .1B .2020C .2021D .20223、用符号()f x 表示关于自然数x 的代数式,我们规定:当x 为偶数时,()2f x x =;当x 为奇数时,()31f x x =+.例如:()3114f x =⨯+=,()8842f ==.设18x =,()21x f x =,()32x f x =,…,()1n n x f x -=.以此规律,得到一列数1x ,2x ,3x ,…,2022x ,则这2022个数之和12320212022x x x x x +++⋅⋅⋅++等于( )A .3631B .4719C .4723D .47254、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A .B .C .D .5、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG6、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米 7、整式mx n -的值随x 取值的变化而变化,下表是当x 取不同值时对应的整式的值:则关于x 的方程8mx n -+=的解为( ) A .1x =- B .0x = C .1x = D .3x = 8、下列各条件中,不能够判定两个三角形必定全等的是( ) A .两边及其夹角对应相等 B .三边对应相等 ·线○封○密·○外C .两角及一角的对边对应相等D .两边及﹣边的对角对应相等9、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10、若分式1x x-有意义,则x 的值为( ) A .1x =B .1x ≠C .0x =D .0x ≠ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,阴影部分的面积是______.2、多项式3x 2﹣2xy 2+xyz 3的次数是 ___.3、如图,E 是正方形ABCD 的对角线BD 上一点,连接CE ,过点E 作EF AD ⊥,垂足为点F .若3AF =,5EC =,则正方形ABCD 的面积为______.4、如图,将边长为2的正方形OABC 放在平面直角坐标系中,O 是原点,点A 的横坐标为1,则点C的坐标为______.5、一张长方形纸片沿直线AB 折成如图所示图案,已知150∠=︒,则OBA ∠=__.三、解答题(5小题,每小题10分,共计50分) 1、如图,在同一剖面内,小明在点A 处用测角仪测得居民楼的顶端F 的仰角为27°,他水平向右前进了30米来到斜坡的坡脚B 处,沿着斜坡BC 上行25米到达C 点,用测角仪测得点F 的仰角为54°,然后,水平向右前进一段路程来到了居民楼的楼底E 处,若斜坡BC 的坡度为3:4,请你求出居民楼EF 的高度. (测角仪的高度忽略不计,计算结果精确到0.1米.参考数据:sin 270.45︒≈,tan 270.51︒≈,sin540.81︒≈,tan54 1.38︒≈) 2、已知四边形 ABCD 是菱形, 4AB =, 点 E 在射线 CB 上, 点 F 在射线 CD 上,且 EAF BAD ∠=∠. (1)如图, 如果 90BAD ∠=, 求证: AE AF = ; ·线○封○密○外(2)如图, 当点 E 在 CB 的延长线上时, 如果 60ABC ∠=, 设 ,AF DF x y AE==, 试建立 y 与 x 的函数关系式,并写出 x 的取值范围(3)联结 ,2AC BE =, 当 AEC △ 是等腰三角形时,请直接写出 DF 的长.3、已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为 E ,ED 的延长线与AC 的延长线交于点F ,(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,∠F =30°,求DE 的长.4、尺规作图:已知:如图1,直线MN 和直线MN 外一点P .求作:直线PQ ,使直线PQ ∥MN .小智的作图思路如下:①如何得到两条直线平行?小智想到,自己学习线与角的时候,有4个定理可以证明两条直线平行,其中有“内错角相等,两条直线平行”.②如何得到两个角相等?小智先回顾了线与角的内容,找到了几个定理和1个概念,可以得到两个角相等.小智又回顾了三角形的知识,也发现了几个可以证明两个角相等的定理.最后,小智选择了角平分线的概念和“等边对等角”. ③画出示意图: ④根据示意图,确定作图顺序. ·线○封○密○外(1)使用直尺和圆规,按照小智的作图思路补全图形1(保留作图痕迹);(2)完成下面的证明:证明:∵AB平分∠PAN,∴∠PAB=∠NAB.∵PA=PQ,∴∠PAB=∠PQA(① ).∴∠NAB=∠PQA.∴PQ∥MN(② ).(3)参考小智的作图思路和流程,另外设计一种作法,利用直尺和圆规在图2中完成.(温馨提示:保留作图痕迹,不用写作法和证明)5、按下列要求画图:(1)如图1,已知三点A ,B ,C ,画直线AB ,射线AC ;(2)如图2.已知线段a ,b ,作一条线段MN ,使2MN a b =-(尺规作图,保留作图痕迹).-参考答案-一、单选题1、D 【解析】 【分析】 连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】 解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形, ∴ABCD DEGF S S =矩形, 故选:D .. 【点睛】 此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键. 2、D 【解析】 ·线○封○密○外【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.【详解】解:如图,由题意得:SA=1,由勾股定理得:SB+SC=1,则“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,……“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【点睛】本题考查了勾股数规律问题,找到规律是解题的关键.3、D【解析】【分析】根据题意分别求出x 2=4,x 3=2,x 4=1,x 5=4,…,由此可得从x 2开始,每三个数循环一次,进而继续求解即可. 【详解】 解:∵x 1=8, ∴x 2=f (8)=4, x 3=f (4)=2, x 4=f (2)=1, x 5=f (1)=4, …, 从x 2开始,每三个数循环一次,∴(2022-1)÷3=6732, ∵x 2+x 3+x 4=7,∴12320212022x x x x x +++⋅⋅⋅++=8+673×7+4+2=4725.故选:D . 【点睛】 本题考查数字的变化规律,能够通过所给的数,通过计算找到数的循环规律是解题的关键. 4、A 【解析】 【分析】 根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答. ·线○封○密○外【详解】解:B是俯视图,C是左视图,D是主视图,故四个平面图形中A不是这个几何体的三视图.故选:A.【点睛】本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.5、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.6、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案. 【详解】 解:∵3600÷20=180米/分, ∴两人同行过程中的速度为180米/分,故A 选项不符合题意; ∵东东在爸爸返回5分钟后返回即第20分钟返回 ∴m =20-5=15, ∴n =180×15=2700,故B 选项不符合题意; ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C 选项不符合题意; ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米, ∴运动18分钟时两人相距3240-2430=810米; ∵返程过程中东东45-20=25分钟走了3600米, ∴东东返程速度=3600÷25=144米/分, ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米, ∴运动31分钟两人相距756米,故D 选项符合题意; 故选D . 【点睛】 本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像. 7、A 【解析】 【分析】 ·线○封○密○外根据等式的性质把8mx n -+=变形为8mx n -=-;再根据表格中的数据求解即可.【详解】解:关于x 的方程8mx n -+=变形为8mx n -=-,由表格中的数据可知,当8mx n -=-时,1x =-;故选:A .【点睛】本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.8、D【解析】【分析】针对选项提供的已知条件要认真分析,符合全等三角形判定方法要求的是正确的,反之,是错误的,本题中选项D ,满足的是SSA 是不能判定三角形全等的,与是答案可得.【详解】解:A 、符合SAS ,能判定两个三角形全等;B 、符合SSS ,能判定两个三角形全等;C 、符合AAS ,能判定两个三角形全等;D 、符合SSA ,所以不能够判定.故选:D .【点睛】本题考查了三角形全等的判定方法,做题时根据已知条件,结合全等的判定方法逐一验证,由易到难,不重不漏.9、C【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解: A 、不是中心对称图形,是轴对称图形,故此选项错误; B 、是中心对称图形,不是轴对称图形,故此选项错误; C 、是中心对称图形,也是轴对称图形,故此选项正确; D 、不是中心对称图形,是轴对称图形,故此选项错误; 故选:C . 【点睛】 本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 10、D 【解析】 【分析】 根据分式有意义,分母不为0列出不等式,解不等式即可. 【详解】 解:由题意得:0x ≠ 故答案为:D 【点睛】 本题考查的是分式有意义的条件,即分式的分母不为零. 二、填空题 1、248m m ++·线○封○密○·外【解析】【分析】阴影部分是由一个正方形和两个长方形组成,利用正方形和长方形的面积公式即可得.【详解】解:阴影部分的面积为2242448m m m m ++⨯=++,故答案为:248m m ++.【点睛】本题考查了列代数式,正确找出阴影部分的构成是解题关键.2、5【解析】【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数解答.【详解】解:多项式3x 2﹣2xy 2+xyz 3的次数是5.故答案为:5.【点睛】本题考查的是多项式的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.3、49【解析】【分析】延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,由正方形的性质得45CDB ∠=︒,推出BME 是等腰直角三角形,得出3EM BM ==,由勾股定理求出CM ,故得出BC ,由正方形的面积公式即可得出答案.【详解】如图,延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==, ∵四边形ABCD 是正方形, ∴45CDB ∠=︒, ∴BME 是等腰直角三角形, ∴3EM BM ==, 在Rt EMC中,4CM =, ∴347BC BM CM =+=+=, ∴22749ABCD S BC ===正方形. 故答案为:49. 【点睛】 本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键. 4、(1) 【解析】 【分析】 首先过点C 作CD ⊥x 轴于点D ,过点A 作AE ⊥x 轴于点E ,易证得△AOE ≌△OCD (AAS ),则可得·线○封○密○外CD =OE =1,OD =AE【详解】解:过点C 作CD ⊥x 轴于点D ,过点A 作AE ⊥x 轴于点E ,则∠ODC =∠AEO =90°,∴∠OCD +∠COD =90°,∵四边形OABC 是正方形,∴OC =OA ,∠AOC =90°,∴∠COD +∠AOE =90°,∴∠OCD =∠AOE ,在△AOE 和△OCD 中,AEO ODC AOE OCD OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOE ≌△OCD (AAS ),∴CD =OE =1,OD =AE∴点C 的坐标为:(1).故答案为:(1).【点睛】本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE ≌△OCD 是解此题的关键. 5、65︒##65度 【解析】 【分析】 根据折叠的性质可得出21180OBA ∠+∠=︒,代入1∠的度数即可得出答案. 【详解】 解:由折叠可得出21180OBA ∠+∠=︒, 150∠=︒, 65OBA ∴∠=︒, 故答案为:65︒. 【点睛】 本题考查了翻折变换的性质,熟练掌握翻折变换的性质是解题的关键. 三、解答题 1、居民楼EF 的高度约为16.7米 【解析】【分析】根据题意如图过C 作CC ⊥CC 于P ,延长FE 交BD 于R ,利用勾股定理得出CP 、BP ,进而结合两个正切值进行分析计算并依据CC =CC +CC 建立方程求解即可得出答案. 【详解】 解:如图过C 作CC ⊥CC 于P ,延长FE 交BD 于R , ·线○封○密○外∵斜坡BC的坡度为3:4,即CC:CC=3:4, CC=25(米),设CC=3C,CC=4C,勾股定理可得:(3C)2+(4C)2=252,解得:m=5或-5(舍去),∴CC=15(米),CC=20(米),∵CC⊥CC,CC//CC,CC//CC,∴四边形CERP是矩形,∴CE=PR,CC=CC=15(米),设CC=C(米),可得tan54°=CCCC=CCC≈1.38,则CC=1.38C(米),又可得tan27°=CCCC=CCCC+CC+CC=CC50+C≈0.51,则CC=0.51(50+C)=0.51C+25.5(米),∵CC=CC+CC,∴0.51C+25.5=1.38C+15,解得:C=35029,∴CC=1.38×35029≈16.7(米).答:居民楼EF的高度约为16.7米.【点睛】本题考查仰角与俯角、坡度、解直角三角形等知识知识.注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用. 2、 (1)证明过程详见解答; (2)4(04)4x y x -=<< (3)85DF =或167 【解析】 【分析】 (1)先证明四边形ABCD 是正方形,再证明ABE ADF ∆≅∆,从而命题得证;(2)在AD 上截取DG DF =,先证明DGF ∆是正三角形,再证明ABE AGF ∆∆∽,进一步求得结果;(3)当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,证明ABH FND ∆∆∽,AGF ABE ∠=∠,可推出12DG DF =,再证明ABE AGF ∆∆∽,可推出442DG GF -=,从而求得DF ,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,作BM AC ⊥于M ,先根据1122ABC S AC BM BC AH ∆=⋅=⋅求得AH ,进而求得BH ,根据ABH FGN ∆∆∽,ABE AFF ∆∆∽,14DG GF =和412DG GF +=,从而求得DF ,根据三角形三边关系否定AE CE =,从而确定DF 的结果. (1) 解:证明:四边形ABCD 是菱形,90BAD ∠=︒,∴菱形ABCD 是正方形,90BAE ABC ADF ∴∠=∠=∠=︒,AD AB =, BAE DAF ∠=∠, ()ABE ADF ASA ∴∆≅∆, AE AF ∴=; (2)·线○封○密○外解:如图1,在AD 上截取DG DF =,四边形ABCD 是菱形,60ADF ABC ∴∠=∠=︒,6AD AB ==,DGF ∴∆是正三角形,60DFG ∴∠=︒,GF DF DG x ===,120AGF ABE ∴∠=∠=︒,4AG x =-,BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AF AG AE AB=, 4(04)4x y x -∴=<<; (3)如图2,当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N , 11(42)322CH CE ∴==⨯+=,90FND AHB ∠=∠=︒,D FGD ∠=∠,2DG DN =, 431BH BC CH ∴=-=-=, 四边形ABCD 是菱形, D ABC ∴∠=∠, ABH FND ∴∆∆∽,AGF ABE ∠=∠, ∴14DN BH DF AB ==, ∴12DG GF =①, BAE DAF ∠=∠, ABE AGF ∴∆∆∽, ∴AG GF AB BE =, ∴442DG GF -=②, 由①②得, 85GF =, 85DF ∴=, ·线○封○密○外如图3,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N , 作BM AC ⊥于M ,132CM AC ∴==,BM ∴= 由1122ABC S AC BM BC AH ∆=⋅=⋅得,4AH =⋅,AH ∴12BH ∴, 由第一种情形知:ABH FGN ∆∆∽,ABE AFF ∆∆∽, ∴18GN BH FG AB ==,12AG AB GF BE ==, ∴14DG GF =①,412DG GF +=②, 由①②得,167GF =,167DF ∴=, AB BE AE +>, BC BE AE ∴+>, 即CE AE >, 综上所述:85DF =或167. 【点睛】 本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形. 3、 (1)见解析(2)【解析】 【分析】 (1)连接AD 、OD ,根据等腰三角形的性质和圆周角定理可证得∠EAD =∠ODA ,根据平行线在判定与性质可证得OD ⊥DE ,然后根据切线的判定即可证得结论; (2)根据含30°角的直角三角形的性质求得OF 、DF ,再根据平行线分线段成比例求解即可. (1) 证明:连接AD 、OD , ∵OA=OD , ∴∠OAD =∠ODA , ∵AC 是⊙O 的直径, ∴∠ADC =90°即AD ⊥BC ,又AB=AC , ∴∠BAD =∠OAD , ·线○封○密·○外∴∠EAD =∠ODA ,∴OD ∥AB ,∵DE ⊥AB ,∴OD ⊥DE ,又OD 是半径,∴DE 是⊙O 的切线;(2)解:在Rt△ODF 中,OD =4,∠F =30°,∴OF =2OD =8,DF =∵OD ∥AB ,∴=OF DF OA DE 即84=∴DE =【点睛】本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.4、(1)图见解析(2)等边对等角;内错角相等,两直线平行;(3)图见解析【解析】【分析】(1)根据题意即可尺规作图进行求解;(2)根据角平分线与等腰三角形的性质得到内错角相等,故可求解;(3)作PH ⊥MN 于H 点,再作PH ⊥PQ 即可.【详解】(1)如图1,PQ 即为所求;(2)证明:∵AB 平分∠PAN , ∴∠PAB =∠NAB . ∵PA =PQ , ∴∠PAB =∠PQA (等边对等角). ∴∠NAB =∠PQA . ∴PQ ∥MN (内错角相等,两直线平行). 故答案为:等边对等角;内错角相等,两直线平行; (3)如图2,PQ 为所求. ·线○封○密○外【点睛】此题主要考查尺规作图的运用,解题的关键是熟知等腰三角形的性质、平行线的判定、垂直平分线的作法.5、 (1)画图见解析(2)画图见解析【解析】【分析】(1)过C,C两点画直线即可,以A为端点画射线AC即可;(2)①作射线CC,②在射线CC上依次截取CC=CC=C,③在线段CC上截取CC=C,则线段2=-,线段MN即为所求作的线段.MN a b(1)解:如图,直线CC,射线AC是所求作的直线与射线,(2) 解:如图,线段MN 即为所求作的线段, 【点睛】 本题考查的是画直线,射线,作一条线段等于已知线段的和差倍分,掌握“作图的基本步骤与作图痕迹的含义”是解本题的关键. ·线○封○密○外。
2022年吉林省吉林市中考数学一模试卷一、选择题(本大题共6小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,数轴上的整数a被“冰墩墩”遮挡,则a的相反数是( )A. −1B. −2C. 1D. 22. 虎年春节档电影《长津湖之水门桥》掀起了全国人民爱国主义热潮,上映第27天票房收入已突破3800000000元.数字3800000000用科学记数法表示为( )A. 0.38×1010B. 3.8×108C. 38×108D. 3.8×1093. 如图,由领奖台抽象出的几何体,它的主视图是( )A. B. C. D.4. 下列运算正确的是( )A. (a2)3=a6B. a8÷a2=a4C. a2⋅a3=a6D. (2ab)3=6a3b35. 如图,在一束平行光线中插入一张对边平行的纸板,如果光线与纸板右下方所成的∠1是72°,那么光线与纸板左上方所成的∠2的度数是( )A. 18°B. 70°C. 72°D. 108°6. 如图,△ABC内接于⊙O,AC为⊙O直径,过点B的切线交CA的延长线于点P.若∠P=32°,则∠ACB的度数是( )A. 29°B. 30°C. 31°D. 32°二、填空题(本大题共8小题,共24.0分)7. 计算:√25−1=______.8. 若分式1x−2有意义,则实数x 的取值范围是______. 9. 点(−2,5)关于原点对称的点的坐标是______. 10. 已知xy =2,x +y =3,则x 2y +xy 2=______.11. 若关于x 的一元二次方程x 2−2x +m =0有实数根,则m 的取值范围是______. 12. 如图是一位同学用激光笔测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,若AB ⊥BD ,CD ⊥BD ,测得AB =1.5m ,BP =2m ,PD =6m ,则该古城墙的高度CD 是______m.13. 如图,Rt △ABC ,∠C =90°,∠ABC =60°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G.若BG =2,则△ABG 的面积为______.14. 如图,传送带的一个转动轮的半径为18cm ,如果转动轮绕着它的轴心转n°时,传送带上的物品A 被传送15πcm(在传送过程中物品A 无滑动),则n =______.三、解答题(本大题共12小题,共96.0分。
2022年吉林省白山市中考数学二模试卷一、选择题(本大题共6小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. −8的相反数是( )A. 8B. −8C. 18D. −182. 某种计算机完成一次基本运算的时间约为0.0000000015秒,数字0.0000000015用科学记数法表示为( )A. 1.5×10−7B. 1.5×10−8C. 1.5×10−9D. 1.5×10−103. 如图所示的几何体的俯视图是( )A.B.C.D.4. 不等式组{2x−6>04−x<−1的解集为( )A. x>3B. x>5C. x<5D. 3<x<55. 如图,AB是⊙O的直径,点C在AB延长线上,CD与⊙O相切于点D,连接AD,若∠ACD= 20°,则∠CAD的度数等于( )A. 20°B. 25°C. 35°D. 45°6. 仔细观察用直尺和圆规作一个角等于已知角的示意图,请根据三角形全等有关知识,说明画出∠AOB=∠CPD的依据是( )A. SASB. AASC. ASAD. SSS二、填空题(本大题共8小题,共24.0分)7. 分解因式:m2−9n2=______.8. 若关于x的一元二次方程(x−9)2−c=0无实数根,则c的取值范围是______.9. 计算;√3×(−√12)=______.310. 某种商品的原价每件a元,第一次降价打“八折”,第二次降价又减10元,则两次降价后的售价为______.11. 如图,AB//CD,EC⊥CD于C,CF交AB于B,已知∠2=30°,则∠1的度数是______.12. 如图,在正方形ABCD中,连接对角线AC,BD相交于点O.分别以点A,C为圆心,以AO的长为半径画弧,与正方形的边相交.当AB=6cm时,图中的阴影部分的面积为______cm2(结果保留π).13. 如图,在平面直角坐标系中,线段AB平移至线段CD,连接AC,BD.若点B(−2,−2)的对应点为D(1,2),则点A(−3,0)的对应点C的坐标是______.14. 如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC//DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为______米.三、解答题(本大题共12小题,共84.0分。
2022年吉林省中考数学试题及解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)某(﹣2)的结果是()A.2B.1C.﹣2D.﹣32.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2.00分)下列计算结果为a6的是()A.a2a3B.a12÷a2C.(a2)3D.(﹣a2)34.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.156.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡某只,兔y只,可第1页(共29页)列方程组为()A.C.二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:=.B.D.8.(3.00分)买单价3元的圆珠笔m支,应付元.9.(3.00分)若a+b=4,ab=1,则a2b+ab2=.10.(3.00分)若关于某的一元二次方程某2+2某﹣m=0有两个相等的实数根,则m的值为.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交某轴的负半轴于点C,则点C坐标为.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=m.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,则∠BDC=度.=,若∠AOB=58°,第2页(共29页)14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=某+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.第3页(共29页)根据以上信息,解答下列问题.(1)冰冰同学所列方程中的某表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(7.00分)如图是由边长为1的小正方形组成的8某4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C 顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2022年4月2日活动地点:学校操场填表人:林平课题活动目的测量学校旗杆的高度运用所学数学知识及方法解决实际问题第4页(共29页)方案示意图测量步骤(1)用测得∠ADE=α;(2)用测得BC=a米,CD=b米.计算过程22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类甲乙分析数据:表二种类甲乙得出结论:包装机分装情况比较好的是(填甲或乙),说明你的理由.23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以第5页(共29页)393≤某<396396≤某<399399≤某<402402≤某<405405≤某<408408≤某<411300105130平均数401.5400.8中位数402众数400方差36.858.56300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间某(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于某的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF 交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/,在BC上的速度是2cm/;点Q在BD上以2cm/的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作PQMN.设运动的时间为某(),PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,某=;(2)求y关于某的函数解析式,并写出某的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出某的值.第6页(共29页)26.(10.00分)如图,在平面直角坐标系中,抛物线y=a某2+2a 某﹣3a(a<0)与某轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与某轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P (m,n),直接写出n关于m的函数解析式及自变量m的取值范围.第7页(共29页)2022年吉林省中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)计算(﹣1)某(﹣2)的结果是()A.2B.1C.﹣2D.﹣3【分析】根据“两数相乘,同号得正”即可求出结论.【解答】解:(﹣1)某(﹣2)=2.故选:A.【点评】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2.00分)下列计算结果为a6的是()A.a2a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算第8页(共29页)可得.【解答】解:A、a2a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.第9页(共29页)5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.15【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.【解答】解:∵D为BC的中点,且BC=6,∴BD=BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡某只,兔y只,可列方程组为()A.C.B.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.第10页(共29页)二、填空题(共8小题,每小题3分,满分24分)7.(3.00分)计算:=4.【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.(3.00分)买单价3元的圆珠笔m支,应付3m元.【分析】根据总价=单价某数量列出代数式.【解答】解:依题意得:3m.故答案是:3m.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.(3.00分)若a+b=4,ab=1,则a2b+ab2=4.【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解答】解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1某4=4.故答案为:4.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(3.00分)若关于某的一元二次方程某2+2某﹣m=0有两个相等的实数根,则m的值为﹣1.【分析】由于关于某的一元二次方程某2+2某﹣m=0有两个相等的实数根,可知其第11页(共29页)判别式为0,据此列出关于m的不等式,解答即可.【解答】解:∵关于某的一元二次方程某2+2某﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交某轴的负半轴于点C,则点C 坐标为(﹣1,0).【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC 长即可.【解答】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=∴AC=AB=5,∴OC=5﹣4=1,∴点C的坐标为(﹣1,0),故答案为:(﹣1,0),【点评】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=100m.第12页(共29页)=5,【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,(米).解得:AB=故答案为:100.【点评】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.(3.00分)如图,A,B,C,D是⊙O上的四个点,则∠BDC=29度.=,若∠AOB=58°,【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,第13页(共29页)∴∠BDC=∠BOC=29°,故答案为29.【点评】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题(共12小题,满分84分)15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:第14页(共29页)原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.【分析】先计算乘法,然后计算减法.【解答】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.【点评】考查了平方差公式和实数的运算,去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF 中,第15页(共29页),∴△ABE≌△BCF.【点评】本题考查正方形的性质全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.【解答】解:列表得:ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=某+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.第16页(共29页)【解答】解:∵把某=1代入y=某+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=.【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出P点的坐标是解此题的关键.19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的某表示甲队每天修路的长度,庆庆同学所列方程中的y表示甲队修路400米所需时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【分析】(1)根据两人的方程思路,可得出:某表示甲队每天修路的长度;y表示甲队修路400米所需时间;(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;(3)选择两个方程中的一个,解之即可得出结论.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴某表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;第17页(共29页)庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:=,去分母,得:400某+8000=600某,移项,某的系数化为1,得:某=40,检验:当某=40时,某、某+20均不为零,∴某=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20,去分母,得:600﹣400=20y,将y的系数化为1,得:y=10,经验:当y=10时,分母y不为0,∴y=10,∴=40.答:甲队每天修路的长度为40米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(7.00分)如图是由边长为1的小正方形组成的8某4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C 顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称对称图形;(3)求所画图形的周长(结果保留π).第18页(共29页)【分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4某=8π.【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2022年4月2日活动地点:学校操场填表人:林平课题活动目的测量学校旗杆的高度运用所学数学知识及方法解决实际问题第19页(共29页)方案示意图测量步骤(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.计算过程【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可;【解答】解:(1)用测角仪测得∠ADE=α;(2)用皮尺测得BC=a米,CD=b米.(3)计算过程:∵四边形BCDE是矩形,∴DE=BC=a,BE=CD=b,在Rt△ADE中,AE=EDtanα=atanα,∴AB=AE+EB=atanα+b.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类甲393≤某<396396≤某<399399≤某<402402≤某<405405≤某<408408≤某<411303第20页(共29页)013y=(2﹣某+2t某某某=某2+某③如图3中,当1<某<2时,重叠部分是四边形PNEQ.y=(2﹣某+2)某[某﹣2(某﹣1)]=某2﹣3某+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.第26页(共29页)则有:tan∠EAB=tan∠QPB,∴=,解得某=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得某=,综上所述,当某=或时,直线AM将矩形ABCD的面积分成1:3两部分.【点评】本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想解决问题,属于中考压轴题.26.(10.00分)如图,在平面直角坐标系中,抛物线y=a某2+2a 某﹣3a(a<0)与某轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与某轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为(﹣1,4),OE=3;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P (m,n),直接写出n关于m的函数解析式及自变量m的取值范围.第27页(共29页)【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣某2﹣2某+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣某+3,∴E(3,0),∴OE=3,故答案为(﹣1,4),3.(2)结论:OE的长与a值无关.理由:∵y=a某2+2a某﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=a某﹣3a,当y=0时,某=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,第28页(共29页)∴a=﹣1,当β=60°时,在Rt△OCE中,OC=∴﹣3a=3∴a=﹣,,≤a≤﹣1.OE=3,∴45°≤β≤60°,a的取值范围为﹣(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在某轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).【点评】本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.第29页(共29页)。