人教版七年级上册数学1.2.1 有理数同步练习
- 格式:doc
- 大小:51.00 KB
- 文档页数:2
1.2.2数轴 一、单选题1.如图,数轴上表示数2的点是( )A .点PB .点QC .点MD .点N2.有理数a 在数轴上对应的点如图所示,则a ,-a ,-1的大小关系是( )A .1a a -<<-B .1a a -<-<C .1a a <-<-D .1a a <-<-3.已知点A 在数轴上表示的数是2,那么从点A 向左移动3个单位长度后,所表示的数是( ) A .-1 B .5 C .-1或5 D .无法判断 4.在数轴上,关于-1.2的说法最准确的是( ) A .在-1右侧 B .在-1左侧C .在-1与-2之间D .在-1与-1.5之间5.有一只青蛙从数轴上的原点开始向右跳,每次跳跃的距离都相等,且方向不变,跳第17次时落到表示的数为68的点A ,若跳第20次时会落到点B ,则点B 表示的数为( )A .76B .78C .80D .82 6.下列各图中是数轴的是( ) A .B .C .D .7.数轴上将一个点从点A 处先向左移动2个单位长度,再向右移动5个单位长度,到达点B ,若点B 表示的数是1,则点A 表示的数是( ) A .4 B .3 C .3- D .2-8.数轴上表示2-,0,6.3,15的点中,位于原点右边的有( )A .3个B .2个C .1个D .0个 9.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间2018年10月15日20时应是( )A .纽约时间2018年10月15日5时B .巴黎时间2018年10月15日13时C .汉城时间2018年10月15日19时D .伦敦时间2018年10月15日11时 10. 下图中所画的数轴,正确的是( )11.从原点开始向左移动 3 个单位,再向右移动 1 个单单位后到达 A 点,则 A 点表示的数是( ) A.3 B.4 C.2 D.-2).12. 数轴上,从 -2009 到 2009 之间共有n 个表示示整数的点(包括表示-2009 与 2009 的点),则 n 的 值为( ) A. 4017 B. 4018 C. 4019 D. 4020二、填空题13. 数轴的原点表示数,若点A 在原点左边2 个单位长度,则点A 表示的数是若点B 在原点的右边,则点B 表示一个 。
人教新版七年级上学期《1.2 有理数》同步练习卷一.选择题(共14小题)1.在﹣4,,0,,3.14159,1.,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个2.0是一个()A.负整数B.正分数C.非负整数D.正整数3.在,,0.7070070007…(每两个7之间0的个数逐渐加1),0.6中不是有理数有()个.A.1个B.2个C.3个D.4个4.在下列各数中,非负数有()个.﹣3,0,+5,﹣3,﹣80%,+,2013A.1个B.2个C.3个D.4个5.下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.3B.4C.5D.66.在下面各数中有理数的个数有()﹣3.14,,0.1010010001,+1.99,﹣.A.1个B.2个C.3个D.4个7.在下列数﹣,+1,6.7,﹣15,0,,﹣1,25%中,属于分数的有()A.2个B.3个C.4个D.5个8.在有理数﹣1,+7,0,﹣,0.101中,非负数有()A.1个B.2个C.3个D.4个9.若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A.ab<0B.a<0<b C.a+b<0D.﹣a<010.如图,在数轴上,点A,B表示的数分别是﹣2和10,则线段AB的中点M表示的数为()A.4B.6C.8D.1011.数轴上到原点的距离是5个单位长度的点表示的数是()A.5B.﹣5C.0D.±512.|﹣2|=()A.0B.﹣2C.2D.113.下列各组数中,互为相反数的是()A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与14.当x<3时,式子|x﹣3|化简为()A.﹣3B.x C.x﹣3D.3﹣x二.填空题(共17小题)15.在下列各数中:﹣3,﹣2.5,+2.25,0,+0.1,+3,π,﹣4,﹣x,10,非负整数的个数是.16.在数﹣1,20%,,0.3,0,﹣1.7,21,﹣2,1.0101001…,+6,π中,分数有个.17.有理数﹣3,2,0,﹣1,4,+10,﹣,其中整数有个.18.有理数:﹣2,4,﹣70%,﹣6,0,﹣0.3,﹣20,是负整数的数是.19.将有理数化为小数是3.4285,则小数点后第2018位上的数是.20.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.21.数轴上与原点的距离小于3且表示整数的点有个.22.数轴上,将表示﹣1的点向右移动2个单位后,对应点表示的数是.23.若数轴经过折叠,﹣5表示的点与3表示的点重合,则2018表示的点与数表示的点重合.24.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为.25.在数轴上与2距离为5个单位的点所表示的数是.26.7的相反数是,0的相反数是.27.如果a的相反数是1,那么a2018等于.28.若a,b互为相反数,则5a+5b的值为.29.﹣2的相反数的值等于.30.如图,数轴上的有理数a,b满足|3a﹣b|﹣|a+2b|=|a|,则=.31.已知abc≠0,且+++的最大值为m,最小值为n,则m+n=.三.解答题(共9小题)32.把下列各数填入相应的大括号内(将各数用逗号分开)6,﹣3,2.4,﹣,0,﹣3.14,.正数:{…}非负整数:{…}整数:{…}负分数:{…}33.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.34.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5且x<14,单位:m):行驶次数第一次第二次第三次第四次行驶情况x﹣x x﹣32(5﹣x)行驶方向(填“东”或“西”)(1)请将表格补充完整;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.35.已知m是8的相反数,n比m的相反数小2,求n比m大多少?36.已知a、b互为相反数,非零数b的任何次幂都等于它本身.(1)求a、b;(2)求a2016+a2017;(3)求++…+.37.化简:(1)﹣[﹣(﹣8)];(2)﹣|﹣|38.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.39.【归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3|,|﹣6|+|3|>|﹣6+3||﹣2|+|﹣3|=|﹣2﹣3|,|0|+|﹣8|=|0﹣8|归纳:|a|+|b||a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.40.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值人教新版七年级上学期《1.2 有理数》2019年同步练习卷参考答案与试题解析一.选择题(共14小题)1.在﹣4,,0,,3.14159,1.,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个【分析】有理数就是整数与实数的统称,即整数,有限小数以及无限循环小数都是有理数,据此即可作出判断.【解答】解:﹣4,,0,3.14159,1.,是有理数,其它的是无理数.故选:D.【点评】本题主要考查了实数中的基本概念和相关计算.实数是有理数和无理数统称.要求掌握这些基本概念并迅速做出判断.2.0是一个()A.负整数B.正分数C.非负整数D.正整数【分析】根据有理数的定义解答即可.【解答】解:0是一个非负整数,故选:C.【点评】本题考查了有理数,熟记有理数的定义是解题的关键.3.在,,0.7070070007…(每两个7之间0的个数逐渐加1),0.6中不是有理数有()个.A.1个B.2个C.3个D.4个【分析】根据有理数的定义,可直接得答案.【解答】解:整数和分数统称有理数,因为,0.6是分数也是有理数;,0.7070070007…(每两个7之间0的个数逐渐加1)不是有理数,是无理数.故选:B.【点评】本题考查了有理数的定义.整数和分数统称有理数.解题中容易把当成分数而出错.4.在下列各数中,非负数有()个.﹣3,0,+5,﹣3,﹣80%,+,2013A.1个B.2个C.3个D.4个【分析】根据非负数的概念,找出非负数即可.【解答】解:非负数有0,+5,+,2013,故选:D.【点评】此题考查了有理数,熟练掌握非负数的概念是解本题的关键.5.下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.3B.4C.5D.6【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:C.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.6.在下面各数中有理数的个数有()﹣3.14,,0.1010010001,+1.99,﹣.A.1个B.2个C.3个D.4个【分析】根据整数和分数统称为有理数直接找到有理数的个数即可.【解答】解:﹣3.14,,0.1010010001,+1.99,﹣中有理数为﹣3.14,,0.1010010001,+1.99共4个,故选:D.【点评】本题是对有理数概念的考查,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.7.在下列数﹣,+1,6.7,﹣15,0,,﹣1,25%中,属于分数的有()A.2个B.3个C.4个D.5个【分析】根据有理数的分类即可解决问题.【解答】解:属于分数的有﹣,6.7,,25%这4个,故选:C.【点评】本题考查了有理数:正数和分数统称为有理数.有理数的分类:按整数、分数的关系分类;按正数、负数与0的关系分类.8.在有理数﹣1,+7,0,﹣,0.101中,非负数有()A.1个B.2个C.3个D.4个【分析】根据大于或等于零的数是非负数,可得答案.【解答】解:非负数有,+7,0,0.101,故选:C.【点评】本题考查了非负数,大于或等于零的数是非负数.9.若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A.ab<0B.a<0<b C.a+b<0D.﹣a<0【分析】根据数轴得出a<0<b,|a|>|b|,进而可得出ab<0,a+b<0,﹣a>0,对比后即可得出选项.【解答】解:从数轴可知:a<0<b,|a|>|b|,∴ab<0,a+b<0,﹣a>0,即选项A,B,C均正确;选项D错误,故选:D.【点评】本题考查了数轴和有理数的运算,能根据数轴得出a<0<b和|a|>|b是解此题的关键.10.如图,在数轴上,点A,B表示的数分别是﹣2和10,则线段AB的中点M表示的数为()A.4B.6C.8D.10【分析】根据AM=BM得出方程,求出方程的解即可.【解答】解:设M点表示的数为x,∵M为线段AB的中点,∴AM=BM,∴10﹣x=x﹣(﹣2),解得:x=4,故选:A.【点评】本题考查了数轴和线段的中点,能根据题意得出关于x的方程是解此题的关键.11.数轴上到原点的距离是5个单位长度的点表示的数是()A.5B.﹣5C.0D.±5【分析】本题可根据题意得距离原点距离为5的数有5和﹣5两种.由此即可得出答案.【解答】解:数轴上到原点的距离是5个单位长度的点表示的数是|5|=±5.故选:D.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.12.|﹣2|=()A.0B.﹣2C.2D.1【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.13.下列各组数中,互为相反数的是()A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与【分析】只有符号不同的两个数叫做互为相反数,从而分别分析A,B,C,D四项中符合相反数定义的选项.【解答】解:A项中,|﹣|=,与﹣互为相反数.B项中,|﹣|=,﹣<﹣,所以|﹣|与﹣不互为相反数.C项中,|﹣|=,=,|﹣|与相等,不互为相反数.D项中,|﹣|=,<,|﹣|与不互为相反数.故选:A.【点评】本题考查了绝对值的性质和相反数的定义,属于比较基本的问题.14.当x<3时,式子|x﹣3|化简为()A.﹣3B.x C.x﹣3D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.【解答】解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.二.填空题(共17小题)15.在下列各数中:﹣3,﹣2.5,+2.25,0,+0.1,+3,π,﹣4,﹣x,10,非负整数的个数是2.【分析】根据实数数的分类,对各数判断并得结论.【解答】解:∵非负整数就是正整数和0,当x是正数时,﹣x就是负数,π是无限不循环小数.∴非负整数有:0,10共2个.故答案为:2【点评】本题考查实数的分类,解题的关键是正确理解实数的分类,本题属于基础题型.16.在数﹣1,20%,,0.3,0,﹣1.7,21,﹣2,1.0101001…,+6,π中,分数有5个.【分析】根据分数的定义求解可得.【解答】解:分数有﹣1,20%,,0.3,﹣1.7,故答案为:5【点评】本题主要考查有理数,解题的关键熟练掌握分数的定义.17.有理数﹣3,2,0,﹣1,4,+10,﹣,其中整数有4个.【分析】根据有理数的分类即可求出答案.【解答】解:﹣3,0,4,+10是整数,故答案为:4【点评】本题考查有理数的分类,解题的关键是熟练运用有理数的分类,本题属于基础题型.18.有理数:﹣2,4,﹣70%,﹣6,0,﹣0.3,﹣20,是负整数的数是﹣2,﹣6,﹣20.【分析】根据有理数的分类即可解决问题.【解答】解:负整数的数是﹣2,﹣6,﹣20,故答案为:﹣2,﹣6,﹣20.【点评】本题考查了有理数:正数和分数统称为有理数.有理数的分类:按整数、分数的关系分类;按正数、负数与0的关系分类.19.将有理数化为小数是3.4285,则小数点后第2018位上的数是4.【分析】此循环小数中这6个数字为一个循环周期,要求小数点后面第2018位上的数字是几,就是求2018里面有几个6,再根据余数确定即可【解答】解:∵2018÷6=336……2,∴小数点后第2018位上的数与第2位数字相同,为4,故答案为:4.【点评】此题考查了数字的变化规律,解决此题关键是根据循环节确定6个数字为一个循环周期,进而求出2018里面有几个6,再根据余数确定即可20.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是2或﹣6.【分析】由于题目没有说明该点的具体位置,故要分情况讨论.【解答】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣6【点评】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.21.数轴上与原点的距离小于3且表示整数的点有5个.【分析】本题可通过数轴,直接得结果,亦可通过绝对值的意义得结果.【解答】解:由绝对值的意义知,与原点的距离小于3且表示整数的点,即绝对值小于3的整数有:±1,0,±2共5个.故答案为:5.【点评】本题考查了数轴上点的距离,题目比较简单,容易漏掉整数0而出错.22.数轴上,将表示﹣1的点向右移动2个单位后,对应点表示的数是1.【分析】根据题意列出算式﹣1+2,求出即可.【解答】解:﹣1+2=1,即数轴上,将表示﹣1的点向右移动2个单位后,对应点表示的数是1,故答案为:1.【点评】本题考查了数轴的应用,能根据题意列出算式是解此题的关键.23.若数轴经过折叠,﹣5表示的点与3表示的点重合,则2018表示的点与数﹣2020表示的点重合.【分析】直接根据题意得出中点,进而得出答案.【解答】解:∵数轴经过折叠,﹣5表示的点与3表示的点重合,∴两数中点是:×(﹣5+3)=﹣1,设2018表示的点与数x表示的点重合,∴×(2018+x)=﹣1,解得:x=﹣2020.故答案为:﹣2020.【点评】此题主要考查了数轴,正确得出两数中点是解题关键.24.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为﹣5.【分析】根据有理数大小比较的方法,判断出﹣和2之间的整数有多少个即可.【解答】解:∵﹣和2之间的整数有3个:﹣3,﹣2,﹣1,0,1,∴墨迹遮盖住的整数和=﹣3﹣2﹣1+0+1=﹣5故答案为:﹣5.【点评】此题主要考查了数轴的特征和应用,以及有理数大小比较的方法,要熟练掌握.25.在数轴上与2距离为5个单位的点所表示的数是7或﹣3.【分析】设数轴上与表示2的点的距离为5个单位的点表示的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设数轴上与表示2的点的距离为5个单位的点表示的有理数是x,则|x﹣2|=5,解得x=7或x=﹣3.故答案是:7或﹣3.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.26.7的相反数是﹣7,0的相反数是0.【分析】直接利用相反数的定义分析得出答案.【解答】解:7的相反数是:﹣7,0的相反数是:0.故答案为:﹣7,0.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.27.如果a的相反数是1,那么a2018等于1.【分析】直接利用相反数的定义得出a的值,进而得出答案.【解答】解:∵a的相反数是1,∴a=﹣1,∴a2018=(﹣1)2018=1.故答案为:1.【点评】此题主要考查了相反数,正确得出a的值是解题关键.28.若a,b互为相反数,则5a+5b的值为0.【分析】直接利用相反数的定义把原式变形得出答案.【解答】解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.29.﹣2的相反数的值等于2.【分析】根据相反数的定义作答.【解答】解:﹣2的相反数的值等于2.故答案是:2.【点评】考查了相反数的概念:只有符号不同的两个数叫做互为相反数.30.如图,数轴上的有理数a,b满足|3a﹣b|﹣|a+2b|=|a|,则=﹣.【分析】根据点a、b在数轴上的位置可判断出3a﹣b<0,a+2b>,a<0,然后化简绝对值,从而可求得答案.【解答】解:∵由题意可知:3a﹣b<0,a+2b>0,a<0,∴b﹣3a﹣(a+2b)=﹣a.整理得:﹣b=3a.∴.故答案为:﹣.【点评】本题主要考查的是绝对值的化简、数轴的认识,根据a、b在数轴上的位置,判断出3a﹣b<0,a+2b>,a<0是解题的关键.31.已知abc≠0,且+++的最大值为m,最小值为n,则m+n=0.【分析】利用①a,b,c都大于0,②a,b,c都小于0,③a,b,c一负两正,④a,b,c 一正两负,进而分析得出即可.【解答】解:∵a,b,c都不等于0,∴有以下情况:①a,b,c都大于0,原式=1+1+1+1=4;②a,b,c都小于0,原式=﹣1﹣1﹣1﹣1=﹣4;③a,b,c,一负两正,不妨设a<0,b>0,c>0,原式=﹣1+1+1﹣1=0;④a,b,c,一正两负,不妨设a>0,b<0,c<0,原式=1﹣1﹣1+1=0;∴m=4,n=﹣4,∴m+n=4﹣4=0.故答案为:0.【点评】此题主要考查了绝对值的性质,利用分类讨论得出是解题关键.三.解答题(共9小题)32.把下列各数填入相应的大括号内(将各数用逗号分开)6,﹣3,2.4,﹣,0,﹣3.14,.正数:{6,2.4,;…}非负整数:{6,2.4,0,;…}整数:{6,﹣3,0…}负分数:{﹣,﹣3.14…}【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可的非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【解答】解:正数:{6,2.4,…}非负整数:{6,2.4,0,…}整数:{6,﹣3,0…}负分数:{﹣,﹣3.14…}故答案为:6,2.4,;6,2.4,0,;6,﹣3,0;﹣,﹣3.14.【点评】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.33.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.【分析】(1)由已知得:从家向东走了5千米到超市,则超市A表示5,又向东走了2.5,则爷爷家B表示的数为7.5,从爷爷家出发向西走了10千米到姥爷家,所以姥爷家C表示的数为7.5﹣10=﹣2.5,画数轴如图;(2)右边的数减去左边的数即可;(3)计算总路程,再根据耗油量=总路程×0.15即可求解.【解答】解:(1)点A,B,C即为如图所示.(2)5﹣(﹣2.5)=7.5(千米).故超市和姥爷家相距7.5千米;(3)(5+2.5+10+2.5)×0.08=1.6(升).故小轿车的耗油量是1.6升..【点评】考查了数轴,此类题的解题思路为:利用数形结合的思想,先根据条件找到超市、爷爷家和外公家的位置,再依次解决问题.34.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5且x<14,单位:m):行驶次数第一次第二次第三次第四次行驶情况x﹣x x﹣32(5﹣x)东西东西行驶方向(填“东”或“西”)(1)请将表格补充完整;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.【分析】(1)根据数的符号说明即可;(2)把路程相加,求出结果,看结果的符号即可判断出答案;(3)求出每个数的绝对值,相加求出总路程,再解方程求解即可.【解答】解:(1)填表如下:行驶次数第一次第二次第三次第四次行驶情况x﹣x x﹣32(5﹣x)东西东西行驶方向(填“东”或“西”)故答案为:东,东,西;(2)x+(﹣x)+(x﹣3)+2(5﹣x)=7﹣x,∵x>5且x<14,∴7﹣x>0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(7﹣x)km.(3)|x|+|﹣x|+|x﹣3|+|2(5﹣x)|=x+x+x﹣3﹣2(5﹣x)=x﹣13,依题意有x﹣13=41,解得x=12.答:第一次行驶的路程x的值是12.【点评】本题考查了整式的加减,绝对值等知识点的应用,主要考查学生分析问题和解决问题的能力,用数学解决实际问题,题型较好.35.已知m是8的相反数,n比m的相反数小2,求n比m大多少?【分析】根据相反数定义确定m和n的值,然后可得答案.【解答】解:由题意得:m=﹣8,n=8﹣2=6,n﹣m=6﹣(﹣8)=14,答:n比m大14.【点评】此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.36.已知a、b互为相反数,非零数b的任何次幂都等于它本身.(1)求a、b;(2)求a2016+a2017;(3)求++…+.【分析】(1)依据相反数、有理数的乘方法则可求得a、b的值;(2)将a的值代入进行计算即可;(3)将a、b的值代入,然后依据拆项裂项法即可.【解答】解:(1)∵a、b互为相反数,非零数b的任何次幂都等于它本身1,∴a=﹣1、b=1.(2)将a=﹣1代入得:原式=(﹣1)2016+(﹣1)2017=1﹣1=0;(3)将a、b的值代入得:原式=﹣1×(++…+)=﹣1××(1﹣+﹣+…+﹣)=﹣1××=﹣.【点评】本题主要考查的是求代数式的值,利用拆项裂项法求解是解题的关键.37.化简:(1)﹣[﹣(﹣8)];(2)﹣|﹣|【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:(1)﹣[﹣(﹣8)]=﹣[+8]=﹣8;(2)﹣|﹣|=﹣.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.38.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.【分析】(1)先由ab>0,a+b<0,判断a、b的正负,再求值;(2)对a、b、c的正负先进行讨论,然后再求值;(3)由a+b+c=0,变形为﹣﹣+的形式,根据abc<0分类讨论,计算出结果.【解答】解:(1)∵ab>0,a+b<0,∴a<0,b<0∴=﹣1﹣1=﹣2;(2)当a、b、c同正时,=1+1+1=3;当a、b、c两正一负时,=1+1﹣1=1;当a、b、c一正两负时,=﹣1﹣1+1=﹣1;当a、b、c同负时,=﹣1﹣1﹣1=﹣3;(3)∵a+b+c=0,∴b+c=﹣a,a+c=﹣b,a+b=﹣c∴=+﹣=﹣﹣+又∵abc<0,∴当c<0,a>0,b>0时,原式=﹣﹣+=﹣1﹣1﹣1=﹣3;当c<0,a<0,b<0时,原式=﹣﹣+=1+1﹣1=1;当c>0,a或b为负时,原式=﹣﹣+=1﹣1+1=1.【点评】本题考查了绝对值的意义、分式的商及有理数的运算等知识点.题目需要分类讨论,分类时注意不重不漏.39.【归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3|,|﹣6|+|3|>|﹣6+3||﹣2|+|﹣3|=|﹣2﹣3|,|0|+|﹣8|=|0﹣8|归纳:|a|+|b|≥|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案;(3)分第一类:a、b、c三个数都不等于0、第二类:a、b、c三个数中有1个0、第三类:a、b、c三个数中有2个0、第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,四种情况分类讨论即可确定正确的答案.【解答】解:(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=13,则n=m﹣13,|m+m﹣13|=1,m=7或6;当m为负数,n为正数时,﹣m+n=13,则n=m+13,|m+m+13|=1,m=﹣7或﹣6;综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数;1个正数2个负数;1个0,1个正数和1个负数.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.40.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值【分析】(1)由题意x=±3,y=±2,由于xy<0,x=3,y=﹣2或x=﹣3,y=2,代入x+y即可求出答案.(2)由题意x=±3,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:由题意知:x=±3,y=±2,(1)∵xy<0,∴x=3,y=﹣2或x=﹣3,y=2,∴x+y=±1,(2)当x=3,y=2时,x﹣y=3﹣2=1;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5;当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,所以x﹣y的最大值是5【点评】本题考查绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.。
第1章有理数 1.2有理数一、选择题1.在12,0,1,-9四个数中,负数是( )A.12B.0 C.1 D.-92.如图,数轴上蝴蝶所在点表示的数可能为( )A.3 B.2 C.1 D.-13.相反数是它本身的数是( )A.1和-1 B.0C.0和±1 D.0和14.若|-3|=x,则x的值为( )A.3 B.-3C.±3 D.以上都不正确5.若a是有理数,则下列说法正确的是( )A.|a|一定为正数B.-a一定为负数C.-|a|一定为负数D.|a|+1一定为正数6.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b按照从小到大的顺序排列是( )A.-b<-a<a<b B.a<-b<b<-aC.-b<a<-a<b D.a<-b<-a<b7.学校、冰冰家、书店依次坐落在一条南北走向的大街上,学校在冰冰家的南边20米,书店在冰冰家的北边100米,冰冰从家里出发,向北走了50米,接着又向南走了70米,此时冰冰的位置( )A.在家B.在学校C.在书店D.不在上述地方8.已知数轴上的点A表示的数是2,那么在数轴上到点A的距离是3的点表示的数是( ) A.3或-3 B.5C.-1 D.-1或5二、填空题9.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,记作+0.23米,那么小东跳出了3.75米,记作________.10.若a是最大的负整数,则a=________;若b是绝对值最小的有理数,则b=________;若c比最小的正整数大3,则c=________.11.如图所示,表示0.5的点是________,表示-1.5的点是________,点A表示的数是________.12.化简下列各数:+(-5)=________,-(-313)=________,-[-(-335)]=________.13.A是数轴上的一个点,将点A先向右移动5个单位长度,再向左移动3个单位长度(向右为正方向),终点恰好是原点,则点A表示的数是________.14.比较大小:(1)-2.1________1;(2)-23________-34;(3)-(-5)________-|-5|.15.小明在写作业时不慎将墨水滴在数轴上,请根据图中的数值,判断墨迹盖住部分的整数有________个.三、解答题16.在数轴上表示出下列各数,并将它们用“<”号连接起来:0,-4.5,-|-3|,-(-1),1 3 .17.2018·淮安清江浦区期中把下列各数分别填入相应的大括号里:-4,-|-43|,0,227,-3.14,2020,-(+5),+1.88.(1)正数:{ …};(2)负数:{ …};(3)整数:{ …};(4)分数:{ …}.18.某汽车配件厂生产一种圆形橡胶垫,从中抽取6件产品进行检验.规定:其直径比标准直径大的部分记作正数;比标准直径小的部分记作负数.检查的结果(单位:毫米)记录如下:(1)请找出三个误差相对较小的零件,并用绝对值的知识来说明;(2)若规定与标准直径相差不大于0.2毫米的为合格产品,则6件产品中有几件不合格产品?请写出不合格产品的序号.19.观察下面一列数,探求其规律:1 2,-23,34,-45,56,-67,….(1)写出第7,8,9个数;(2)第2022个数是什么?(3)如果这一列数无限排列下去,与哪两个有理数越来越接近?20.小华骑车从家出发,先向东骑行2 km到达A村,继续向东骑行3 km到达B村,接着又向西骑行9 km到达C村,最后回到家,试解答下列问题:(1)以家为原点,向东为正方向,用1个单位长度表示1 km画数轴,并在数轴上表示出家以及A,B,C三个村庄的位置;(2)C村与A村的距离是多少?(3)小华一共行驶了多少千米?21.已知a,b,c为有理数,且它们在数轴上对应的点的位置如图所示.(1)试判断a,b,c的正负性.(2)根据数轴化简:①|a|=________;②|b|=________;③|c|=________;④|-a|=________;⑤|-b|=________;⑥|-c|=________.(3)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案1.D 2.D 3.B 4.A5.D 6.B 7.B 8.D 9.-0.25米10.-1 0 411.G D -3 12.-5 313 -33513.-2 14.(1)< (2)> (3)>15.9 [解析] 墨迹盖住部分的整数有-5,-4,-3,-2,1,2,3,4,5,共9个.16.解:将各数表示在数轴上如下:用“<”号连接为-4.5<-|-3|<0<13<-(-1). 17.解:(1)正数:{227,2020,+1.88,…}; (2)负数:{-4,-|-43|,-3.14,-(+5),…}; (3)整数:{-4,0,2020,-(+5),…};(4)分数:{-|-43|,227,-3.14,+1.88,…}. 18.解:(1)三个误差相对较小的零件是3号,4号,5号.理由:|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2.因为0<0.1<0.2<0.3<0.5,故三个误差相对较小的零件是3号,4号,5号.(2)6件产品中有2件不合格产品,分别是1号和2号.19.解:(1)第7,8,9个数分别为78,-89,910. (2)-20222023. (3)与1和-1越来越接近. 20.解:(1)如图:(2)2+|-4|=2+4=6(km).答:C 村与A 村的距离是6 km.(3)|2|+|3|+|-9|+|4|=2+3+9+4=18(km).答:小华一共行驶了18 km.21.解:(1)a为负数,b为正数,c为正数.(2)①-a ②b③c④-a ⑤b⑥c(3)a=-5.5,b=2.5,c=5.。
2021-2022学年度人教版七年级数学上册练习五1.2.1 有理数-有理数的概念及分类1.下列各数:﹣12,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有()个.A.1 B.2 C.3 D.4 2.既是分数又是正有理数的是()A.+2 B.﹣35C.0 D.2.0153.下列说法错误的是()A.正整数和正分数统称正有理数B.两个无理数相乘的结果可能等于零C.正整数,0,负整数统称为整数D.3.1415926是小数,也是分数4.在|﹣2|,(﹣2)3,﹣|﹣2|,﹣(﹣2)这四个数中,负数共有()A.1个B.2个C.3个D.4个5.下列说法正确的是()A.有理数分为正数和负数B.符号不同的两个数互为相反数C.所有的有理数都能用数轴上的点表示 D.两数相加,和一定大于任何一个数6.下列说法中.正确的是 ( )A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数7.下列说法正确的是()A.0是最小的有理数B.一个有理数不是正数就是负数C.分数不是有理数D.没有最大的负数8.在实数5、017、1.879中有理数的个数为()A.1个B.2个C.4个D.3个9.下列说法正确的有( )①一个数不是正数就是负数;②海拔-155 m表示比海平面低155 m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A .1个B .2个C .3个D .4个10.有理数a -是( )A .负数B .正数C .OD .正数或负数或0 11.在 14,-1,0,-3.2这四个数中,属于负分数的是( )A .14 B .-1 C .0 D .-3.212.下列说法正确的是( )A .最大的负整数是-1B .最小的正数是0C .绝对值等于3的数是3D .任何有理数都有倒数 13.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( ) A .6个 B .5个 C .4个 D .3个14.已知下列各数:+12,-3,19,+0.4,-3.141,0,13+,225⎛⎫- ⎪⎝⎭,|0.01|--.在以上各数中:①整数有4个;②负数有3个;③正分数有3个;④正数有6个;⑤负整数有2个.其中正确的是( )A .①②③B .②③④C .③④⑤D .①④⑤15.若a 为有理数,则说法正确的是( )A .–a 一定是负数B .a a =C .a 的倒数是1aD .2a 一定是非负数 16.下面有理数中573,|5|, 3.6,,78-----,负数有( )A .2B .3C .4D .5 17.2-3,-│-6│,-(-5),(-1)2,-32,-20%,0中负数有( )A .1个B .2个C .3个D .4个18227,π, ) A .1个B .2个C .3个D .4个 19.在22-,115,0,19,6-,3这五个数中,正数的个数是( ) A .1 B .2 C .3 D .420.a 一定是()A.正数B.负数C.0D.以上选项都不正确参考答案1.C解析:根据分数的定义,进行分类.详解:下列各数:-12,-0.7,-9,25,π,0,-7.3中,分数有:-12,-0.7,-7.3,共3个,故选C.点睛:本题考查了实数的知识,注意掌握分数的定义.2.D解析:试题分析:根据大于零的分数是正分数,可得答案.解:A、2是正整数,故A错误;B、﹣是负分数,故B错误;C、0既不是正数也不是负数,故C错误;D、2.015是正分数,故D正确;故选D.考点:有理数.3.B解析:A. 正整数和正分数统称正有理数 B. 改为“两个无理数相乘的结果一定不等于零”C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数故选B.4.B解析:根据有理数的乘方法则、绝对值的性质、相反数的定义进行计算,判断即可.详解:解:|-2|=2,(-2)3=-8,-|-2|=-2,-(-2)=2,则这四个数中,负数共有2个,故选B.点睛:本题考查的是有理数的乘方、绝对值的性质、相反数的定义,掌握有理数的乘方的定义、相反数的定义是解题的关键.5.C解析:依据有理数的分类、相反数的定义、以及数轴和实数的对应关系回答即可.详解:A、有理数分为正数、负数和零,故A错误;B、只有符号不同的两个数互为相反数,故B错误;C、所有的有理数都能用数轴上的点表示,故C正确;D、两个负数相加,和小于任何一个加数,故D错误.所以C选项是正确的.点睛:本题考查数轴、有理数、相反数、有理数的加法,解题的关键明确它们各自的含义.6.D解析:根据有理数、非负数、倒数与相反数的定义逐一判断即可.详解:A错误,因为有理数包括正数和负数,负数比0小,所以错误;B错误,因为整数包括正整数和负整数和0,负整数比0还小,所以错误;C错误,因为0没有倒数,所以错误;D正确,非负数包括0和正数,正数都比0大,所以本项说法正确.故答案选:D.点睛:本题考查了有理数与相反数的定义,解题的关键是熟练的掌握有理数与相反数的定义.7.D解析:根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).详解:A、没有最小的有理数,故本选项错误;B、一个有理数不是正数就是负数或0,故本选项错误;C、分数是有理数,故本选项错误;D、没有最大的负数,故本选项正确;故选D.点睛:本题考查了有理数,掌握有理数的分类和定义是本题的关键.8.C解析:先化简再根据有理数的定义判断即可得到结果判断.详解:解:有理数为5、0=1、17、1.879,共4个,故选C.点睛:本题考查实数定义和分类,熟练掌握有理数的定义是解题关键.9.A解析:利用正数和负数的定义判断即可.详解:①一个数不是正数就是负数或0,错误;②海拔-155 m表示比海平面低155 m,正确;③负分数是有理数,错误;④零不是最小的数,负数比零小,错误;⑤零是整数,不是正数,错误.故选A.点睛:本题考查了对有理数有关内容的应用,主要考查学生的理解能力和辨析能力,解答此题的关键是掌握正数和负数的定义以及注意0的特殊性.10.D解析:根据有理数包括正数、0、负数进行判断即可.详解:如果a是一个有理数,那−a可能是正数或负数或0,故选D. 点睛:本题考查有理数,解题的关键是掌握有理数.11.D解析:试题解析:-3.2是负分数,故选D.12.A解析:根据有理数的分类和绝对值的非负性进行分析即可.详解:既是整数又是负数中最大的数是-1,故A正确.0既不是正数也不是负数,故B错误.绝对值等于3的数是3和-3,故C错误.0是有理数,但是0没有倒数,故D错误.故选A.点睛:此题考查有理数的定义,解题关键在于掌握各性质定义.13.B解析:根据有理数的概念,判定每个数是否是有理数即可. 详解:有理数有:-1,4.112134,0,227,3.14,共5个无理数有:2点睛:本题主要考查了有理数的概念,熟悉有理数的分类就能正确解出来.14.A解析:根据整数、负数、正分数、正数、负整数的定义分别找出即可得解.详解:解:①整数有:+12,-3,19,0等4个,故①正确;负数有-3,-3.141,|0.01|--. 等3个,故②正确;正分数有+0.4,13+,225⎛⎫- ⎪⎝⎭等3个,故③正确;正数有+12,19,+0.4,13+,225⎛⎫- ⎪⎝⎭等5个,故④错误;负整数有-3,故⑤错误.所以5个结论中正确的有①②③.故选A.点睛:本题考查了有理数的相关概念,正确理解相关概念是解题的关键.15.D解析:根据选项的说法,分别找出反例即可判断出正误.详解:解:A 、若a 是有理数,则-a 一定是负数,说法错误,当a=0时,-a=0,就不是负数,故此选项错误;B 、当a <0时,|a|=-a ,故此选项错误;C 、当a≠0时,a 的倒数是1a ,故此选项错误;D 、a 2一定是非负数,故此选项正确;故选:D .点睛:本题主要考查了有理数的有关概念、绝对值的性质、以及倒数,平方,题目比较基础.16.C解析:据小于零的数是负数,可得负数的个数.解:有理数中573,|5|5, 3.6,,78---=---,负数有73,|5|, 3.6,8-----,共4个,故选:C .点睛:本题考查了正数和负数,小于0的数是负数,注意含绝对值的数要先化简.17.D解析:根据正数大于0,负数小于0,可判断负数个数.详解: 解:6--=-6,-(-5)=5,(-1)2=1,-32=-9, ∴负数有23-,6--,-32,-20%,共4个,故选D .点睛:本题考查了正数与负数,判断负数,要与0比较,比0小的数是负数.注意不能仅看符号.18.A解析:根据有理数的概念直接进行排除即可.详解:227,π,227,共1个. 故选:A .点睛:本题主要考查有理数的概念,正确理解概念是解题的关键.19.C解析:根据正数的定义,即可得到答案.详解:在22-,115,0,19,6-,3这五个数,正数有:115,19,3,一共有3个正数, 故选C .本题主要考查正数的定义,熟练掌握正数的定义,是解题的关键.20.D解析:根据题意,a可能为正数,故-a为负数;a可能为0,则-a为0;a可能为负数,-a为正数,由于题中未说明a是哪一种,故无法判断-a.详解:∵a可正、可负、也可能是0∴选D.点睛:本题考查了有理数的分类,解本题的关键是掌握a不确定正负性,-a就无法确定.。
人教版七年级上学期《1.2.1 有理数》测试卷解析版一.选择题(共14小题)1.下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数【解答】解:A、有理数分为正有理数、负有理数和0,故错误;B、整数和分数统称为有理数,故正确;C、0是有理数,故错误;D、负有理数就是负整数和负分数,故错误;故选:B.2.在,﹣2,+3.5,0,﹣0.7,5,﹣中,负分数有()A.1个B.2个C.3个D.4个【解答】解:在,﹣2,+3.5,0,﹣0.7,5,﹣中,负分数有﹣0.7,﹣,共有2个,故选:B.3.如果m是一个有理数,那么﹣m是()A.负有理数B.非零有理数C.非正有理数D.有理数【解答】解:如果m是一个有理数,那么﹣m是有理数.故选:D.4.下列各数中2,﹣13,π,0.227,2.,3.14,0.1212212221…(相邻两个1之间的2的个数逐次加1).正有理数的个数有()A.1个B.2个C.3个D.4个【解答】解:在2,﹣13,π,0.227,2.,3.14,0.1212212221…(相邻两个1之间的2的个数逐次加1).正有理数有2,0.227,2.,3.14,正有理数的个数有4个.故选:D.5.下列各数:﹣0.2,0,,π,+5中,有理数的个数有()A.1个B.2个C.3个D.4个【解答】解:在﹣0.2,0,,π,+5中,有理数有﹣0.2,0,,+5,有理数的个数有4个.故选:D.6.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个【解答】解:在下列六个数中:0,,,0.101001,﹣10%,5213中,分数有,0.101001,﹣10%共3个.故选:B.7.下列分数中,能化成有限小数的是()A.B.C.D.【解答】解:分母中含有质因数3,所以不能化成有限小数;化简后是,分母中只含有质因数2,所以能化成有限小数;分母中含有质因数3.所以不能化成有限小数;分母中含有质因数3,所以不能化成有限小数;故选:B.8.下面是关于0的一些说法,其中说法正确的个数是()①0是最小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数也不是偶数.A.0B.1C.2D.3【解答】解:①0和正整数都是自然数,所以0是最小的自然数,原说法正确;②0是正数与负数的分界,0不是最小的正数,原说法错误;③0和正数称为非负数,所以0是最小的非负数,原说法正确;④整数按能否被2整除分为奇数与偶数,0属于偶数,所以0不是奇数但是偶数,原说法错误.综上所知,①③正确,故选:C.9.下列四句话中,正确的是()A.﹣1是最小的负整数B.0是最小的整数C.1是最小的正整数D.n是最大的正整数【解答】解:A、﹣1是最大的负整数,故选项错误;B、没有最小的整数,故选项错误;C、1是最小的正整数,故选项正确;D、没有最大的正整数,故选项错误.故选:C.10.数0是()A.最小的有理数B.整数C.正数D.负数【解答】解:有理数分为正有理数,0以及负有理数,0比负有理数大,故选项A不合题意;0是整数,故选项B符合题意;0既不是正数,也不是负数,故选项C、D不合题意.故选:B.11.在﹣1,+7.5,0,﹣,﹣0.9,15中.负分数共有()A.l个B.2个C.3个D.4个【解答】解:负分数是﹣,﹣0.9,共2个.故选:B.12.下列说法正确的是()A.非负有理数就是正有理数B.零既属于正数又属于负数C.正整数和负整数统称为整数D.整数和分数统称为有理数【解答】解:0是非负有理数,但不是正有理数,故A不符合题意;零既不是正数,又不是负数,故B不符合题意;0也是整数,故C不符合题意;整数和分数统称为有理数,这是定义,故D符合题意.故选:D.13.下列说法正确的有()A.正数、负数统称为有理数B.正整数、负整数统称为有理数C.正有理数,负有理数和0统称有理数:D.0不是有理数【解答】解:A、正数和负数及0统称有理数,故不符合题意;B、正整数和负整数及0统称为整数,故不符合题意;C、正有理数,负有理数和0统称有理数;故符合题意;D、0是有理数;故不符合题意;故选:C.14.下列四个数中,是正整数的是()A.﹣20B.πC.D.19【解答】解:A、﹣20是负整数,不符合题意;B、π是无理数,不符合题意;C、是非正整数,不符合题意;D、19是正整数,符合题意.故选:D.二.填空题(共32小题)15.化成小数是0.875.【解答】解:化成小数是0.875.故答案为:0.875.16.若是最简真分数,则a正整数的取值有2个.【解答】解:若是真分数,则a可取的正整数有:1、2、3、4、5;其中2、3、4和6不互质,能约分,不是最简真分数;所以a正整数的取值有2个.故答案为:2.17.下列数中,是整数的有:+1,﹣3,1,0,﹣17+1,﹣3,1,0,2.5,﹣17,【解答】解:下列数中,是整数的有:+1,﹣3,1,0,﹣17.故答案为:+1,﹣3,1,0,﹣17.18.在①﹣42,②+0.080080008…(相邻两个8之间依次增加一个0),③π,④0,⑤120.这5个数中正有理数是①⑤(填序号).【解答】解:在①﹣42,②+0.080080008…(相邻两个8之间依次增加一个0),③π,④0,⑤120.这5个数中正有理数是①⑤.故答案为:①⑤.19.把列数填在相应的大括号里.+15,﹣6,﹣2,﹣0.9,1,0,0.13,﹣4.95.正数集合:{+15,1,0.13};负分数集合:{﹣0.9,﹣4.95};非负数集合:{+15,1,0,0.13}.【解答】解:正数集合:{+15,1,0.13};负分数集合:{﹣0.9,﹣4.95};非负数集合:{+15,1,0,0.13}.故答案为:+15,1,0.13;﹣0.9,﹣4.95;+15,1,0,0.13.20.有理数可分为:正有理数、零、负有理数.【解答】解:有理数包括整数和分数,可以分为正有理数、零、负有理数.故答案为:正有理数,零,负有理数.21.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n 的值为5.【解答】解:正整数有2020,+13,共2个;负数有﹣8,﹣5,﹣6.9,共1个;∴m=2,n=3,∴m+n=2+3=5.故答案为:5.22.在下列各数中:,﹣3,0,﹣0.7,5,其中是非负整数的是0,5.【解答】解:非负整数的有:0,5.故答案为:0,5.23.我们知道无限循环小数都可以化成分数.例如:将0.化成分数时,可设0.,则有6.,10x=6+0.,10x=6+x,解得x=,即0.化成分数是.仿此方法,将0.化成分数是.【解答】解:设0.=x,则63.=100x,100x=x+63,∴99x=63,∴x=;故答案为.24.化简:=﹣9.【解答】解:﹣=﹣9;故答案为﹣9.25.循环小数4.654654…用简便的方法可以写成 4.5.【解答】解:循环小数4.654654…用简便的方法可以写成4.5.故答案为:4.5.26.循环小数8.34074074074…用简便方法写作8.30.【解答】解:循环小数8.34074074074…用简便方法写作8.30.故答案为:8.3027.分子和分母都由10以内的素数组成的真分数有6个.【解答】解:分子和分母都由10以内的素数组成的真分数有,,,,,共6个.故答案为:628.如图,这两个圈分别表示正数集合和整数集合,则它们的重叠部分表示的是正整数集合.【解答】解:由图形可得,它们的重叠部分表示的是正整数集合.故答案为:正整数29.请写出一个负分数:﹣(答案不唯一).【解答】解:负分数:﹣(答案不唯一).故答案为:﹣(答案不唯一).30.在下列数中:﹣,11.1111,95.,0,+2004,﹣2,1.1212212222222,﹣,π.非负整数有0,+2004,有理数有﹣,11.1111,95.,0,+2004,﹣2,1.1212212222222,﹣.【解答】解:在下列数中:﹣,11.1111,95.,0,+2004,﹣2,1.1212212222222,﹣,π.非负整数有0,+2004;有理数有:﹣,11.1111,95.,0,+2004,﹣2,1.1212212222222,﹣,故答案为:0,+2004;:﹣,11.1111,95.,0,+2004,﹣2,1.1212212222222,﹣.31.在有理数1.7,﹣17,0,﹣5,﹣0.001,,2003,3.14,π,﹣1中负分数有﹣5,﹣0.001;自然数有0,2003;整数有﹣17,0,2003,﹣1.【解答】解:在有理数1.7,﹣17,0,﹣5,﹣0.001,,2003,3.14,π,﹣1中负分数有﹣5,﹣0.001;自然数有0,2003;整数有﹣17,0,2003,﹣1.故答案为:﹣5,﹣0.001;0,2003;﹣17,0,2003,﹣1.32.在①18和72;②4和6;③9和5;④22和33中,两个数是互素的数是③.(填写序号)【解答】解:①18和72的公因数有:1、2、3、…,所以18和72不是互质数;②4和6的公因数有:1、2,所以4和6不是互质数;③9和5的公因数只有1,所以9和5是互质数;④22和33的公因数有:1、11,所以22和33不是互质数;故答案为:③.33.已知a是正整数,是假分数,是真分数,那么a是5、6.【解答】解:因为是真分数,是假分数,所以5≤a<7,因为a是正整数,所以a是5或6.故答案为:5、6.34.把,+5,﹣63,0,,,6.9,﹣7,210,0.031,﹣43,﹣10%填在相应的括号内.正数:{+5,2,6.9,210,0.031…};整数:{+5,0,﹣7,210,﹣43…};非负数:{+5,0,2,6.9,210,0.031…};负分数:{﹣,﹣6.3,﹣,﹣10%…}.【解答】解:正数集合:{+5,2,6.9,210,0.031 …};整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,2,6.9,210,0.031 …};负分数集合:{﹣,﹣6.3,﹣,﹣10% …}.故答案为:+5,2,6.9,210,0.031;+5,0,﹣7,210,﹣43;+5,0,2,6.9,210,0.031;﹣,﹣6.3,﹣,﹣10%.35.已知有A,B,C三个数的“家族”:A:{﹣1,3.1,﹣4,6,2.1},B:,C:{2.1,﹣4.2,8,6}.(1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A,B,C三个数的“家族”中的负数写在横线上:﹣1,﹣4,﹣4.2,﹣,.(3)有没有同时属于A,B,C三个数的“家族”的数?若有, 2.1.【解答】解:(1)(2)故答案为:﹣1,﹣4,﹣4.2,﹣,(3)故答案为:2.1.36.在5,﹣2,﹣0.3,,0,,0.5,7,﹣1,102,﹣17这些数中,负分数有3个.【解答】解:在5,﹣2,﹣0.3,,0,,0.5,7,﹣1,102,﹣17这些数中,负分数有﹣0.3,,﹣1,一共3个.故答案为:3.37.若三个互不相等的有理数既可表示为1,a+b,a的形式,又可表示为0,,b的形式,则12a2﹣5ab=17.【解答】解:由分析得a+b=0,b=1,解得a=﹣1,b=1,所以12a2﹣5ab+b2=12×(﹣1)2﹣5×(﹣1)=12+5=17.故答案为:17.38.在有理数0、﹣、﹣5、3.14中,属于分数的个数共有2个.【解答】解:在有理数0、﹣、﹣5、3.14中,属于分数的是﹣,3.14,故答案为:2.39.最小的合数是:4.【解答】解:根据合数的定义可知,在自然数中,最小的合数为4.故答案为:4.40.下面说法正确的有(2)(5)(7)(填序号)(1)正整数和负整数统称有理数;(2)0既不是正数,又不是负数;(3)正数和负数统称有理数;(4)相反数等于它本身的数是不存在的;(5)互为相反数的两个数在数轴上对应的两个点到原点的距离相等;(6)数轴上的点只能表示有理数;(7)若一个数是有理数,则这个数不是分数就是整数.【解答】解:(1)正整数和负整数统称有理数,错误;(2)0既不是正数,又不是负数,正确;(3)正数和负数统称有理数,错误;(4)相反数等于它本身的数是不存在的,错误;(5)互为相反数的两个数在数轴上对应的两个点到原点的距离相等,正确;(6)数轴上的点只能表示有理数,错误;(7)若一个数是有理数,则这个数不是分数就是整数,正确.说法正确的有(2)(5)(7).故答案为:(2)(5)(7).41.在﹣42,+0.01,π,0,120,这5个数中正有理数是+0.01,120.【解答】解:正有理数有:+0.01,120.故答案为:+0.01,120.42.最小的自然数是0.【解答】解:最小的自然数是0,故答案为:0.43.写出三个有理数,使它们满足:①是负数;②是整数;③能被2,3,5整除﹣30,﹣60,﹣120.【解答】解:负数是小于0的数,整数包括正整数、负整数和0,再找到是2,3,5的倍数的数,如﹣30,﹣60,﹣120,答案不唯一.44.正整数,0,负整数统称整数.【解答】解:正整数,0,负整数统称整数.45.写出一个负有理数﹣1.【解答】解:所写的数只要小于0即可.例如﹣1.答案不唯一.46.写出一个是分数但不是正数的数﹣(答案不唯一).【解答】解:根据题意,该分数小于0;例如:﹣(答案不唯一,只要是负分数即可).三.解答题(共4小题)47.如图,两个圈分别表示正数集合和整数集合,请将3,0,,﹣3,﹣5,3.4中符合条件的数填入圈中.【解答】解:如图所示:48.把下列各数分别填在相应的括号内:﹣0.1,0,+2,,﹣3.整数:{0,+2,﹣3}分数:{﹣0.1,}正数:{+2,}负数:{﹣0.1,﹣3}有理数:{﹣0.1,0,+2,,﹣3}【解答】解:整数:{0,+2,﹣3}分数:{﹣0.1,}正数:{+2,}负数:{﹣0.1,﹣3}有理数:{﹣0.1,0,+2,,﹣3},故答案为:0,+2,﹣3;﹣0.1,;+2,;﹣0.1,﹣3;﹣0.1,0,+2,,﹣3.49.把下列各数填入相应的集合中:﹣2,0,7,﹣0.08,﹣53,3.14,+22,.正整数集合:{7,+22…}分数集合:{,﹣0.08,3.14,…}负有理数集合:{,﹣0.08,﹣53…}【解答】解:正整数集合:{7,+22…}分数集合:{,﹣0.08,3.14,…}负有理数集合:{,﹣0.08,﹣53…},故答案为:7,+22;,﹣0.08,3.14,.50.把下列各数填入表示它所在的数集的集合里:3,﹣0.2,0,0.12,﹣,﹣500,1,﹣3.1415926,﹣15,0.3【解答】解:.。
1.2.1有理数一、单项选择题(共8小题)1.在下列数+1,6.5,−14,0,722,−5中,属于整数的有( )A.1个B.2个C.3个D.4个2.下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.正整数集合与负整数集合合在一起就构成整数集合C.有限小数和无限循环小数不是有理数D.正数、负数和零统称为有理数3.下列不是有理数的数是( )A.−3.14B.0C.73D.4.下列各数是负有理数的是( )A.−13B.2C.3D.5.关于“0”的说法,正确的是( )A.是整数,也是正数B.是整数,但不是正数C.不是整数,是正数D.是整数,但不是有理数6.下列说法中,正确的是( )A.正分数和负分数统称为分数B.0既是整数,也是负整数C.非负整数即为正整数D.在有理数中,不是负数就是正数7.给出下列说法:①0是整数;②−213是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的有()A.1个B.2个C.3个D.4个8.在−8,2014,313,0,−5,+13,−14,−7.2中,正整数和负分数共有()A.3个B.4个C.5个D.6个二、填空题(本大题共5小题)9.在有理数0,−23,3.14,−5中,正有理数是________.10.正整数、正分数构成________集合;负整数、负分数构成________集合.11.写出一个是整数而不是正数的数______.12.已知下列各数:−3.14,24,+27,−712,516,−0.01,0,其中正数为,非正数为,整数有个.13.学习了有理数的相关内容后,张老师提出了这样一个问题:“在8,−0.5,+13,0,−3.7这五个有理数中,非负数有哪几个?”同学们经过思考后,小明举手回答说:“其中的非负数只有8和+13这两个.”你认为小明的回答是否正确:______(填“正确”或“不正确”),理由是______:.三、解答题(本大题共2小题)14.如图,将下面一组数填入相应的圈内:−12,−7,+2.8,−90,−3.5,913,0,4.15.在小学我们学习了偶数0,2,4,6,8,⋯,以及奇数1,3,5,7,9,⋯,现在我们学习了负数,也知道了负偶数与负奇数,负偶数−2,−4,−6,−8,⋯,负奇数−1,−3,−5,−7,⋯,下面我们将这些负偶数与负奇数排列(如图):第一列第二列第三列第四列第五列观察它们的规律,并求出−101在哪一列.答案一、选择题1-8DADAB ACB二、填空题9、3.1410、正有理数;负有理数11、0(答案不唯一)12、24,+27,516−3.14,−712,−0.01,0313、不正确,非负数包括0和正数三、解答题14、14、解:负数集合与整数集合相交的部分是负整数,整数集合与正数集合相交的部分是正整数,因此填法分下:15、以8个数作为一个循环段,则第97个数在第二列,第100个数在第五列,所以第101个数在第四列,即−101在第四列。
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-25901.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)1258。
2021-2022学年度人教版七年级数学上册练习二1.2.1 有理数-有理数的概念及分类1.在数-23,5,23,0,4,35,5.2中,是整数的_____;非正数集合____2.给出下列说法:①0可以表示没有,也可以表示具体的意义;②0是最小的正整数;③0是最小的有理数;④0既是负数又是正数;⑤0是最小的自然数.其中正确的序号是______.3.0既不是正数,也不是负数,但是整数.(____)4._______统称为自然数.5.有理数32215,,0,0.15,30,12.8,,20,6085---+-中,非负数的个数有____个.6.在有理数 +8.8、4-、0.2-、15-、 0、 60、307-、22--中,非正整数有______个.7.在下列各数中:12,-3,0,-0.7,5,其中是非负整数的是_____.8.有下列各数10,2(2)-,13-,0,(8)--,|2|--,24-,|4|-,其中非负整数有__________个.9.既不是正数也不是负数的数是_____10.有六个数:5,0,132,0.3-,14-,π-,其中分数有a个,非负整数有b个,有理数有c个,则a b c+-=______.11.在,3.14,0.161616…,中,分数有_____个.12.在-3.14,,0,π中,有理数有()个.A.4 B.3 C.2 D.113.在0,-3,5,,π,2.6,1.212 112 111 211 112…七个数中,有理数是_______.14.在有理数﹣0.2,0,132,﹣5中,整数有_____.15.有理数中,最大的负整数是____.16.d 是最大的负整数,e 是最小的正整数,f 的相反数等于它本身,则d e f ++=______.17.在227,(1)--,282--,-3,23-,312⎛⎫-- ⎪⎝⎭,0中,有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m n k t --+=________.18.在实数2π-,227,3.14,0.10101010……中,有理数有__________个.19.下列各数:﹣1,2π,1.01001…(每两个1之间依次多一个0),0,227,3.14,其中有理数有_____个.20.把下列各数的序号填在相应的数集内:1 , -35 , +3.2, 0, -6.5, +108, -4, -6,(1)正数集合 …}(2)整数集合 …}(3)负分数集合 …}(4)非负整数集合 …}参考答案1.-23,5,0,4, -23,0解析:整数和分数统称为有理数,整数包含正整数、0、负整数;比0大的数是正数,非正数即0与负数,据此解题.详解:解:在数-23,5,23,0,4,35,5.2中,整数的有:-23,5,0,4;非正数的有:-23,0,故答案为:-23,5,0,4;-23,0.点睛:本题考查有理数的分类、带“非”字的有理数等知识,是重要考点,难度较易,掌握相关知识是解题关键.2.①⑤解析:根据与零相关的概念进行判断,即可得到答案.详解:因为0不仅可以表示“没有”而且还是正数和负数的分界线,所以0可以表示没有,也可以表示具体的意义,故①正确;0不是正整数,所以②错误;负数也是有理数,且负数都比0小,所以③错误;0既不是负数又不是正数,所以④错误;0是最小的自然数,所以⑤正确;故答案为①⑤.点睛:本题考查与零相关的概念,解题的关键是熟练掌握与零相关的概念.3.对解析:根据0的意义,即可判定.详解:0既不是正数,也不是负数,但是整数,正确.点睛:此题主要考查对“0”的理解,熟练掌握,即可解题.4.正整数和零解析:根据自然数的定义可以得到解答.详解:解:∵自然数包括0和正整数,正整数和零统称为自然数,故答案为:正整数和零.点睛:本题考查自然数的定义,了解自然数不但包括正整数,还包括0是解题的关键.5.5解析:非负数指0和正数,则2215,0,0.15,,205+是非负数,共5个。
(暑假一日一练)2018年七年级数学上册第1章有理数1-2-1启埋数习题(新版)新人教版学校:___________ 姓名:___________ 班级: ____________一.选择题(共15小题)1.卜列四个数中,是正整数的是()A. - 1B. 0 C D. 132.最小的正整数是()A. 0B. 1C. - 1D. /、存在3.卜列说法正确的是()A. 一个数前面加上”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则-a不一定是负数D.零既不是正数也不是负数4.最小的止后埋数是()A. 0B. 1C. - 1D. /、存在5.在0, 2.1 , - 4, - 3.2这四个数中,是负分数的是()A. 0 B, 2.1 C. - 4 D. - 3.26.在卜'列各数:-,+1, 6.7, - (- 3) , 0, , -5, 25% 中,属于整数而(wA. 2个B. 3个C 4个D. 5个7.如果对有理数a, b使等式a b=a?b+1成立,那么这对有理数a, b叫做“共生有理数对",记为(a, b),根据上述定义,下列四对有理数中不是“共生后埋数对”的是()A. (3,)B. (2,)C. (5,)D. (—2,一)璃般8.如果mlb^个有理数,那么m是()A.正数B. 0C.负数D.以上二者情况都启可能9.下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为启埋数10.卜列说法不正确的是()A.0既不是正数,也不是负数B.0的绝对值是0C.一个后埋数不是整数就是分数D.1是绝对值最小的正数11.在兀,-2, 0.3, - , 0.1010010001这五个数中,有理数的个数有22()用A. 1个B. 2个C 3个D. 4个―-SmdI — u - o 〜一■P- g 0 T- l-or -― ―― ——of。
第 1 页 共 2 页
第一章 有理数
1.2 有理数
1.2.1 有理数
1、下列不是正有理数的是( )
A、-3.14 B、0 C、37 D、3
2、既是分数又是正数的是( )
A、+2 B、-314 C、0 D、2.3
3、下列说法正确的是( )
A、正数、0、负数统称为有理数 B、分数和整数统称为有理数
C、正有理数、负有理数统称为有理数 D、以上都不对
4、-a一定是( )
A、正数 B、负数 C、正数或负数 D、正数或零或负数
5、下列说法中,错误的有( )
①742是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;
⑤0是最小的有理数;⑥-1是最小的负整数。
A、1个 B、2个 C、3个 D、4个
6、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、
______和______统称为有理数; ______和______统称为非负数;______和______统称为
非正数;______和______统称为非正整数;______和______统称为非负整数.
7、把下列各数分别填入相应的大括号内:
24,10,213,03.0,17
13
,0,1415.3,5.3,7
自然数集合{ …};
整数集合 { …};
正分数集合{ …};
非正数集合{ …};
8、简答题:
(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?
(3)有比-1大的负整数吗?有比1小的正整数吗?
第 2 页 共 2 页
(4)写出三个大于-105小于-100的有理数。
参考答案
1、A. 2、D. 3、B. 4、D 5、C
6、正整数、零、负整数;正分数、负分数;
正整数、零、负整数、正分数、负分数;
正有理数、零;负有理数、零;负整数、零;正整数、零;有理数;无理数。
7、0,10;-7,0,10,24;03.0,1713,5.3;24,213,1415.3,7;
24,32.0,10,213,03.0,17
13
,0,1415.3,5.3,7
。
8、(1)有,如-0.25;(2)有。-2;-1,0,1;(3)没有,没有;(4)-104,-103,-103.5.