高中物理计算题特点与提分策略微练习题
- 格式:pdf
- 大小:398.48 KB
- 文档页数:6
高考物理新物理方法知识点技巧及练习题附答案(3)一、选择题1.在物理学的重大发现中,科学家总结出了许多物理学方法,如理想实验法、控制变量法、极限思想法、建立物理模型法、等效替代法等。
以下关于物理学研究方法的叙述正确的是()A.在探究加速度、力和质量三者之间的关系时,先保持质量不变研究加速度与力的关系,再保持力不变研究加速度与质量的关系,该探究运用了控制变量法B.根据速度的定义式,当Δt非常小时,就可以表示物体在t时刻的瞬时速度,该定义运用了建立物理模型法C.合力和分力的概念运用了极限法D.在不需要考虑物体本身的大小和形状时,用质点来代表物体的方法叫等效替代法2.如图所示,粗糙的水平地面上有三块材料完全相同的木块A、B、C,质量均为m,B、C之间用轻质细绳连接.现用一水平恒力F作用在C上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一块上面,系统仍加速运动,且始终没有相对滑动.则在粘上橡皮泥并达到稳定后,下列说法正确的是()A.若粘在C木块上面,绳的拉力增大,A、B间摩擦力减小B.若粘在A木块上面,绳的拉力减小,A、B间摩擦力不变C.若粘在B木块上面,绳的拉力增大,A、B间摩擦力增大D.若粘在C木块上面,绳的拉力和A、B间摩擦力都减小3.在物理学的重大发现中科学家们创造出了许多物理学方法和思路,以下关于所用研究方法或思路的叙述正确的是()A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度定义式xvt∆=∆,当△t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想方法C.伽利略对落体问题的研究思路是:问题→猜想→实验验证→数学推理→合理外推→得出结论D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了类比法4.如图所示,A、B、C 三物块叠放并处于静止状态,水平地面光滑其他接触面粗糙,以下受力分析正确的是( )A.A 与墙面间存在压力B.A 与墙面间存在静摩擦力C.A 物块共受 3 个力作用D.B 物块共受 5 个力作用5.如图所示,质量为M、半径为R的半球形匀质物体A放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m、半径为r的光滑匀质球B,则A.A对地面的摩擦力方向向左B.B对A的压力大小为R rmg RC.B对A的压力大小为mgD.细线对小球的拉力大小为r mg R6.如图所示,在水平粗糙横杆上,有一质量为m的小圆环A,用一细线悬吊一个质量为m的球B。
做高中物理题的技巧(含五篇)第一篇:做高中物理题的技巧高中物理比较难,很多人都学不会。
物理难并不是计算过程有多复杂,而是思维过程很抽象,很多人都不理解物理所用到的思想方法,看到一道题目根本不知如何入手。
那么接下来给大家分享一些关于做高中物理题的技巧,希望对大家有所帮助。
做高中物理题的技巧①筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。
②特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。
它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。
③极限分析法:将某些物理量取极限,从而得出结论的方法。
④直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。
⑤观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。
⑥熟练使用整体法与隔离法:分析多个对象时,一般要采取先整体后局部的方法。
物理实验题的做题技巧:(1)实验题一般采用填空题或作图题的形式出现。
作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。
②对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。
③对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。
(2)常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常规实验题时,这种题目考得比较细,要在细、实、全上下足功夫。
高中物理速度选择器和回旋加速器解题技巧(超强)及练习题一、速度选择器和回旋加速器1.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
若只撤去电场,离子流击中屏上a 点;若只撤去磁场,离子流击中屏上b 点。
求ab 间距离。
(a ,b 两点图中未画出)【答案】(1)电场方向竖直向下;2×107m/s ;(2)0.53m 【解析】 【分析】 【详解】(1)电场方向竖直向下,与磁场构成粒子速度选择器,离子运动不偏转,根据平衡条件有qE qvB =解得离子流的速度为Ev B==2×107m/s (2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m R=解得mvR qB==0.4m 离子离开磁场区边界时,偏转角为θ,根据几何关系有1sin 2L R θ== 解得30θ=o在磁场中的运动如图1所示偏离距离1cos y R R θ=-=0.054m离开磁场后离子做匀速直线运动,总的偏离距离为1tan y y D θ=+=0.28m若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间L t v≤加速度qE a m=偏转角为θ',如图2所示则21tan 2y v qEL vmv θ'=== 偏离距离为2212y at ==0.05m 离开电场后离子做匀速直线运动,总的偏离距离2tan y y D θ''=+=0.25m所以a 、b 间的距离ab =y +y '=0.53m2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=o故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =o联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB== 由几何知识可得022cos 452mv AC R R qB===o在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.3.如图所示,两平行金属板水平放置,间距为d ,两极板接在电压可调的电源上。
高中奥林匹克物理竞赛解题方法微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
赛题精讲例1:如图3—1所示,一个身高为h的人在灯以悟空速度v沿水平直线行走。
设灯距地面高为H,求证人影的顶端C点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB处,再经过一微小过程△t(△t→0),则人由AB到达A′B′,人影顶端C点到达C′点,由于△S AA′=v△t则人影顶端的移动速度可见v c与所取时间△t的长短无关,所以人影的顶端C点做匀速直线运动.例2:如图3—2所示,一个半径为R的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足:由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△Tθ,所以整个铁链对A端的拉力是各段上△Tθ的和,即观察的意义,见图3—2—乙,由于△θ很小,所以CD⊥OC,∠OCE=θ△Lcosθ表示△L在竖直方向上的投影△R,所以可得铁链A端受的拉力例3:某行星围绕太阳C沿圆弧轨道运行,它的近日点A离太阳的距离为a,行星经过近日点A时的速度为,行星的远日点B离开太阳的距离为b,如图3—3所示,求它经过远日点B时的速度的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A时又向前运动了极短的时间△t,由于时间极短可以认为行星在△t时间内做匀速圆周运动,线速度为,半径为a,可以得到行星在△t时间内扫过的面积同理,设行星在经过远日点B时也运动了相同的极短时间△t,则也有由开普勒第二定律可知:S a=S b即得此题也可用对称法求解.例4:如图3—4所示,长为L的船静止在平静的水面上,立于船头的人质量为m,船的质量为M,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t时间内为匀速运动,则可计算出船的位移.设v1、v2分别是人和船在任何一时刻的速率,则有①两边同时乘以一个极短的时间△t,有②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为,由此将②式化为③把所有的元位移分别相加有④即 ms1=Ms2⑤此式即为质心不变原理. 其中s1、s2分别为全过程中人和船对地位移的大小,又因为 L=s1+s2⑥由⑤、⑥两式得船的位移例5:半径为R的光滑球固定在水平桌面上,有一质量为M的圆环状均匀弹性绳圈,原长为πR,且弹性绳圈的劲度系数为k,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m作为研究对象,进行受力分析.但是△m受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m所对的圆心角是△θ,则每一小段的质量△m在该平面上受拉力F的作用,合力为因为当θ很小时,所以再看正视图3—5—乙,△m受重力△mg,支持力N,二力的合力与T平衡.即现在弹性绳圈的半径为所以因此T= ①、②联立,,解得弹性绳圈的张力为:设弹性绳圈的伸长量为x则所以绳圈的劲度系数为:例6:一质量为M、均匀分布的圆环,其半径为r,几何轴与水平面垂直,若它能经受的最大张力为T,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mrω2,当ω一定时,r越大,向心力越大,所以要想求最大张力T所对应的角速度ω,r应取最大值.如图3—6所示,在圆环上取一小段△L,对应的圆心角为△θ,其质量可表示为,受圆环对它的张力为T,则同上例分析可得因为△θ很小,所以,即解得最大角速度例7:一根质量为M,长度为L的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t时刻落在地面上的链条长为x,未到达地面部分链条的速度为v,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t时刻起取很小一段时间△t,在△t内又有△M=ρ△x落到地面上静止.地面对△M作用的冲量为因为所以解得冲力:,其中就是t时刻链条的速度v,故链条在t时刻的速度v即为链条下落长为x时的即时速度,即v2=2g x,代入F的表达式中,得此即t时刻链对地面的作用力,也就是t时刻链条对地面的冲力.所以在t时刻链条对地面的总压力为例8:一根均匀柔软的绳长为L,质量为m,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x时,左边绳长为,速度,右边绳长为又经过一段很短的时间△t以后,左边绳子又有长度的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T和它本身的重力为绳子的线密度),根据动量定理,设向上方向为正由于△t取得很小,因此这一小段绳子的重力相对于T来说是很小的,可以忽略,所以有因此钉子对右边绳端的作用力为例9:图3—9中,半径为R的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L,△L所对应的圆心角为△θ,如图3—9—甲所示,绳元△L两端的张力均为T,绳元所受圆盘法向支持力为△N,因细绳质量可忽略,法向合力为零,则由平衡条件得:当△θ很小时,∴△N=T△θ又因为△L=R△θ则绳所受法向支持力线密度为①以M、m分别为研究对象,根据牛顿定律有 Mg-T=Ma ②T-mg=m a③由②、③解得:将④式代入①式得:例10:粗细均匀质量分布也均匀的半径为分别为R和r的两圆环相切.若在切点放一质点m,恰使两边圆环对m的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P、Q两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元其对应的质量分别为由于△α很小,故△m1、△m2与m的距离可以认为分别是所以△m1、△m2与m的万有引力分别为由于α具有任意性,若△F1与△F2的合力为零,则两圆环对m的引力的合力也为零,即解得大小圆环的线密度之比为:例11:一枚质量为M的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t时间内喷出的气体为研究对象,设火箭推气体的力为F,根据动量定理,有F△t=△m·v因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg即 Mg·△t=△m·v△t=△m·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为:所以发动机的功率例12:如图3—11所示,小环O和O′分别套在不动的竖直杆AB和A′B′上,一根不可伸长的绳子穿过环O′,绳的两端分别系在A′点和O环上,设环O′以恒定速度v向下运动,求当∠AOO′=α时,环O的速度.解析:O、O′之间的速度关系与O、O′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t,O′环移到C′,O环移到C,自C′与C分别作为O′O的垂线C′D′和CD,从图中看出.因此OC+O′C′= ①因△α极小,所以EC′≈ED′,EC≈ED,从而OD+O′D′≈OO′-CC′ ②由于绳子总长度不变,故 OO′-CC′=O′C′ ③由以上三式可得:OC+O′C′= 即等式两边同除以△t得环O的速度为例13:在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度,水银的表面张力系数当圆饼的半径很大时,试估算其厚度h的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h的简单函数,而且支持力N和重力mg都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x,高为h的体积元,,如图3—12—甲所示,该体积元受重力G、液体内部作用在面积△x·h上的压力F,,还有上表面分界线上的张力F1=σ△x和下表面分界线上的张力F2=σ△x.作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:即解得:由于故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h的估算值为3×10-3m或4×10-3m.例14:把一个容器内的空气抽出一些,压强降为p,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示.问空气最初以多大初速度冲进容器?(外界空气压强为p0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L,因△L很小,所以其质量△m进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p0-p)S ①对进入的△m气体,由动能定理得:②而△m=ρS△L联立①、②、③式可得:最初中进容器的空气速度例15:电量Q均匀分布在半径为R的圆环上(如图3—14所示),求在圆环轴线上距圆心O点为x处的P点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解.选电荷元它在P点产生的电场的场强的x分量为:根据对称性由此可见,此带电圆环在轴线P点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B的均匀磁场中,磁场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力.当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关.由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小.在圆环上取△L=R△θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流,电流元I△L所受的安培力因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,当△θ很小时,解得圆环中张力为例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量为m的金属杆,导轨间距为L,导轨的一端连接一阻值为R的电阻,其他电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面.现给金属杆一个水平向右的初速度v0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析:水平地从a向b看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v,取一极短时间△t,发生了一段极小的位移△x,在△t时间内,磁通量的变化为△φ △φ=BL△x金属杆受到安培力为由于时间极短,可以认为F安为恒力,选向右为正方向,在△t时间内,安培力F安的冲量为:对所有的位移求和,可得安培力的总冲量为①其中x为杆运动的最大距离,对金属杆用动量定理可得 I=0-mV0②由①、②两式得:例18:如图3—17所示,电源的电动热为E,电容器的电容为C,S是单刀双掷开关,MN、PQ是两根位于同一水平面上的平行光滑长导轨,它们的电阻可以忽略不计,两导轨间距为L,导轨处在磁感应强度为B的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向.L1和L2是两根横放在导轨上的导体小棒,质量分别为m1和m2,且.它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上.现将开关S先合向1,然后合向2.求:(1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计)解析:当开关S先合上1时,电源给电容器充电,当开关S再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v,则分别为L1、L2为研究对象得:①同理得:②由①、②得:又因为所以而Q=CE q=CU′=CBL v所以解得小棒的最终速度(2)因为总能量守恒,所以即产生的热量针对训练1.某地强风的风速为v,设空气的密度为ρ,如果将通过横截面积为S的风的动能全部转化为电能,则其电功率为多少?2.如图3—19所示,山高为H,山顶A和水平面上B点的水平距离为s.现在修一条冰道ACB,其中AC为斜面,冰道光滑,物体从A点由静止释放,用最短时间经C到B,不计过C点的能量损失.问AC和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C端以速度v匀速收绳从而拉动低处的物体M水平前进,当绳AO段也水平恰成α角时,物体M的速度多大?4,如图3—22所示,质量相等的两个小球A和B通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C球的两绳的夹角为θ,设A、B两球此时下落的速度为v,则C球上升的速度多大?5.质量为M的平板小车在光滑的水平面上以v0向左匀速运动,一质量为m的小球从高h处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m,碰撞弹力N>>g,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是()A. B.0 C. D.v06.半径为R的刚性球固定在水平桌面上.有一质量为M的圆环状均匀弹性细绳圈,原长2πa,a=R/2,绳圈的弹性系数为k(绳伸长s时,绳中弹性张力为ks).将绳圈从球的正上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb,b=,求弹性系数k;(用M、R、g表示,g为重力加速度)(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A点运动到B点过程中F做的功W F.8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1.0mA的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为 .假设分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1: n2 .9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN垂直于这两直导线,如图所示.LN的长度为2R.试求在LN的中点O处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R的均匀带电半球面,电荷面密度为δ,求球心O处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a<L),质量为m的正方形闭合线框以初速v0垂直磁场边界滑过磁场后,速度变为v(v<v0),求:(1)线框在这过程中产生的热量Q;(2)线框完全进入磁场后的速度v′.15.如图3—31所示,在离水平地面h高的平台上有一相距L的光滑轨道,左端接有已充电的电容器,电容为C,充电后两端电压为U1.轨道平面处于垂直向上的磁感应强度为B的匀强磁场中.在轨道右端放一质量为m的金属棒,当闭合S,棒离开轨道后电容器的两极电压变为U2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B,一光滑导轨竖直放置,导轨上接有一电容为C的电容器,并套一可自由滑动的金属棒,质量为m,释放后,求金属棒的加速度a.答案:1. 2.θ=60° 3. 4. 5.CD6.(1)(2)绳圈掉地上,长度为原长 7.8.6.25×1015,2:1 9. 10. 11. 12.13. 14. 15. 16.。
高一物理运动学综合练习--提高说明:高一的物理运动学是整个高中的基础,是月考、期中期末的必考知识,其中加速度、自由落体也是高考常考题。
为了更好适应各地情况,本练习设基础部分和提高部分,两者共同使用就能在月考期中期末取得满意的分数。
当然,本份练习同样适合高三的同学复习。
注:物理题目图较多。
一、选择题(每空3 分,共24 分)1、下列诗句描绘的情景中,含有以流水为参考系的是( )A.人在桥上走,桥流水不流 B.飞流直下三千尺,疑是银河落九天C.白日依山尽,黄河入海流 D.孤帆远影碧空尽,唯见长江天际流2、掷出铅球不计空气阻力,下列对铅球运动性质的说法中正确的是()A.若水平抛出是匀变速曲线运动,若斜向上抛出则不是匀变速曲线运动B.加速度大小和方向均改变,是非匀变速曲线运动C.加速度大小不变,方向改变,是非匀变速曲线运动D.加速度的大小和方向均不变,是匀变速曲线运动3、中国北方航空公司某驾客机安全、准时降落在规定跑道上,假设该客机停止运动之前在跑道上一直做匀减速直线运动,客机在跑道上滑行距离为s,从降落到停下所需时间为t,由此可知客机降落时的速度为()A. B. C. D.无法确定4、如图所示为某校学生开展无线电定位“搜狐”比赛,甲、乙两人从O点同时出发,并同时到达A点搜到狐狸,两人的搜狐路径已在图中标出,则( )A. 甲的平均速度大于乙的平均速度B. 两人运动的平均速度相等C. 甲的位移大于乙的位移D. 甲的路程等于乙的路程5、某驾驶员手册规定具有良好刹车的汽车在以80km/h的速度行驶时,可以在56m的距离内被刹住,在以48km/h的速率行驶时,可以在24m的距离内被刹住,假设对于这两种速率,驾驶员所允许的反应时间(在反应时间内驾驶员来不及使用刹车,车速不变)与刹车的加速度都相同,则允许驾驶员的反应时间约等于()DA.0.5s B.0.7s C.1.5s D.0.2s E6、距地面高5 m的水平直轨道上A、B两点相距2 m,在B点用细线悬挂一小球,离地高度为h,如图10所示。
高中物理快速提分十法则高考物理是理综中偏难的科目,其中选择题和应用题是考试主要题型,在平时的训练中,若把握好这两种类题,物理拿高分并不困难,下面给大家分享一些关于高中物理快速提分十法则,希望对大家有所帮助。
高中物理快速提分十法则一、独立做题要独立地(指不依赖他人),保质保量地做一些题。
题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。
任何人学习数理化不经过这一关是学不好的。
独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。
二、物理过程要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。
题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器,以显示几何关系。
画图能够变抽象思维为形象思维,更精确地掌握物理过程。
有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。
三、上课上课要认真听讲,不走神尽量少走神不要自以为是,要虚心向老师学习。
不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。
尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。
入门以后,有了一定的基础,则允许有自己一定的自主学习间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。
四、笔记本(纠错本)上课以听讲为主,还要有一个笔记本,有些东西要记下来。
知识结构、的解题方法、的例题、不太懂的地方等等都要记下来。
课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。
笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。
辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。
五、学习资料学习资料要保存好,既要作好分类工作,还要好记号。
学习资料的分类包括练习题、试卷、实验报告等等。
高中物理牛顿运动定律技巧(很有用)及练习题及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
【解析】 【分析】 【详解】(1)小球离开台面到达A 点的过程做平抛运动,故有02 3m/s tan y v ghv θ=== 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为201 4.5J 2p E mv ==; (2)小球在A 处的速度为5m/s cos A v v θ== 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得221111sin cos 22C A mgL mgL mv mv θμθ-=- 解得()212sin cos 10m/s C A v v gL θμθ=+-=;(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;那么对小球能通过最高点时,在最高点应用牛顿第二定律可得21v mg m R≤;对小球从C 到最高点应用机械能守恒可得2211152222C mv mgR mv mgR =+≥ 解得202m 5Cv R g<≤=;对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得212C mv mgh mgR =≤ 解得2=5m 2C v R g≥;故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=Hx由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h 3=1.8m②当离传送带高度为h 4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m5.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
2024届山西高三第二次学业质量评价理科综合试题-高中高效提分物理(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题“新冠肺炎”席卷全球,某汽车厂决定改建生产线转产口罩,原生产线工作电压为380V,而口罩机工作电压为220V。
现在需要变压器来进行降压,若变压器原线圈匝数为1900匝,则副线圈匝数为( )A.110B.220C.1100D.2200第(2)题在反应堆中,为了使中子的速度减慢,可选用作为中子减速剂的物质是( ).A.氢B.铀C.镉D.水第(3)题在没有外界影响的情况下,密闭容器内的理想气体静置足够长时间后,该气体( )A.分子的无规则运动停息下来B.分子的速度保持不变C.分子的平均动能保持不变D.每个分子的速度大小均相等第(4)题据报道:在2020年底,我国探月“绕落回”三部曲的第三乐章即将奏响,如图所示的嫦娥五号探测器将奔赴广寒宫,执行全球自1976年以来的首次月球取样返回任务。
但在1998年1月发射的“月球勘探者”号空间探测器运用科技手段对月球进行近距离勘探,在月球重力分布、磁场分布及元素测定等方面取得了一些成果。
探测器在一些环形山中发现了质量密集区,当它飞越这些区域时,通过地面的大口径射电望远镜观察,发现探测器的轨道参数发生微小变化。
此变化是( )A.半径变大,速率变大B.半径变小,速率变大C.半径变大,速率变小D.半径变小,速率变小第(5)题光镊技术可以用来捕获、操控微小粒子(目前已达微米级).激光经透镜后会聚成强聚焦光斑,微粒一旦落入会聚光的区域内,就有移向光斑中心的可能,从而被捕获.由于光的作用使微粒具有势能,光斑形成了一个类似于“陷阱”的能量势阱,光斑中心为势能的最低点.结合以上信息可知,关于利用光镊捕获一个微小粒子的情况,下列说法正确的是A.微粒被捕获时,受到激光的作用力一定沿着激光传播的方向B.微粒被捕获时,受到激光的作用力一定垂直激光传播的方向C.微粒向光斑中心移动时,在能量势阱中对应的势能可能增大D.被捕获的微粒在获得较大的速度之后,有可能逃离能量势阱第(6)题一列水波穿过小孔产生衍射,衍射后的水波().A.波长增大B.周期增大C.频率减小D.振幅减小第(7)题天然放射现象通常会放出三种射线,即α、β、γ射线,关于这三种射线以下说法正确的是( )A.云室中α射线径迹长而粗,这是因为α射线具有较强的穿透能力B.β射线是来源于原子内层电子,很容易穿透黑纸,也能穿透几毫米厚的铝板C.γ射线是能量很高的电磁波,在电场和磁场中都不偏转D.用β射线照射带正电的验电器,则验电器的张角会变大第(8)题2021年11月3日上午,清华大学王大中院士在北京人民大会堂被授于2020年度国家最高科学技术奖,王大中院士领导清华大学核能研究团队以提高核能安全性为主要学术理念,成功走出了一条以固有安全为主要特征的先进核能技术的发展之路。