高中数学:无理函数值域的常见求法
- 格式:doc
- 大小:117.50 KB
- 文档页数:3
求函数值域方法大全(一)、最值与值域的高考地位传统高考数学中的应用题中凡涉及到利润最大(或最小),最少的人力、物力等,均可归结于最值与值域的求解;当今高考数学中的求字母参数的取值范围问题很大一部分归结于最值与值域的求解通过求函数的最值与值域可大大的加深对一些数学思想的领会,提高运用数学思想解题的能力。
(二)、最值与值域的关系1、有的函数知道值域就可以求最值如:函数2x y =的值域是{}0|≥y y ,可知0min =y2、有的函数知道最值就可以求值域3、有的函数有值域但无最值 如:函数x y 1=的值域是{}0|≠y y ,但无=min y ,无=max y 4、有的函数有最大值但无最小值如:函数2x y -=,0m ax =y ,但无=min y5、有的函数有最小值但无最大值如:函数212xy +-=,2min -=y ,但无=max y 6、值域有可能是一个数,也可能是几个数构成的集合,但大多是一个不等式构成的集合如:常数函数2)(=x f 的值域是{}27、求最值与值域的方法大同小异8、在由值域确定函数的最值时,需注意等号成立的条件下才能取到。
如:已知值域{}13|<≤-y y ,只有3min -=y ,而无=max y9、最值存在定理:连续函数在闭区间上一定存在最大值和最小值(三)、基本初等函数的定义域与值域(四)、函数的最值与值域的求解技巧即是求函数值的集合或是找到的y 的不等式出来(以后者为重)如:已知函数12)(-=x x f ,{}5,3,2,1,0∈x 则此函数的值域是( )A 、{}5,3,2,1,9;B 、{}3,1,1-;C 、{}5,3,1,1,9-;D 、{}91|≤≤-x x法(一):观察法【及时反馈】1、函数12)(-=x x f 的值域是( )A 、)1,(--∞;B 、),1[+∞;C 、R ;D 、),1(+∞-法(二):反函数法ⅰ、理论依据:巧妙根据原函数与它的反函数的定义域、值域的互调性,如下表所示:由上表知,求原函数的值域就是相当于求它的反函数的定义域ⅱ、求反函数的步骤(“三步曲”)①求)(y x Φ=;②x 、y 互换;③通过求原函数的值域得出反函数的定义域【及时反馈】(1)、求函数142)(-+=x x x f 的值域 (2)、求函数453)(-=x x x f 的值域 法(三):分离变量法常用于求形如)0()(≠++=ac dcx b ax x f 的函数的值域 求解技巧:“分子对分母说,我要变成你”,即把)(x f 化成“常量+d cx +常量”的形式来。
专题08:函数值域的常见求法精讲温故知新一 求函数值:特别是分段函数求值例1 已知函数11,1()2,1x f x xx a x ⎧->⎪=⎨⎪-+≤⎩在R 上满足:对任意12x x ≠,都有()()12f x f x ≠,则实数a 的取值范围是( )A .(,2]-∞B .(,2]-∞-C .[2,)+∞D .[2,)-+∞【答案】C 【分析】根据题意,得到11,1()2,1x f x x x a x ⎧->⎪=⎨⎪-+≤⎩在R 上单调递减,进而可求出结果.【详解】由题意,得到11,1()2,1x f x x x a x ⎧->⎪=⎨⎪-+≤⎩在R 上单调递减,因此只需112a -≤-+,解得2a ≥. 故选:C. 【点睛】本题主要考查由分段函数单调性求参数,属于基础题型.二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
1.利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ;反比例函数)0(≠=k x ky 的定义域为{x|x ≠0},值域为{y|y ≠0};二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b ac y y 4)4(|2-≤}.例2 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②略③ 当x>0,∴x x y 1+==2)1(2+-x x 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数xx y 1+=的图像为: 2.二次函数在区间上的值域(最值):例3 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;解:∵3)2(1422--=+-=x x x y ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R ,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }. ②∵顶点横坐标2∉[3,4],当x=3时,y= -2;x=4时,y=1;∴在[3,4]上,min y =-2,m ax y =1;值域为[-2,1]. ③∵顶点横坐标2∉ [0,1],当x=0时,y=1;x=1时,y=-2, ∴在[0,1]上,min y =-2,m ax y =1;值域为[-2,1].④∵顶点横坐标2∈ [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6, ∴在[0,1]上,min y =-3,m ax y =6;值域为[-3,6].注:对于二次函数)0()(2≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a bx 2-=时,其最小值a b ac y 4)4(2min -=; ②当a<0时,则当a bx 2-=时,其最大值ab ac y 4)4(2max -=; ⑵若定义域为x ∈ [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b]. ①若0x ∈[a,b],则)(0x f 是函数的最小值(a>0)时或最大值(a<0)时, 再比较)(),(b f a f 的大小决定函数的最大(小)值.②若0x ∉[a,b],则[a,b]是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论. 3. 单调性法例4 求函数y=4x -x 31-(x ≤1/3)的值域。
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例1.求函数1y =的值域。
【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。
【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。
【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
例2.求函数242y x x =-++([1,1]x ∈-)的值域。
【解析】2242(2)6y x x x =-++=--+。
∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。
∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例3.求函数][)4,0(422∈+--=x x x y 的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。
例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。
利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。
变通有术有变则通——一类无理函数值域的求法探究
秦小安
【期刊名称】《试题与研究(教学论坛)》
【年(卷),期】2010(000)021
【摘要】@@ 求无理甬数y=a(f(x))+b(g(x))(*)的值域问题是教师教学和学生学习的难点.这是因为求出的"值域"有时会产生增值,有时会产生漏解,甚至读题后感觉无从下手.本文指出的是:只要函数(*)满足一定条件,就可以转换坐标系,找到统一的方法求其值域,并且过程直观快捷,便于学生掌握.
【总页数】1页(P41)
【作者】秦小安
【作者单位】江苏省邳州市运河中学北校区
【正文语种】中文
【相关文献】
1.一类无理函数值域求法探究 [J], 高召
2.一类无理函数值域的求法 [J], 陈永勇
3.一类无理函数值域的求法 [J], 陈永勇;
4.一类无理型函数的最值(值域)的求法再探究 [J], 蓝云波
5.由一道联赛试题谈一类无理函数值域的求法--兼论基于深度学习的解题教学策略[J], 李凯
因版权原因,仅展示原文概要,查看原文内容请购买。
函数值域的求法函数定义域与值域的求法是高中数学学习的基础,也是内容比较多,并且难以掌握的一部分。
笔者在初三下学习了一些函数值域的求法。
当然这并不是全部,以后随着函数学习的深入,将会学习到更多的方法。
只是在这里进行一下阶段性的总结。
二次函数二次函数的值域的求法在九年级上就应经学过,就是利用配方法求。
在此不再赘述。
例题y=x^2-2x-3 在(0,3)上的最值。
y=(x-1)^2-4 当x=1 y(min)=-4 当x=3 y(max)=0∴y 归属于(-4,0)注意,由于学习了一次函数,学生会将两个端点直接代入,造成错解。
变式1y=√-x^2+2x=3 的最值y=√-(x-1)^+4 当x=3或-1 y(min)=0 当x=1 y(max)=2∴y归属于(0,2)注意,算数平方根永远是正的,算数平方根下的数也是正的。
这是一个隐含的条件。
很容易忽略。
变式2求y=t^2-2t-7 在(t-1,t)上的值域Ⅰt=<1y归属于[t^2-2t-7,t^2-4t-4]Ⅱ,1<t=<1.5y归属于[-8,t^2-2t-7]Ⅲ1.5<t=<2y归属于[-8,t^-2t-7]Ⅳt>2y归属于[t^-4t-4,t^2-2t-7]这道题的取值范围是参数,所以要进行关于t的讨论,考察较为全面。
变式3设f(x+1)=x^2-2x-7,x归属于(t-1,t).,求函数f(x)的最小值φ(x)的解析式。
f(x)=x^2-4x-4f(x)=(x-2)^2-8Φ(x)=t^2-2-7 t=<1-8 1<t=<2t^-4t-4 2<t这道题定义域并不是题目所给的(t-1,t)而是(t,t+1)要运用到求函数值域的方法,容易出错。
变式4y=1/x^2-2x-3 在(0,3)上的最值y=1/(x-1)^2-4∴y归属于(-∞,-1/4) 分式下的二次函数使得整个函数变得较为复杂。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高一数学函数的定义域与值域的常用方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知,试求。
解:设,则,代入条件式可得:,t≠1。
故得:。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以-x代x则得:,与条件式联立,消去,则得:。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。
【题意分析】(1)由已知是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用的式子表示就容易解决了。
(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,的两个程就行了。
【解题过程】⑴设,由得,由,得恒等式,得。
故所求函数的解析式为。
(2),又。
(3)设,则所以。
(4)因为①用代替得②解①②式得。
【题后思考】求函数解析式常见的题型有:(1)解析式类型已知的,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式和标根式的选择;(2)已知求的问题,法一是配凑法,法二是换元法,如本例(2)(3);(3)函数程问题,需建立关于的程组,如本例(4)。
在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8] 3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
高中数学:无理函数值域的常见求法
在解题过程中,同学们遇到无理函数的值域问题时,普
遍采用的是“判别式法”,但由于无理函数的定义域一
般不为R,所以在解题过程中容易扩大自变量的取值范
围,使用“判别式法”失效。下面对常见的无理函数类
型及解法作一归纳,使得在求无理函数的值域时避开
“判别式法”,尽快求出正确答案。
一、形如“”的函数
例1. 求函数的值域。
解:令,则且,则
。当,即时,,当时,。故
函数值域为。
说明:此法适用于根号内外自变量的次数相同的无理函
数,一般令,将原函数转化为t的二次函数,当
然也适用于“”的函数。
二、形如“”的函
数
例2. 求函数的值域。
解:由。令且
[],则。
由,得。
当时,;
当时,。
故函数值域为。
说明:这类函数根号内外自变量的次数不同,不适合第
一类型的解法。又且的函数定义域一定为闭区
间,如,则可作三角代换为
且,即可化为+k型函数。
至于且及其他类型,同学们可自己分析一下。
三、形如“”的函数
例3. 求函数的值域。
解:由,得。
令且,
则。
由,得,
则,故函数的值域为。
说明:此法适用于两根号内自变量都是一次,且,
此时函数的定义域为闭区间,如,则可作代换
,且,即可化为型
的函数,无理函数类型有多种,有兴趣的同学不妨探讨
一下。
▍ ▍ ▍