三角函数
- 格式:doc
- 大小:404.00 KB
- 文档页数:5
三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。
下面为大家带来一份三角函数公式大全。
一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。
即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。
2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。
即 cosA = b / c (其中 b 为 A 的邻边)。
3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。
即 tanA = a / b 。
二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。
2、商数关系:tanA = sinA / cosA 。
三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。
2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。
3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。
4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。
5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。
四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。
2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。
3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。
4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。
三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。
2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。
2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。
2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。
2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。
2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。
2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数大全定义式
函数关系
倒数关系:①
;②
;③
商数关系:
①;
②
平方关系:
①;
②;
③
诱导公式
公式一:设为任意角,终边相同的角的同一三角函数的值相等:
公式二:设为任意角,与的三角函数值之间的关系:
公式三:任意角与的三角函数值之间的关系:
公式四:与的三角函数值之间的关系:
公式五:与的三角函数值之间的关系:
公式六:及与的三角函数值之间的关系:
记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
三角函数的基本概念三角函数是数学中重要的概念之一,它们是描述角度与三角形之间关系的函数。
在数学和物理学中,三角函数广泛应用于各种领域,包括几何、导数、微积分、辐射传输等。
一、正弦函数正弦函数是最基本的三角函数之一,通常用sin表示。
对于任意角度θ,正弦函数的值定义为对边与斜边的比值:sin(θ) = 对边/斜边。
正弦函数的定义域为整个实数集,值域为[-1,1]。
二、余弦函数余弦函数是另一种常见的三角函数,通常用cos表示。
对于任意角度θ,余弦函数的值定义为邻边与斜边的比值:cos(θ) = 邻边/斜边。
余弦函数的定义域为整个实数集,值域也为[-1,1]。
三、正切函数正切函数是正弦函数与余弦函数的比值,通常用tan表示。
对于任意角度θ,正切函数的值定义为对边与邻边的比值:tan(θ) = 对边/邻边。
正切函数的定义域为除了90度和270度的整数倍角之外的所有实数,值域为整个实数集。
四、余切函数余切函数是余弦函数与正弦函数的比值,通常用cot表示。
对于任意角度θ,余切函数的值定义为邻边与对边的比值:cot(θ) = 邻边/对边。
余切函数的定义域为除了0度和180度的整数倍角之外的所有实数,值域为整个实数集。
五、正割函数正割函数是正弦函数的倒数,通常用sec表示。
对于任意角度θ,正割函数的值定义为斜边与邻边的比值:sec(θ) = 斜边/邻边。
正割函数的定义域为除了90度和270度的整数倍角之外的所有实数,值域为(-∞,-1]和[1,+∞)。
六、余割函数余割函数是余弦函数的倒数,通常用csc表示。
对于任意角度θ,余割函数的值定义为斜边与对边的比值:csc(θ) = 斜边/对边。
余割函数的定义域为除了0度和180度的整数倍角之外的所有实数,值域为(-∞,-1]和[1,+∞)。
三角函数除了以上六种基本函数外,还有诸如反正弦函数、反余弦函数、反正切函数等反三角函数,它们的定义域和值域不同于基本三角函数。
三角函数在数学上有丰富的性质和运算规律,如正弦函数和余弦函数的和差公式、倍角公式等,这些规律在解决实际问题时起着重要的作用。
注:正切函数、余切函数曾被写作、现已不用这种写法变化规律正弦值在随角度增大(减小)而增大(减小),在随角度增大(减小)而减小(增大);余弦值在随角度增大(减小)而增大(减小),在随角度增大(减小)而减小(增大);正切值在随角度增大(减小)而增大(减小);余切值在随角度增大(减小)而减小(增大);正割值在随着角度的增大(或减小)而增大(或减小);余割值在随着角度的增大(或减小)而减小(或增大)。
注:以上其他情况可类推,参考第五项:几何性质。
除了上述六个常见的函数,还有一些不常见的三角函数:任意角三角函数定义在平面直角坐标系xOy中设∠β的始边为x轴的正半轴,设点P(x,y)为∠β的终边上不与原点O重合的任意一点,设r=OP,令∠β=∠α,则:单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。
但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在和弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,单位圆的方程是:对于圆上的任意点。
图像中给出了用弧度度量的一些常见的角:逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同轴正半部分得到一个角,并与单位圆相交。
这个交点的和坐标分别等于和。
图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有和。
单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于1的一种查看无限个三角形的方式。
对于大于或小于等于的角度,可直接继续绕单位圆旋转。
在这种方式下,正弦和余弦变成了周期为的周期函数:对于任何角度和任何整数。
周期函数的最小正周期叫做这个函数的“基本周期”。
正弦、余弦、正割或余割的基本周期是全圆,也就是2π弧度或360°;正切或余切的基本周期是半圆,也就是π 弧度或180°。
上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。
三角函数大全1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ]7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]N倍角公式半角公式两角和公式同角三角函数的基本关系倒数关系:tanα ·cotα=1sinα ·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscα平方关系:平常针对不同条件的常用的两个公式一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常把坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sinα=∠α的对边/∠α 的斜边余弦:cosα=∠α的邻边/∠α的斜边正切:tanα=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sina)+(1-2sina)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sina)=4sina[(√3/2)-sina]=4sina(sin60°-sina)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(√3/2)^2]=4cosa(cosa-cos30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下:sin2α=2sinαcosα tan2α=2tanα/(1-tanα )cos2α=cosα-sinα=2cosα-1=1-2sinα可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中三倍角公式sin3α=3sinα-4sinα=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式sinα=2tan(α/2)/[1+tan(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan&s(α/2)]其他sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角公式sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tan A^6)八倍角公式sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tan A^6+tanA^8)九倍角公式sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*ta nA^4-84*tanA^6+9*tanA^8)十倍角公式sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sin A^4))cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tan A^4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)为方便描述,令sinθ=s,cosθ=c考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …对所有的自然数n:1. cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
三角函数求助编辑百科名片角θ的所有三角函数三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
目录定义锐角三角函数定义罕见三角函数任意角三角函数定义单位圆定义级数定义三角函数线起源三角学问题的提出独立三角学的产生现代三角学的确认正弦,余弦余弦“正弦”的由来“弦表”问世60进制特殊角的三角函数同角三角函数关系式诱导公式对称轴与对称中心两角和与差的三角函数和差化积公式积化和差公式倍角公式三倍角公式n倍角公式半角公式辅助角公式万能公式降幂公式三角和的三角函数特殊角的三角函数值幂级数泰勒展开式傅立叶级数三角函数的数值符号相关概念三角形与三角函数定义域和值域三角函数的画法初等三角函数导数倍半角规律反三角函数高等应用总体情况复数域内性质性质定理正弦定理余弦定理正切定理应用:一元三次方程复数三角函数三角函数常见考法定义锐角三角函数定义罕见三角函数任意角三角函数定义单位圆定义级数定义三角函数线起源三角学问题的提出独立三角学的产生现代三角学的确认正弦,余弦余弦“正弦”的由来“弦表”问世60进制特殊角的三角函数同角三角函数关系式诱导公式对称轴与对称中心两角和与差的三角函数和差化积公式积化和差公式倍角公式三倍角公式n倍角公式半角公式辅助角公式万能公式降幂公式三角和的三角函数特殊角的三角函数值幂级数泰勒展开式傅立叶级数三角函数的数值符号相关概念三角形与三角函数定义域和值域三角函数的画法初等三角函数导数倍半角规律反三角函数高等应用总体情况复数域内性质性质定理正弦定理余弦定理正切定理应用:一元三次方程复数三角函数三角函数常见考法展开编辑本段定义锐角三角函数定义如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。
新佳教育数学试卷
三角函数部分
1.函数f(x)= 3sin(),24
x x R π
-∈的最小正周期为( )
A.
2
π
B.x
C.2π
D.4π
2.已知函数f (x )=sinx ﹣cosx ,x ∈R ,若f (x )≥1,则x 的取值范围为( )
A.{x|k π+≤x≤k π+π,k ∈Z}
B.{x|2k π+≤x≤2k π+π,k ∈Z}
C.{x|k π+≤x≤k π+
,k ∈Z} D.{x|2k π+
≤x≤2k π+
,k ∈Z}
4.已知51
sin(
)25πα+=,那么cos α=( ) A .25- B .15- C .15 D .25
5.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则
c =( )
A. 23
B. 2
C.2
D. 1
6.将函数的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A . B .
C .
D .
8.在ABC ∆中,3a =,5b =,1
sin 3
A =,则sin
B =( ) (A )
1
5
错误!未找到引用源。
(B )5
9
错误!未找到引用
源。
(C )
5
3
错误!未找到引用源。
(D )1
9.在ABC ∆中,角
A B C 、、所对的边分别为a 、b 、c .若
,2,2==b a 2cos sin =+B B ,,则角A 的大小为____________________.
10.在ABC ∆中,若3,3,3
a b A π
==
∠=
,则C ∠的大小为
11.在A B C ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知6
π
=A ,1=a ,3=b ,
则=B ________.
12.在ABC ∆中,1a =,2b =,1
cos 4C =
,则c = ;sin A = . 13.在ABC ∆中。
若1b =,3c =,23
c π
∠=,则a= 。
14.已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3
π的交点,则ϕ的值是 . 15.函数3sin(2)4
y x π
=+
的最小正周期为
16. 函数23
sin 2cos 2
y x x =
+的最小正周期为 . 17.在ABC 中,若1
5,,sin 43
b B A π
=∠==,则a = . 18.已知函数()2cos ,12f x x x R π⎛
⎫=
-∈ ⎪⎝⎭
.
(1) 求3f π⎛⎫
⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫
=∈ ⎪⎝⎭
,求6f πθ⎛
⎫- ⎪
⎝
⎭ 19.已知a (cos ,sin )b (cos ,sin )ααββ==,,0βαπ<<<.
(1)若|a b|2-=,求证:a b ⊥; (2)设c (0,1)=,若a b c +=,求α,β的值. 20.已知函数()sin 3f x A x π⎛
⎫
=+
⎪⎝
⎭
,x R ∈,且532
122f π⎛⎫=
⎪⎝⎭
. (1)求A 的值; (2)若()()3f
f θθ--=,0,2πθ⎛⎫∈ ⎪⎝
⎭
,求6
f πθ⎛⎫
- ⎪⎝
⎭
.
21.(满分14分)已知5sin 25παπα⎛⎫
∈=
⎪⎝⎭
,,. (1)求sin(
)4
π
α+的值; (2)求5cos(
2)6
π
α-的值. 22.△ABC 中,角C B A ,,所对的边分别为c b a ,,,已知a =3,A cos =3
6
,2π+=A B ,
(1)求b 的值; (2)求△ABC 的面积. 23.设函数23
()3sin sin cos (0)2
f x x x x ωωωω=
-->,且()y f x =的图象的一个
对称中心到最近的对称轴的距离为
4
π, (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间3[,]2
π
π上的最大值和最小值. 24.(本小题满分12分)
已知函数2()sin()cos cos (0)f x x x x πωωωω=-+>的最小正周期为π.
(Ⅰ)求ω的值.( Ⅱ )将函数()y f x =的图像上各点的横坐标缩短到原来的21
,纵坐标
不变,得到函数()
y g x =的图像,求函数()g x 在区间0,
16π⎡⎤
⎢⎥⎣⎦
上的最小值 30.函数()3sin 26f x x π⎛
⎫
=+
⎪⎝
⎭
的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212π
π⎡⎤--⎢⎥⎣⎦
上的最大值和最小值.
O
y x
y 0
x 0
25.(2011•山东)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知.
(1)求
的值;
(2)若cosB=,△ABC 的周长为5,求b 的长.
26.已知函数2
1
()(2cos 1)sin 2cos 42
f x x x x =-+
(Ⅰ)求()f x 的最小正周期及最大值;
(Ⅱ)若(,)2
π
απ∈,且2
()2
f α=
,求α的值.
27.已知函数(sin -cos )sin 2()=
sin x x x
f x x
(Ⅰ)求()f x 的定义域及最小正周期 (Ⅱ)求()f x 的单调递减区间。
28.本小题共13分) 已知函数()4cos sin() 1.6
f x x x π
=+-
(Ⅰ)求()f x 的最小正周期;
(Ⅱ)求()f x 在区间,64ππ⎡⎤
-⎢⎥⎣
⎦上的最大值和最小值。
29.(本小题共13分)
已知函数2
()2cos2sin f x x x =+ (Ⅰ)求()3
f π
的值;
(Ⅱ)求()f x 的最大值和最小值
30.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1.
(1)求角A 的大小;
(2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.18.设函数
22()sin 23sin cos cos ()f x x x x x x R ωωωωλ=+-+∈的图像关于直线x π=对称,其
中,ωλ为常数,且1(,1)2
ω∈ 求函数()f x 的最小正周期;
31.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a=1,b=2,cosC= (Ⅰ)求△ABC 的周长; (Ⅱ)求cos (A ﹣C )的值.
32.已经函数22cos sin 11
(),()sin 2.224
x x f x g x x -=
=- (Ⅰ)函数()f x 的图象可由函数()g x 的图象经过怎样变化得出?
(Ⅱ)求函数()()()h x f x g x =-的最小值,并求使用()h x 取得最小值的x 的集合。