2020年浙江新高考数学二轮复习专题强化练:解答题规范练(二)
- 格式:docx
- 大小:64.84 KB
- 文档页数:6
解答题标准练二1.函数f=2错误!in co -2co2+11求函数f的单调递增区间;2在△ABC中,角A,B,C所对的边分别为a,b,c,假设满足fB=2,a =8,c=5,求co A的值.2如图,四棱锥恒成立,求实数的m最小值;2对任意的1,2∈0,2且1<2,假设存在0∈1,2,使得f′0=错误!,求证:0<错误!4抛物线C:2=4上动点=2,2,2,那么错误!即错误!取2=1,那么m=1,1,2.又co〈m,n〉=错误!=-错误!,结合图形知,二面角H a=f e=错误!因为关于的不等式f≤m恒成立,所以f ma≤m,所以m≥错误!,即m的最小值为错误!2证明:因为对任意的1,2∈0,2,假设存在0∈1,2,使得f′0=错误!,即错误!=错误!,所以错误!2-1-[f2-f1]=0令F=错误!2-1-[f2-f1],那么有F0=0,所以F′=错误!2-1,当∈0,2时,2n -3<2n 2-3<0,又有2-1>0,所以F′<0,即F在0,2上是减函数.又因为F错误!=错误!2-1-[f2-f1]=错误!2-1-错误!=错误!错误!-错误!错误!,令错误!=t>1,所以F错误!=错误!错误!,设ht=t·错误!-错误!,所以h′t=错误!,设t=t-t n t-1,所以′t=-n t<0t>1,所以t在1,+∞上是减函数,所以t<1=′t<0,所以ht在1,+∞上是减函数,所以ht<h1=0所以F错误!=错误!ht<0=F0,因为F在0,2上是减函数,所以0<错误!4.解:1设直线P A的方程为=+b,那么A8-2b,8-b.设P1,1,Q2,2,由错误!得2-4+4b=0,所以Δ=16-16b>0,b<1,错误!,又1+8-b=22,解得错误!或错误!,经检验都是方程的解,所以P0,0或P16,-8.2设A2t1-8,t1,B2t2-8,t2,t1,t2≥在抛物线C上,可得错误!错误!=4错误!,整理得t错误!+21-16t1+64-错误!=0,同理t错误!+21-16t2+64-错误!=0,所以t1,t2是方程t2+21-16t+64-错误!=0的两个不相等的非负根.所以错误!,所以-8≤1<0于是|AB|=错误!|t1-t2|=2错误!错误!≤32错误!,当且仅当1=-8时取等号.所以|AB|的最大值为32错误!5.解:1由题设a n>0,当n=1时,a1=错误!;当n≥2时,a错误!=2n-2n-1=2n-1,所以a n=2错误!又a1=错误!不满足a n=2错误!,所以数列{a n}的通项公式为a n=错误!2由1知数列{a n}的通项公式为a n=错误!,故错误!=错误!=错误!=错误!-1·2错误!n≥2,记S n=错误!+错误!+错误!+…+错误!,那么当n≥2时,S n=错误!+错误!-1[错误!+错误!2+…+错误!n-1]=错误!+错误!-1·错误!=2错误!-错误!,故S n=错误!当n∈N*,n≥2时,要使得2错误!-错误!>n-错误!恒成立,即2n>n2恒成立.由于当n=4时,2n=n2,考察函数f=2-2的单调性,易证当>4时,函数f=2-2单调递增,且=4时,f=0,所以当n≥5时,错误!+错误!+错误!+…+错误!>n -错误!恒成立,故所求n的取值范围是n≥5。
2020高考理科数学二轮专题提分全国通用基础保分强化试题二A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A 解析因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.2.若复数z =1+m i1+i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)答案 A解析 因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.3.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( )A .1B .3C .7D .13答案 C解析 因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7.故选C.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3 答案 A解析 由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.5.已知i 与j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12 B.⎝⎛⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫-∞,12 答案 A解析 因为i 与j 为互相垂直的单位向量,所以i 2=j 2=1,i ·j =0.又因为a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,所以a ·b =1-2λ>0,λ<12.但当λ=-2时,a =b ,不满足要求,故满足条件的实数λ的取值范围为(-∞,-2)∪⎝⎛⎭⎪⎫-2,12.故选A.6.若函数f (x )=sin2x +cos2x ,则下列结论正确的是( ) A .函数f (x )的最小正周期为2πB .对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=0 C .函数f (x )在⎝⎛⎭⎪⎫π2,3π4上是减函数D .函数f (x )的图象关于直线x =-π8对称 答案 B解析 函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期为T=2π2=π,故A 错误;f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2sin ⎝ ⎛⎭⎪⎫-2x +π4=0,故B 正确;令π2+2k π≤2x +π4≤2k π+3π2(k ∈Z ),解得π8+k π≤x ≤k π+5π8(k ∈Z ),当k=0时,函数的单调递减区间为⎣⎢⎡⎦⎥⎤π8,5π8,故C 错误;当x =-π8时,f ⎝ ⎛⎭⎪⎫-π8=0,故D 错误.故选B.7.已知长方体ABCD -A 1B 1C 1D 1中,B 1C ,C 1D 与底面ABCD 所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64B.14C.26D.36答案 A解析 ∵B 1C 和C 1D 与底面ABCD 所成的角分别为60°和45°,∴∠B 1CB =60°,∠C 1DC =45°.由图可知,B 1C 与C 1D 所成的角,即为A 1D 与C 1D 所成的角,即∠A 1DC 1.令BC =1,则B 1B =AB =3,∴A 1D =2,A 1C 1=2,C 1D = 6.由余弦定理,得cos ∠A 1DC 1=22+(6)2-222×2×6=64.故选A.8.把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子中,每个盒子只放一个小球,则1号球不放入1号盒子的方法共有( )A .18种B .9种C .6种D .3种 答案 A解析 由于1号球不放入1号盒子,则1号盒子有2,3,4号球三种选择,还剩余三个球可以任意放入2,3,4号盒子中,则2号盒子有三种选择,3号盒子还剩两种选择,4号盒子只有一种选择,根据分步计数原理可得1号球不放入1号盒子的方法有C 13·C 13·C 12·1=18种.故选A. 9.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .2x ±y =0 D .x ±2y =0 答案 A解析 不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,所以∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A. 10.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,kx -y +3≥0,y ≥0,且z =y -x 的最小值为-12,则k 的值为( )A.12 B .-12 C.14 D .-14 答案 D解析 依题意,易知k ≤-1和k ≥0不符合题意.由⎩⎪⎨⎪⎧kx -y +3=0,y =0得A ⎝ ⎛⎭⎪⎫-3k ,0,结合图形可知,当直线z =y -x 过点A ⎝ ⎛⎭⎪⎫-3k ,0时,z 有最小值,于是有0+3k =-12,k =-14,选D.11.椭圆x 24+y 2=1上存在两点A ,B 关于直线4x -2y -3=0对称,若O 为坐标原点,则|OA→+OB →|=( ) A .1 B. 3 C. 5 D.7 答案 C解析 由题意,直线AB 与直线4x -2y -3=0垂直,设直线AB 的方程为y =-12x +m .由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1消去y 整理得x 2-2mx +2m 2-2=0,∵直线AB 与椭圆交于两点,∴Δ=(-2m )2-4(2m 2-2)=-4m 2+8>0,解得-2<m < 2.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=2m ,∴x 0=x 1+x 22=m ,y 0=-12x 0+m =m2,∴点M 的坐标为⎝ ⎛⎭⎪⎫m ,m 2.由题意得点M 在直线4x -2y-3=0上,∴4m -2×m 2-3=3m -3=0,解得m =1.∴x 1+x 2=2,y 1+y 2=-12(x 1+x 2)+2m =1,∴OA→+OB →=(2,1),∴|OA →+OB →|= 5.故选C. 12.已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则cos2α=________.答案 -35解析 设点P 到原点的距离是r ,由三角函数的定义,得r =5,sin α=2r =25,可得cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫252=-35.13.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为________.答案 91解析 由三角形数组可推断出,第n 行共有2n -1项,且最后一项为n 2,所以第10行共19项,最后一项为100,左数第10个数是91.14.已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成△BCD 和△ACD ,且S △BCD ∶S △ACD =4∶3,则cos A =________.答案 38解析 在△ADC 中,由正弦定理,得AC sin ∠ADC =37AB sin ∠ACD ⇒AC 37AB =sin ∠ADCsin ∠ACD.同理,在△BCD 中,得BC sin ∠BDC =47AB sin ∠BCD ⇒BC 47AB=sin ∠BDCsin ∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以AC 37AB =BC 47AB ⇒AC =34BC ,由正弦定理,得sin B =34sin A ,又B =2A ,即sin B =2sin A cos A ,求得cos A =38.。
姓名,年级:时间:专题强化训练1.(2019·宁波模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且错误!+1=错误!。
(1)求B ;(2)若cos 错误!=错误!,求sin A 的值.解:(1)由错误!+1=错误!及正弦定理,得错误!+1=错误!, 所以sin B cos A +cos B sin Acos B sin A=错误!,即错误!=错误!,则错误!=错误!。
因为在△ABC 中,sin A ≠0,sin C ≠0, 所以cos B =错误!.因为B ∈(0,π),所以B =错误!. (2)因为0<C <2π3, 所以错误!<C +错误!<错误!. 又cos 错误!=错误!, 所以sin 错误!=错误!。
所以sin A =sin (B +C )=sin 错误! =sin 错误!=sin 错误!cos 错误!+cos 错误!sin 错误!=错误!。
2。
如图所示,在三棱柱ABC .A 1B 1C 1中,AA 1B 1B 为正方形,BB 1C 1C 是菱形,平面AA 1B 1B ⊥平面BB 1C 1C .(1)求证:BC ∥平面AB 1C 1; (2)求证:B 1C ⊥AC 1;(3)设点E ,F ,H ,G 分别是B 1C ,AA 1,A 1B 1,B 1C 1的中点,试判断E ,F ,H ,G 四点是否共面,并说明理由.解:(1)证明:在菱形BB 1C 1C 中,BC ∥B 1C 1. 因为BC ⊄平面AB 1C 1,B 1C 1⊂平面AB 1C 1, 所以BC ∥平面AB 1C 1.(2)证明:连接BC 1。
在正方形ABB 1A 1中,AB ⊥BB 1.因为平面AA 1B 1B ⊥平面BB 1C 1C ,平面AA 1B 1B ∩平面BB 1C 1C =BB 1,AB ⊂平面ABB 1A 1, 所以AB ⊥平面BB 1C 1C 。
因为B 1C ⊂平面BB 1C 1C ,所以AB ⊥B 1C . 在菱形BB 1C 1C 中,BC 1⊥B 1C .因为BC 1⊂平面ABC 1,AB ⊂平面ABC 1,BC 1∩AB =B , 所以B 1C ⊥平面ABC 1.因为AC 1⊂平面ABC 1,所以B 1C ⊥AC 1. (3)E ,F ,H ,G 四点不共面. 理由如下: 因为E ,G 分别是B 1C ,B 1C 1的中点, 所以GE ∥CC 1。
专题强化训练1.2021·绍兴诸暨高考二模复数满足1+i=2i,那么的共轭复数错误!错误!错误!错误!错误!错误!错误! a{a,b}=错误!,向量a,b,c满足|a|=1,|b|=2,a·b=0,c=λa+μbλ,μ≥0,且λ+μ=1,那么当ma{c·a,c·b}取最小值时,|c|=解析:选A如图,设错误!错误!a{c·a,c·b}=错误!令fλ=错误!那么fλ∈错误!所以fλmin=错误!,此时λ=错误!,μ=错误!,所以c=错误!a+错误!b=错误!所以|c|=错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!,②①2+②2得4[|co αco β|+in αin β]≤1+m2对一切实数α,β恒成立,所以4[|co αco β|+in αin β]≤1,故a·b=2co αco β+in αin β≤2[|co αco β|+in αin β]≤错误!答案:错误!14.2021·温州市十五校联合体联考坐标平面上的凸四边形ABCD满足错误!错误!错误!错误!错误!错误!=|错误!错误!错误!错误!的最小值为错误!所以函数fm=|错误!错误!错误!错误!≥错误!,化为4m2-8m co∠ACB+1≥0恒成立.当且仅当m=错误!=co∠ACB时等号成立,代入得到co∠ACB=-错误!,所以∠ACB=错误!所以|错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!=错误!,故c的最小值为错误!答案:错误!18.在△ABC中,C=错误!,向量错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!=2in ,in -co ,n=错误!co ,in +co ,记函数f=m·n1求函数f的最大值以及取得最大值时的取值集合;2设△ABC的角A,B,C所对的边分别为a,b,c,假设fC=2,c=错误!,求△ABC面积的最大值.解:1由题意,得f=m·n=2错误!in co +in2-co2=错误!in 2-co2-in2=错误!in 2-co 2=2in错误!,所以f ma=2;当f取最大值时,即in错误!=1,此时2-错误!=2π+错误!∈Z,解得=π+错误!∈Z,所以的取值集合为错误!2由fC=2,得in错误!=1,又0<C<π,即-错误!<2C-错误!<错误!,所以2C-错误!=错误!,解得C=错误!,在△ABC中,由余弦定理c2=a2+b2-2ab co C,得3=a2+b2-ab≥ab,即ab≤3,当且仅当a=b=错误!时,取等号,所以S△ABC=错误!ab in C=错误!ab ≤错误!,所以△ABC面积的最大值为错误!。
解答题规范练(二)1.已知函数f (x )=23sin x cos x -2cos 2x +1. (1)求函数f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若满足f (B )=2,a =8,c =5,求cos A 的值.2.如图,四棱锥P ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H PB C 的余弦值.3.已知函数f (x )=ln xx.(1)若关于x 的不等式f (x )≤m 恒成立,求实数的m 最小值; (2)对任意的x 1,x 2∈(0,2)且x 1<x 2,若存在x 0∈(x 1,x 2),使得f ′(x 0)=f (x 2)-f (x 1)x 2-x 1,求证:x 0<x 1x 2.4.已知抛物线C:y2=4x上动点P(x1,y1),点A在射线x-2y+8=0(y≥0)上,满足P A的中点Q在抛物线C上.(1)若直线P A的斜率为1,求点P的坐标;(2)若射线l上存在不同于A的另一点B,使得PB的中点也在抛物线C上,求|AB|的最大值.5.已知数列{a n}的各项均为正数,且满足a21+a22+a23+…+a2n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)若a21a2+a1+a22a3+a2+a23a4+a3+…+a2na n+1+a n>n-22(n∈N*,n≥2)恒成立,求n的取值范围.解答题规范练(二)1.解:(1)f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6,由题意2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得k π-π6≤x ≤k π+π3,k ∈Z ,所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (B )=2sin ⎝⎛⎭⎫2B -π6=2,所以B =π3,所以b 2=a 2+c 2-2ac cos B =49, 解得b =7.所以cos A =b 2+c 2-a 22bc =17.2.解:(1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,所以CD =2,所以BC ⊥BD . 因为PD ⊥底面ABCD ,所以PD ⊥BC , 又PD ∩BD =D ,所以BC ⊥平面PBD , 所以平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角, 所以tan ∠BPC =63, 所以PB =3,PD =1.由CH →=2HD →及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎫0,23,0.设平面HPB 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧HP →·n =0,HB →·n =0,即⎩⎨⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2). 设平面PBC 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧PB →·m =0,BC →·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0,取x 2=1,则m =(1,1,2). 又cos 〈m ,n 〉=m ·n |m ||n |=-217,结合图形知,二面角H PBC 的余弦值为217. 3.解:(1)由f ′(x )=1-ln xx 2=0解得x =e. 当x ∈(0,e)时,f ′(x )>0,f (x )单调递增; 当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减; 所以f (x )max =f (e)=1e.因为关于x 的不等式f (x )≤m 恒成立, 所以f (x )max ≤m ,所以m ≥1e ,即m 的最小值为1e.(2)证明:因为对任意的x 1,x 2∈(0,2),若存在x 0∈(x 1,x 2),使得f ′(x 0)=f (x 2)-f (x 1)x 2-x 1,即1-ln x 0x 20=f (x 2)-f (x 1)x 2-x 1, 所以1-ln x 0x 20(x 2-x 1)-[f (x 2)-f (x 1)]=0.令F (x )=1-ln xx 2(x 2-x 1)-[f (x 2)-f (x 1)],则有F (x 0)=0,所以F ′(x )=2ln x -3x 3(x 2-x 1),当x ∈(0,2)时,2ln x -3<2ln 2-3<0, 又有x 2-x 1>0,所以F ′(x )<0,即F (x )在(0,2)上是减函数. 又因为F (x 1x 2)=1-ln x 1x 2x 1x 2(x 2-x 1)-[f (x 2)-f (x 1)]=1-ln x 1x 2x 1x 2(x 2-x 1)-⎝⎛⎭⎫ln x 2x 2-ln x 1x 1=1x 1⎝⎛⎭⎫1+ln x 1x 2-1x 2⎝⎛⎭⎫1+ln x 2x 1,令x 2x 1=t >1,所以F (x 1x 2) =1x 2⎣⎡⎦⎤t ·⎝⎛⎭⎫1-12ln t -⎝⎛⎭⎫1+12ln t , 设h (t )=t ·⎝⎛⎭⎫1-12ln t -⎝⎛⎭⎫1+12ln t , 所以h ′(t )=t -t ln t -12t,设k (t )=t -t ln t -1, 所以k ′(t )=-ln t <0(t >1), 所以k (t )在(1,+∞)上是减函数,所以k (t )<k (1)=0.所以h ′(t )<0,所以h (t )在(1,+∞)上是减函数, 所以h (t )<h (1)=0.所以F (x 1x 2)=1x 2h (t )<0=F (x 0),因为F (x )在(0,2)上是减函数,所以x 0<x 1x 2.4.解:(1)设直线P A 的方程为y =x +b ,则A (8-2b ,8-b ).设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =x +b y 2=4x得y 2-4y +4b =0,所以 Δ=16-16b >0,b <1,⎩⎪⎨⎪⎧y 1+y 2=4y 1y 2=4b,又y 1+8-b =2y 2,解得 ⎩⎪⎨⎪⎧b =0y 1=0y 2=4或⎩⎪⎨⎪⎧b =-24y 1=-8y 2=12, 经检验都是方程的解,所以P (0,0)或P (16,-8).(2)设A (2t 1-8,t 1),B (2t 2-8,t 2),t 1,t 2≥0.则由P A 的中点Q ⎝⎛⎭⎫y 218+t 1-4,t 1+y 12在抛物线C 上,可得⎝⎛⎭⎫t 1+y 122=4⎝⎛⎭⎫y 218+t 1-4,整理得t 21+(2y 1-16)t 1+64-y 21=0, 同理t 22+(2y 1-16)t 2+64-y 21=0,所以t 1,t 2是方程t 2+(2y 1-16)t +64-y 21=0的两个不相等的非负根.所以⎩⎪⎨⎪⎧Δ=(2y 1-16)2-4(64-y 21)>0t 1+t 2=16-2y 1>0t 1t 2=64-y 21≥0,所以-8≤y 1<0.于是|AB |=5|t 1-t 2|=252y 21-16y 1≤325,当且仅当y 1=-8时取等号. 所以|AB |的最大值为32 5.5.解:(1)由题设a n >0,当n =1时,a 1=2;当n ≥2时,a 2n =2n -2n -1=2n -1,所以a n =2n -12.又a 1=2不满足a n =2n -12,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =12n -12,n ≥2.(2)由(1)知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =12n -12,n ≥2,故a 2na n +1+a n =2n -1(2)n +(2)n -1=2n -1(2)n -1·(2+1)=(2-1)·2n -12(n ≥2),记S n =a 21a 2+a 1+a 22a 3+a 2+a 23a 4+a 3+…+a 2n a n +1+a n , 则当n ≥2时,S n =22+(2-1)[2+(2)2+…+(2)n -1]=22+(2-1)·2[1-(2)n -1]1-2=2n 2-22,故S n=⎩⎨⎧22,n =12n 2-22,n ≥2.当n ∈N *,n ≥2时,要使得2n 2-22>n -22恒成立,即2n >n 2恒成立. 由于当n =4时,2n =n 2,考察函数f (x )=2x -x 2的单调性,易证当x >4时,函数f (x )=2x-x 2单调递增,且x =4时,f (x )=0,所以当n ≥5时,a 21a 2+a 1+a 22a 3+a 2+a 23a 4+a 3+…+a 2na n +1+a n >n -22恒成立,故所求n 的取值范围是n ≥5.。
说明:一般分布列的求法分三步:(1)首先确定随机变量的取值哟哪些;(2)求出每种取值下的随机事件的概率;(3)列表对应,即为分布列。
ξ
8、关于取球的随机变量的值和概率
例:袋中有1个红球,2个白球,3个黑球,现从中任取一球观察其颜色。
确定这个随机试验中的随机变量,并指出在这个随机试验中随机变量可能取的值及取每个值的概率。
分析:随机变量变量是表示随机试验结果的变量,随机变量的可能取值是随机试验的所有可能的结果组成。
解: 设集合,其中为“取到的球为红色的球”,为“取到的球为白
色的球”,为“取到的球为黑色的球”。
},,{321x x x
M =1x 2x 3x 我们规定:,即当时,,这样,我们确定就是一个随机变量,它的自变是量取值不是一个实数,而是集合中的一个元素,即,而随机变量本身的取值则为1、2、3三个实数,并且我们很容易求得分别取1、
2、3三个值的概率,)3,2,1()(===i i x
i ξ ξ i x x =i x =)(ξ )(x ξ x M 即
说明:确定随机变量的取值是根据随机试验的所有可能的结果。
高考仿真模拟练(二)(时间:120分钟;满分:150分)选择题部分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={y|y=2-x},P={y|y=x-1},则()A.M=P B.M⊆PC.P⊆M D.M∩P=∅2.已知m1-i=1+n i,其中m,n是实数,i是虚数单位,则m+n i在复平面内对应的点到坐标原点的距离为()A.3B.3C. 5 D.53.已知直线l⊥平面α,直线m∥平面β,则“α∥β”是“l⊥m”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于() A.2 B.-1C.1 D.-25.函数y=(2x-1)e x的图象是()6.已知O是坐标原点,若点M(x,y)为平面区域{x+y≥2x≤1y≤2上的一个动点,则目标函数z=-x+2y的最大值是()A.0 B.1C.3 D.47.设随机变量X 的概率分布列如下表所示:若F (x )=P A.13 B.16 C.12D.568.已知单位向量a ,b 满足|2a -b |=2,若存在向量c ,使得(c -2a )·(c -b )=0,则|c |的取值范围是( )A.⎣⎡⎦⎤62,62+1 B.⎣⎡⎦⎤62-1,62 C.⎣⎡⎦⎤62-1,62+1D .[6-1,6+1]9.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.4510.已知函数f (x )=x +2bx+a ,x ∈[a ,+∞),其中a >0,b ∈R ,记m (a ,b )为f (x )的最小值,则当m (a ,b )=2时,b 的取值范围为( )A .b >13B .b <13C .b >12D .b <12二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分. 11.双曲线x 2-y 23=1的离心率是________,渐近线方程是________. 12.一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为________,正四棱锥的体积为________.13.已知在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,2a sin B =3b ,b =2,c =3,AD 是内角的平分线,则BC =________,BD =________.14.在等比数列{a n }中,已知a 1=2,a 4=16,则数列{a n }的通项公式为________.若a 3,a 5分别为等差数列{b n }的第3项和第5项,则数列{b n }的前n 项和S n 为________. 15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).16.已知圆O :x 2+y 2=1,直线x -2y +5=0上动点P ,过点P 作圆O 的一条切线,切点为A ,则|P A |的最小值为________.17.已知函数f (x )=⎝⎛⎭⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)已知函数f (x )=sin x sin ⎝⎛⎭⎫x +π6.(1)求f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的取值范围.19.(本题满分15分)如图,已知四棱柱ABCDA1B1C1D1的底面是菱形,侧棱AA1⊥底面ABCD,M是AC的中点,∠BAD=120°,AA1=AB.(1)证明:MD1∥平面A1BC1;(2)求直线MA1与平面A1BC1所成的角的正弦值.20.(本题满分15分)已知f(x)=e x-a ln x(a∈R).(1)求函数f(x)在点(1,f(1))处的切线方程;(2)当a=-1时,若不等式f(x)>e+m(x-1)对任意x∈(1,+∞)恒成立,求实数m的取值范围.21.(本题满分15分)如图,已知直线P A ,PB ,PC 分别与抛物线y 2=4x 交于点A ,B ,C 与x 轴的正半轴分别交于点L ,M ,N 且|LM |=|MN |,直线PB 的方程为2x -y -4=0.(1)设直线P A ,PC 的斜率分别为k 1,k 2,求证:k 1+k 2=k 1k 2; (2)求S △P ABS △PBC的取值范围.22.(本题满分15分)已知数列{a n }满足a 1=1,a n +1=a n1+a 2n,n ∈N *.记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .高考仿真模拟练(二)1.详细分析:选B.因为集合M ={y |y >0},P ={y |y ≥0},故M ⊆P ,选B.2.详细分析:选C.法一:由已知可得m =(1+n i)(1-i)=(1+n )+(n -1)i ,因为m ,n是实数,所以⎩⎪⎨⎪⎧n -1=0,n +1=m ,故⎩⎪⎨⎪⎧m =2,n =1,即m +n i =2+i ,m +n i 在复平面内对应的点为(2,1),其到坐标原点的距离为5,故选C.法二:m1-i =m (1+i )1-i 2=m 2+m 2i =1+n i ,故⎩⎨⎧m2=1,m 2=n ,即⎩⎪⎨⎪⎧m =2,n =1,m +n i 在复平面内对应的点到坐标原点的距离为22+12= 5.3.详细分析:选A.根据已知条件,由于直线l ⊥平面α,直线m ∥平面β,如果两个平面平行α∥β,则必然能满足l ⊥m ,反之,如果l ⊥m ,则对于平面α,β可能是相交的,故条件能推出结论,但是结论不能推出条件,故选A.4.详细分析:选C.题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C. 5.详细分析:选A.令y =(2x -1)e x =0,解得x =12,函数有唯一的零点,故排除C 、D.当x →-∞时,e x →0,所以y →0,故排除B.故选A.6.详细分析:选D.作出点M (x ,y )满足的平面区域,如图所示,由图知当点M 为点C (0,2)时,目标函数z =-x +2y 取得最大值,即为-1×0+2×2=4,故选D.7.详细分析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.8.详细分析:选C.如图,设OA →=a ,OB →=b ,OC →=c ,OA ′→=2a ,因为|2a -b |=2,所以△OA ′B 是等腰三角形.因为(c -2a )·(c -b )=0,所以(c -2a )⊥(c -b ),即A ′C ⊥BC ,所以△A ′BC是直角三角形,所以C 在以A ′B 为直径,1为半径的圆上.取A ′B 的中点M ,因为cos ∠A ′BO =14,所以OM 2=1+1-2×1×1×14=32,即OM=62, 所以|c |∈⎣⎡⎦⎤62-1,62+1.9.详细分析:选D.连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45. 10.D11.2 y =±3x12.详细分析:由正四棱锥的俯视图,可得到正四棱锥的直观图如图,则该正四棱锥的正视图为三角形PEF (E ,F 分别为AD ,BC 的中点), 因为正四棱锥的所有棱长均为2, 所以PB =PC =2,EF =AB =2,PF =3, 所以PO =PF 2-OF 2=3-1=2, 所以该正四棱锥的正视图的面积为 12×2×2=2; 正四棱锥的体积为13×2×2×2=423.答案:242313.详细分析:由2a sin B =3b 及正弦定理得2sin ∠BAC ·sin B =3sin B ,所以sin ∠BAC =32. 因为∠BAC 为锐角,所以∠BAC =π3.因为AD 是内角平分线, 所以BD DC =AB AC =c b =32.由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =4+9-2×2×3×12=7,所以BC =7,BD =357.答案:7357 14.详细分析:设数列{a n }的公比为q ,则a 4a 1=q 3=8,所以q =2,所以a n =2×2n -1=2n .设数列{b n }的公差为d ,因为b 3=a 3=23=8,b 5=a 5=25=32,且{b n }为等差数列,所以b 5-b 3=24=2d ,所以d =12,所以b 1=b 3-2d =-16,所以S n =-16n +n (n -1)2×12=6n 2-22n .答案:2n 6n 2-22n15.详细分析:把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,所以不同获奖情况种数为A 44+C 23A 24=24+36=60.答案:6016.详细分析:过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线P A ,连接OA ,易知此时|P A |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|12+22= 5.又|OA |=1,所以|P A |=|OP |2-|OA |2=2.答案:217.详细分析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22所以x 1+x 2=5.答案:518.解:(1)由题意得 f (x )=32sin 2x +12sin x cos x =12sin(2x -π3)+34, 所以函数f (x )的最小正周期T =π. (2)由0≤x ≤π2知,-32≤sin ⎝⎛⎭⎫2x -π3≤1, 所以函数f (x )的取值范围为⎣⎡⎦⎤0,12+34.19.解:(1)证明:连接B 1D 1交A 1C 1于点E ,连接BE ,BD . 因为ABCD 为菱形,所以点M 在BD 上,且ED 1∥BM ,又ED 1=BM ,故四边形ED 1MB 是平行四边形,则MD 1∥BE ,又BE ⊂平面A 1BC 1,MD 1⃘平面A 1BC 1,因此,MD 1∥平面BC 1A 1.(2)由于A 1B 1C 1D 1为菱形, 所以A 1C 1⊥B 1D 1,又ABCD A 1B 1C 1D 1是直四棱柱,有A 1C 1⊥BB 1,则A 1C 1⊥平面BB 1D 1D , 因此,平面BB 1D 1D ⊥平面BC 1A 1.过点M 作平面BB 1D 1D 和平面BC 1A 1交线BE 的垂线,垂足为H ,得MH ⊥平面BC 1A 1. 连接HA 1,则∠MA 1H 是直线MA 1与平面BC 1A 1所成的角.设AA 1=1,因为ABCD 是菱形且∠BAD =120°,则AM =12,MB =32.在Rt △MAA 1中,由AM =12,AA 1=1,得MA 1=52.在Rt △EMB 中,由MB =32,ME=1,得MH =217. 所以sin ∠MA 1H =MH MA 1=210535.20.解:(1)由f (x )=e x -a ln x , 则f ′(x )=e x -ax,f ′(1)=e -a ,切点为(1,e),所求切线方程为y -e =(e -a )(x -1),即(e -a )x -y +a =0.(2)由f (x )=e x -a ln x ,a =-1, 原不等式即为e x +ln x -e -m (x -1)>0. 记F (x )=e x +ln x -e -m (x -1),F (1)=0. 依题意有F (x )>0对任意x ∈(1,+∞)恒成立, 求导得F ′(x )=e x +1x -m ,F ′(1)=e +1-m ,令g (x )=e x +1x -m ,则g ′(x )=e x -1x2,当x >1时,g ′(x )>0,则F ′(x )在(1,+∞)上单调递增,有F ′(x )>F ′(1), 若m ≤e +1,符合题意;若m >e +1,则F ′(1)<0,又F ′(ln m )=1ln m >0,故存在x 1∈(1,ln m ),使F ′(x 1)=0,当1<x <x 1时,F ′(x )<0,F (x )在(1,x 1)上单调递减,F (x )<F (1)=0,舍去. 综上,实数m 的取值范围是(-∞,e +1].21.解:(1)联立⎩⎪⎨⎪⎧y 2=4x2x -y -4=0,解得x =1,4,由图象可知,P (1,-2),易知M (2,0),由题意可设L (2-t ,0),N (2+t ,0),0<t <2, 所以k 1=21-t (t ≠1),k 2=21+t ,所以1k 1+1k 2=1-t 2+1+t2=1,故k 1+k 2=k 1k 2.(2)由(1)得,l P A :2x +(t -1)y +2t -4=0,0<t <2,由 ⎩⎪⎨⎪⎧y 2=4x 2x +(t -1)y +2t -4=0⇒y 2+(2t -2)y +4t -8=0, 得A ((2-t )2,4-2t ),同理可得B ((2+t )2,4+2t ).设A 点到PB 的距离为d 1,C 点到PB 的距离为d 2,所以d 1=|2(2-t )2-(4-2t )-4|5=|2t 2-6t |5, d 1=|2(2+t )2-(4+2t )-4|5=|2t 2+6t |5 所以S △P AB S △PBC =d 1d 2=⎪⎪⎪⎪⎪⎪t -3t +3 =3-t 3+t =63+t-1. 因为0<t <2,所以S △P AB S △PBC的取值范围是⎝⎛⎭⎫15,1. 22.证明:(1)由a 1=1及a n +1=a n 1+a 2n 知a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n 1+a 2n<0, 所以a n +1<a n ,n ∈N *.(2)由1a n +1=1a n +a n , 得1a 2n +1=1a 2n +a 2n +2, 从而1a 2n +1=1a 2n +a 2n+2 =1a 2n -1+a 2n -1+a 2n +2×2 =…=1a 21+a 21+a 22+…+a 2n +2n , 又a 1=1,所以T n=1a2n+1-2n-1,n∈N*.(3)由(2)知,a n+1=1T n+2n+1,由T n≥a21=1,得a n+1≤12n+2.所以,当n≥2时,a n≤12n=22n<2n+n-1=2(n-n-1),由此S n<a1+2[(2-1)+(3-2)+…+(n-n-1)]=1+2(n-1)<2n,又a1=1,故S n<2n.另一方面,由a n=1a n+1-1a n,得S n=1a n+1-1a1≥2n+2-1>2n-1.综上,2n-1<S n<2n,n∈N*.。
阶段质量检测(二) 专题一~二“综合检测”(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设α,β是两个不同的平面,m ,n 是两条不同的直线,则下列命题中是α⊥β的充分不必要条件的是( )A .m ∥α,n ∥β,m ∥nB .m ∥α,n ∥β,m ⊥nC .m ⊥α,n ∥β,m ⊥nD .m ⊥α,n ⊥β,m ⊥n解析:选D 若m ⊥α,n ⊥β,m ⊥n ,则α⊥β,充分性成立;若α⊥β,无法得出m ⊥α,n ⊥β,m ⊥n ,必要性不成立,故选D.2.“sin A >tan A ”是“△ABC 是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选A 若sin A >tan A ,则sin A >sin A cos A ,因为sin A >0,所以1>1cos A,易得-1<cosA <0,所以A ∈π2,π,所以△ABC 为钝角三角形.假设B =2π3,A =π6,△ABC 为钝角三角形,则sin A =12<tan A =33.所以“sin A >tan A ”是“△ABC 是钝角三角形”的充分不必要条件.3.(2019·杭州三校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.23B.43C.83D.163解析:选C 由三视图可知该几何体可以看作是棱长为2的正方体截去一个三棱锥和一个三棱柱后剩余的四棱锥A BCDE ,如图所示,则其体积为23-12×23-13×12×2×2×2=83,故选C.4.(2019·嘉兴、丽水、衢州高三模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在区间⎝ ⎛⎭⎪⎫π4,π3上单调,则ω的最大值是( )A .12B .11C .10D .9解析:选B 由x =-π4为函数f (x )=sin(ωx +φ)的零点,x =π4为函数f (x )=sin(ωx+φ)的图象的对称轴得-π4ω+φ=k 1π,π4ω+φ=k 2π+π2(k 1,k 2∈Z ),则ω=2(k 2-k 1)+1(k 1,k 2∈Z ).①又因为函数f (x )=sin(ωx +φ)在⎝ ⎛⎭⎪⎫π4,π3上单调,所以12·2πω≥π3-π4,即ω≤12.②结合①②得ω的最大值为11,故选B.5.为了得到函数y =sin2x +π3的图象,只需将y =cos 2x 的图象上的每一点( )A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度解析:选B y =cos 2x =sin2x +π2,由y =sin2x +π2的图象向右平移π12个单位长度得到的函数图象的解析式是y =sin2x -π12+π2=sin2x +π3.所以选B.6.已知AG →=λAB →+μAC →(λ,μ∈R ),且A ,B ,C 三点不共线( ) A .若λ=13,μ=13,则G 是△ABC 的重心B .若λ=23,μ=13,则G 是△ABC 的垂心C .若λ=13,μ=23,则G 是△ABC 的内心D .若λ=23,μ=23,则G 是△ABC 的外心解析:选A 如图,设△ABC 中BC 边上的中线为AD ,则AD →=12(AB →+AC →),即AB →+AC →=2AD →.当λ=μ=13时,AG →=13AB →+13AC →,所以AG →=13(AB →+AC →)=23AD →.所以G 为△ABC 的重心,A 正确.当AG →=13AB →+23AC →或AG →=23AB →+13AC →时,G ,B ,C 三点共线,故B 、C 错误;当λ=μ=23时,AG →=23(AB →+AC →)=43AD →,即点G 在中线AD 的延长线上,而外心为三角形三边中垂线的交点,所以G 不一定是△ABC 的外心,D 错误,故选A.7.如图,四棱柱ABCD A 1B 1C 1D 1中,E ,F 分别是AB 1,BC 1的中点.下列结论中,正确的是( )A .EF ⊥BB 1 B .EF ∥平面ACC 1A 1 C .EF ⊥BD D .EF ⊥平面BCC 1B 1解析:选B 如图,取BB 1的中点M ,连接ME ,MF ,延长ME 交AA 1于点P ,延长MF 交CC 1于点Q ,连接PQ .∵E ,F 分别是AB 1,BC 1的中点,∴P 是AA 1的中点,Q 是CC 1的中点,从而可得E 是MP 的中点,F 是MQ 的中点,所以EF ∥PQ ,又PQ ⊂平面ACC 1A 1,EF ⊄平面ACC 1A 1,所以EF ∥平面ACC 1A 1.故选B.8.在正方体ABCD A 1B 1C 1D 1中,点M 是直线AB 1上的动点,点P 是△A 1C 1D 所在平面内的动点,记直线D 1P 与直线CM 所成的角为θ,若θ的最小值为π3,则点P 的轨迹是( )A .圆B .椭圆C .抛物线D .双曲线解析:选A 将空间中线线角的最值问题转化为线面角的问题.点在动,平面没有动,将动变成定.连接CA ,CB 1,可知平面ACB 1∥平面A 1C 1D ,所以CM ∥平面A 1C 1D .所以把CM 平移到平面A 1C 1D 中,直线D 1P 与直线CM 所成角的最小值即为直线D 1P 与平面A 1C 1D 所成的线面角,即原问题转化为直线D 1P 与平面A 1C 1D 所成的线面角为π3.因为点P 是△A 1C 1D 上的动点,所以点P 的轨迹为一个圆(如图所示).9.若向量a ,b 满足|a |=4,b ·(a -2b )=0,则|a -4b |=( ) A .0 B .4 C .8D .12解析:选B 因为b ·(a -2b )=0,所以b 与a -2b 垂直,如图,在Rt △ACB 中,AB →=a ,AC →=2b ,CB →=a -2b ,O 为AB 的中点,则|CO →|=|AO →-AC →|=12a -2b =12|AB →|=2,所以|a -4b |=4.10.如图,矩形ABCD 的边长AB =3,AD =1,以AC 为折痕将△ACD折起,使点D 到达点M 的位置,记AM 与平面ADC 所成角为α,记二面角M AD C 为β,记∠MAB 为γ,则在翻折过程中一定正确的结论是( )A .α≤β≤γB .β≤α≤γC .γ≤α≤βD .α≤γ≤β解析:选A 过点M 作平面ABCD 的垂线,垂足为H ,连接AH ,过点H 分别作直线AD 和AB 的垂线,垂足分别为E ,F ,连接ME ,MF ,则sin α=MH AM ,sin β=MH EM ,sin γ=MF AM.在Rt △MEA 中,EM <AM ,又α,β均为锐角,故α<β,而当平面ACM 与平面ABC 重合时,α=β,故α≤β.而在Rt △MHF 中,MF >MH ,故α<γ,又当点H 落到AB 上时,MF =MH ,此时α=γ,故α≤γ.又因为cos β=EH EM ,cos γ=AFAM,而EH =AF ,EM ≤AM ,故β≤γ. 综上,α≤β≤γ,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11.已知tan α=2,则tan α+π4=________,cos 2α=________.解析:∵tan α=2,∴tan α+π4=1+tan α1-tan α=-3,∴cos 2α=cos 2αcos 2α+sin 2α=11+tan 2α=15. 答案:-3 1512.某几何体的三视图如图所示,则该几何体的体积是______,表面积是________.解析:由三视图可知,该几何体是以四边形ABB 1A 1为底面的四棱柱,根据三视图易求得该几何体的体积V =1+22×2×2=6.∵四边形ABB 1A 1为直角梯形,且A 1B 1=1,AA 1=AB =2,∴BB 1=5, ∴表面积S =2×2+2×2+1×2+2×5+2×(1+2)×22=16+2 5.答案:6 16+2 513.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若a (1-cos C )=c cos A ,且|BA →+BC →|=8,则△ABC 面积的最大值是________.解析:由a (1-cos C )=c cos A 及正弦定理得sin A (1-cos C )=sin C cos A ,移项得sin A =sin C cos A +sin A cos C =sin(A +C )=sin B ,因为A ,B ∈(0,π),所以A =B ,所以a =b ,又a 2=b 2+c 2-2bc cos A ,所以c =2b cos A .设AC 边上的中线为BD ,由|BA →+BC →|=8得到BD 的长为4,由余弦定理得16=c 2+b 22-2c ×b 2cos A ,所以b 2=641+8cos 2A ,所以△ABC 的面积S =12bc sin A =64sin A cos Asin 2A +9cos 2A=64tan A +9tan A.由基本不等式得S ≤323,当且仅当tan A =3时,等号成立.所以△ABC 面积的最大值为323.答案:32314.(2019·绍兴适应性考试)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c .若cos A =13,b =23c ,且△ABC 的面积是2,则b =________,sin C =________. 解析:由cos A =13得sin A =1-cos 2A =223,则△ABC 的面积为12bc sin A =12b ×3b 2×223=2,解得b =2,则c =322,由余弦定理得a = b 2+c 2-2bc cos A =322=c ,所以sinC =sin A =223. 答案: 222315.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P ABCD ,已知其体积为8,AB =2,BC =3,则该“阳马”的最长侧棱长等于________,表面积等于________.解析:由题意知,该“阳马”的直观图如图所示.由体积V =13×AB ×BC ×PA =8,可知高PA =4,∴该四棱锥的最长侧棱长PC =AC 2+PA 2=29,表面积为2×3+12×(2×4+3×4+2×5+3×25)=21+3 5.答案:29 21+3 516.已知向量a ,b 满足|a -b |=|a +3b |=2,则|b |的取值范围是________. 解析:法一:如图,作OA →=a ,OC →=b ,OB →=-3b ,则|CA →|=|a -b |=2,|BA →|=|a +3b |=2.所以0≤|BC →|=|4b |≤4,故有0≤|b |≤1. 法二:由|a -b |=|a +3b |=2,得⎩⎪⎨⎪⎧|a |2+|b |2-2a ·b =4,|a |2+9|b |2+6a ·b =4,则⎩⎪⎨⎪⎧|a |2+3|b |2=4,-|a |cos θ=|b |,其中θ表示向量a 与向量b 的夹角,当cos θ≠0时,有|a |=-|b |cos θ,代入|a |2+3|b |2=4,有-|b |cos θ2+3|b |2=4,所以|b |2=41cos 2θ+3,因为0<cos 2θ≤1,所以0<|b |2≤1;而当cos θ=0时,|a |=2,|b |=0.故有0≤|b |≤1.答案:[0,1]17.在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点M 为AB 1的中点,点P 为体对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP +PQ 的最小值为________.解析:由题意,要求MP +PQ 的最小值,就是求点P 到底面ABCD的距离的最小值与MP 的最小值之和.Q 是P 在底面ABCD 上的射影时,点P 到底面的距离最小,此时Q 在AC 上,且PQ ⊥AC .展开三角形ACC 1与三角形AB 1C 1,使它们在同一个平面上,如图,易知∠B 1AC 1=∠C 1AC =30°,AM =32,PQ ⊥AC ,可知当MQ ⊥AC ,即P ,Q ,M 三点共线时,MP +PQ 最小,最小值为32sin 60°=34. 答案:34三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分14分)(2019·金华十校期末)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求f ⎝⎛⎭⎪⎫7π12的值; (2)已知锐角△ABC ,f (A )=1,S △ABC =12,b +c =22,求边长a .解:(1)∴f (x )=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6, ∴f ⎝⎛⎭⎪⎫7π12=2sin π=0.(2)由f (A )=2sin ⎝ ⎛⎭⎪⎫2A -π6=1,得A =π6. 则⎩⎪⎨⎪⎧S △ABC =14bc =12,b +c =22,即有⎩⎪⎨⎪⎧bc =2,b 2+c 2=4,∴a 2=b 2+c 2-2bc cos A =4-2×2×32=4-2 3. 故a = 4-23=3-1.19.(本小题满分15分)在三棱柱ABC A 1B 1C 1中,∠ACB =90°,AC 1⊥平面ABC ,BC =CA =AC 1.(1)求证:AC ⊥平面AB 1C 1; (2)求二面角A 1BB 1C 的余弦值.解:(1)证明:在三棱柱ABC A 1B 1C 1中,BC ∥B 1C 1.因为∠ACB =90°,所以AC ⊥BC ,所以AC ⊥B 1C 1.因为AC 1⊥平面ABC ,AC ⊂平面ABC ,所以AC 1⊥AC ,因为AC 1∩B 1C 1=C 1,AC 1⊂平面AB 1C 1,B 1C 1⊂平面AB 1C 1,所以AC ⊥平面AB 1C 1.(2)法一:因为点A 1在平面A 1ABB 1内,故只需求二面角A BB 1C 的平面角.分别取BB 1,CC 1的中点M ,N ,连接AM ,MN ,AN ,由(1)可知,AB 1=AC 21+B 1C 21=AC 2+BC 2=AB ,因为M 为BB 1的中点,所以AM ⊥BB 1.因为AC 1⊥平面ABC ,BC ⊂平面ABC ,所以AC 1⊥BC ,又因为∠ACB =90°,所以AC ⊥BC ,因为AC ∩AC 1=A ,AC ⊂平面ACC 1,AC 1⊂平面ACC 1,所以BC ⊥平面ACC 1,因为CC 1⊂平面ACC 1,所以BC ⊥CC 1,即平行四边形BCC 1B 1为矩形,因为M ,N 分别为BB 1,CC 1的中点,所以MN ⊥BB 1,所以∠AMN 为二面角A BB 1C 的平面角. 设BC =CA =AC 1=1,则AB =AB 1=BB 1=2,MN =1,AN =22,所以AM =62. 由余弦定理得,cos ∠AMN =12+⎝⎛⎭⎪⎫622-⎝ ⎛⎭⎪⎫2222×1×62=63, 所以二面角A 1BB 1C 的余弦值为63. 法二:如图所示,以A 为原点,分别以AC 所在直线为x 轴,底面内AC 的垂线为y 轴,AC 1所在直线为z 轴建立空间直角坐标系,设BC =CA =AC 1=1,由题意知A (0,0,0),B (1,1,0),C (1,0,0),B 1(0,1,1),所以AB →=(1,1,0),AB →1=(0,1,1),CB →=(0,1,0),CB →1=(-1,1,1).设平面A 1B 1BA 的法向量为m =(x 1,y 1,z 1),平面BB 1C 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧ m ·AB →=0,m ·AB →1=0,得⎩⎪⎨⎪⎧x 1+y 1=0,y 1+z 1=0,可取m =(1,-1,1).由⎩⎪⎨⎪⎧n ·CB →=0,n ·CB 1→=0,得⎩⎪⎨⎪⎧y 2=0,-x 2+y 2+z 2=0,可取n =(1,0,1).于是|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,由题意知,所求二面角的平面角为锐角, 故二面角A 1BB 1C 的余弦值为63.20.(本小题满分15分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin C -3sin Bsin A +sin B =a -bc. (1)求角A 的大小;(2)若2sin A sin B =1+cos C ,∠BAC 的平分线与BC 交于点D ,与△ABC 的外接圆交于点E (异于点A ),AE →=λAD →,求λ的值.解:(1)因为sin C -3sin B sin A +sin B =a -bc ,所以由正弦定理得(c -3b )c =(a +b )(a -b ), 即a 2=b 2+c 2-3bc , 即cos A =32,所以A =30°. (2)因为2sin A sin B =1+cos C =1-cos(A +B )=1-cos A cos B +sin A sin B , 所以cos(A -B )=1,从而A =B , 所以B =30°,C =120°.如图,不妨设AC =1,O 为△ABC 外接圆圆心, 则AO =1,AB =3,∠ADC =∠EAO =45°. 在△ADC 中,由正弦定理,得ADsin 120°=AC sin ∠ADC =1sin 45°.即AD =62. 在△AOE 中,由∠EAO =∠OEA =45°,OA =1, 从而AE = 2.所以λ=AE AD =233.21.(本小题满分15分)如图,已知四棱锥A BCDE 中AB =BC =2,∠ABC =120°,AE =26,CD ∥BE ,BE =2CD =4,∠EBC =60°.(1)求证:EC ⊥平面ABC ;(2)求直线AD 与平面ABE 所成角的正弦值.解:(1)证明:在△ABC 中,由余弦定理得AC =23, 在△EBC 中,由余弦定理得EC =23, 由CE 2+CA 2=EA 2,CE 2+CB 2=EB 2,得EC ⊥CA ,EC ⊥CB ,又CA ∩CB =C ,所以EC ⊥平面ACB .(2)如图,取AC 中点O ,连接BO ,以C 为坐标原点,CA ,CE 所在直线分别为x ,z 轴,以过点C 且平行于BO 的直线为y 轴,建立空间直角坐标系C xyz ,则C (0,0,0),E (0,0,23),A (23,0,0),B (3,1,0), 所以AB →=(-3,1,0),AE →=(-23,0,23), BE →=(-3,-1,23),CD →=12BE →=⎝ ⎛⎭⎪⎫-32,-12,3, 所以D ⎝ ⎛⎭⎪⎫-32,-12,3,AD →=⎝ ⎛⎭⎪⎫-532,-12,3, 设n =(x ,y ,z )是平面ABE 的法向量, 则⎩⎪⎨⎪⎧AB →·n =0,AE →·n =0,即⎩⎨⎧-3x +y =0,-23x +23z =0,取x =1,则y =3,z =1,即n =(1,3,1), 记直线AD 与平面ABE 所成角为α,则sin α=|cos 〈AD →,n 〉|=|AD →·n ||AD →|·|n |=33055,即直线AD 与平面ABE 所成角的正弦值为33055. 22.(本小题满分15分)如图,在三棱台ABC A 1B 1C 1中,AB =4,BC =2,CA =23,B 1C 1=1,CC 1=3,BC ⊥CC 1.D 是AC 上的一点,满足AD =3DC ,过点B 1,C 1,D 的平面交AB 于点F .(1)求证:BC ∥DF ;(2)若二面角A BC B 1的平面角的大小为60°,求直线AB 1与平面B 1C 1DF 所成角的正切值. 解:(1)证明:因为ABC A 1B 1C 1为三棱台, 所以BC ∥B 1C 1,又因为BC ⊄平面B 1C 1DF ,B 1C 1⊂平面B 1C 1DF , 所以BC ∥平面B 1C 1DF ,又因为BC ⊂平面ABC ,平面ABC ∩平面B 1C 1DF =DF ,所以BC ∥DF . (2)因为AB =4,BC =2,CA =23, 所以AB 2=BC 2+CA 2,所以BC ⊥CA , 又因为BC ⊥CC 1,平面ABC ∩平面BCB 1=BC ,所以∠ACC 1是二面角A BC B 1的平面角, 即∠ACC 1=60°,又因为CD =14CA =32,CC 1=3,所以C 1D =CC 21+CD 2-2CC 1·CD cos 60°=32, 所以C 1D 2+CD 2=CC 21,所以∠C 1DC =90°,即AD ⊥DC 1,因为BC ∥DF ,BC ⊥AC ,所以AD ⊥DF , 又因为DC 1∩DF =D ,DC 1⊂平面B 1C 1DF , DF ⊂平面B 1C 1DF ,所以AD ⊥平面B 1C 1DF ,连接DB 1,则∠AB 1D 是直线AB 1与平面B 1C 1DF 所成的角.易知BC ⊥平面ACC 1A 1,所以B 1C 1⊥平面ACC 1A 1, 因为DC 1⊂平面ACC 1A 1,所以B 1C 1⊥DC 1, 又因为DC 1=32,B 1C 1=1,所以DB 1=132,所以tan ∠AB 1D =AD DB 1=332132=33913.所以直线AB 1与平面B 1C 1DF所成角的正切值为33913.。
第一单元 高考中档大题突破解答题02: 数 列基本考点——等差、等比数列的基本运算1.等差数列的通项公式及前n 项和公式 a n =a 1+(n -1)d ;S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的通项公式及前n 项和公式 a n =a 1qn -1(q ≠0);S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).3.等差(比)数列的基本运算在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (或q )的方程组求解,但要注意消元法及整体代换,以减少计算量.1.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和. 已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. (1)解:设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n . (2)解:由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.2.(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)·d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧ d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0. 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.常考热点——数列的综合问题1.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列 {b n }对应项相乘({a n ·b n })型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比. ②把两个和的形式错位相减. ③整理结果形式.[提醒] 错位相减法求和时,易漏掉减数式的最后一项. 2.裂项相消求和的原理及注意问题(1)原理:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)注意:在相加抵消过程中,有的是依次抵消,有的是间隔抵消,特别是间隔抵消时要注意规律性.(2017·濮阳一模)设等差数列{a n }的前n 项和S n 满足S 5=15,且2a 2,a 6,a 8+1成公比大于1的等比数列.阿凡题1083958(1)求数列{a n }的通项公式;(2)设b n =2n ·a n ,求数列{b n }的前n 项和T n .[思路点拨] (1)利用等差数列的首项与公差通过数列的和求出a 3,利用2a 2,a 6,a 8+1成公比大于1的等比数列.求出公差,然后求解数列的通项公式.(2)化简数列的通项公式,利用错位相减法求解数列的和即可. 【解】 (1)设等差数列{a n }的首项为a 1,公差为d ,因为S 5=15, 所以a 3=3,又因为2a 2,a 6,a 8+1成公比大于1的等比数列.所以a 26=2a 2(a 8+1),即:(a 3+3d )2=2(a 3-d )(a 3+5d +1),所以d =1或d =-1519(舍去),所以a 1=a 3-2d =3-2=1.所以a n =n , 数列{a n }的通项公式为a n =n ; (2)由(1)可知:设b n =2n ·a n =n ·2n ,T n =1×2+2×22+3×23+…+n ·2n ①; ①×2可得:2T n =1×22+2×23+3×24+…+(n -1)2n +n ·2n +1 ②,①-②得:-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∴T n =(n -1)2n +1+2.用错位相减法求和的注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .阿凡题1083959(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.【解】 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时, a 1+3a 2+…+(2n -3)a n -1=2(n -1), 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1,则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.(2017·云南统检)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n=(n +1)a n .(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫4a n (a n +2)的前n 项和为T n ,求证:12≤T n <1.(1)解:因为2S n =(n +1)a n , 当n ≥2时,2S n -1=na n -1,两式相减,得2a n =(n +1)a n -na n -1,即(n -1)a n =na n -1, 所以当n ≥2时,a n n =a n -1n -1,所以a n n =a 11=2,即a n =2n (n ≥2).(2)证明:由(1)知a n =2n ,令b n =4a n (a n +2),n ∈N *,所以b n =42n (2n +2)=1n (n +1)=1n -1n +1.所以T n =b 1+b 2+…+b n即T n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1.因为1n +1>0,所以1-1n +1<1.显然当n =1时,T n 取得最小值12.所以12≤T n <1.2.(2017·株洲二模)数列{a n }的通项a n 是关于x 的不等式x 2-x <nx 的解集中正整数的个数.f (n )=1a n +1+1a n +2+…+1a n +n.(1)求数列{a n }的通项公式;(2)若b n =a n2n ,求数列{b n }的前n 项和S n ;(3)求证:对n ≥2,且n ∈N *,恒有712≤f (n )<1. (1)解:x 2-x <nx 等价于x (x -n -1)<0,解得x ∈(0,n +1),其中有正整数n 个,于是a n =n .(2)解:由(1)得b n =n 2n =n ·⎝⎛⎭⎫12n , S n =b 1+b 2+…+b n =1×12+2×⎝⎛⎭⎫122+…+n ×⎝⎛⎭⎫12n ,12S n =1×⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n +1, 两式相减得12S n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1=1-⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1, 故S n =2-⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n . (3)证明:f (n )=1a n +1+1a n +2+…+1a n +n=1n +1+1n +2+…+1n +n <1n +1n+…+1n =1.由f (n )=1a n +1+1a n +2+…+1a n +n =1n +1+1n +2+…+1n +n ,知f (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2,于是f (n +1)-f (n )=12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0,故f (n +1)>f (n ),∴当n ≥2,且n ∈N *时,f (n )为增函数, ∴f (n )≥f (2)=712,综上可知712≤f (n )<1.1.(2017·西安八校联考)设等差数列{a n }的前n 项和为S n ,已知a 5=-3,S 10=-40. (1)求数列{a n }的通项公式;(2)若从数列{a n }中依次取出第2,4,8,…,2n ,…项,按原来的顺序排成一个新数列{b n },求数列{b n }的前n 项和T n .解:(1)∵a 5=a 1+4d =-3, S 10=10a 1+45d =-40, 解得a 1=5,d =-2. ∴a n =-2n +7.(2)依题意,b n =a 2n =-2×2n +7=-2n +1+7,故T n =-(22+23+…+2n +1)+7n=-22-2n +1×21-2+7n=4+7n -2n +2.2.(2017·九江二模)各项均为正数的等比数列{a n }的前n 项和为S n ,满足S n +2=4S n +6,n ∈N *.(1)求a 1及通项公式a n ;(2)若b n =na n,求数列{b n }的前n 项和T n .解:(1)∵各项均为正数的等比数列{a n }的前n 项和为S n , 满足S n +2=4S n +6,n ∈N *,∴n =1时,S 3=4S 1+6,∴a 1+a 2+a 3=4a 1+6,① n =2时,a 1+a 2+a 3+a 4=4(a 1+a 2)+6,② 由②-①,得a 4=4a 2=a 2q 2, ∴q 2=4,∵q >0,∴q =2, 由①式知a 1(1+q +q 2)=4a 1+6,∴a 1(1+2+4)=4a 1+6,3a 1=6,解得a 1=2, ∴a n =2n .(2)∵b n =n a n =n 2n ,∴T n =12+222+323+…+n2n ,③∴12T n =122+223+324+…+n -12n +n2n +1,④ 由③-④,得12T n =12+122+123+…+12n -n 2n +1=12⎝⎛⎭⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,∴T n =2-n +22n .3.(2017·开封二模)已知正项数列{a n }的前n 项和为S n ,S n =12a n (a n +1),n ∈N *.(1)求通项a n ;(2)若b n =1S n,求数列{b n }的前n 项和T n .解:(1)a 1=S 1=12a 1(a 1+1),a 1>0,解得a 1=1,∀n ∈N *,a n +1=S n +1-S n =12a n +1(a n +1+1)-12a n (a n +1),移项整理并因式分解得: (a n +1-a n -1)(a n +1+a n )=0, 因为{a n }是正项数列,所以a n +1-a n -1=0,a n +1-a n =1,{a n }是首项a 1=1,公差为1的等差数列,a n =n .(2)由(1)得S n =12a n (a n +1)=12n (n +1),b n =1S n =2n (n +1)=2n -2n +1,T n =b 1+b 2+…+b n =⎝⎛⎭⎫21-22+⎝⎛⎭⎫22-23+…+⎝⎛⎭⎫2n -2n +1, =21-2n +1=2nn +1. 4.(2017·涪陵二模)数列{a n }满足:a 1=2,a 2=3,a n +2=3a n +1-2a n (n ∈N *). (1)记d n =a n +1-a n ,求证:数列{d n }是等比数列;(2)若数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,证明S n <32.证明:(1)∵a n +2=3a n +1-2a n , ∴d n +1d n =a n +2-a n +1a n +1-a 1=3a n +1-2a n -a n +1a n +1-a n =2a n +1-2a na n +1-a n=2, ∴数列{d n }是等比数列,∵d 1=a 2-a 1=1,q =2, ∴d n =2n -1.(2)∵d n =2n -1,d n =a n +1-a n ,∴a n +1-a n =2n -1,∴a 2-a 1=20,a 3-a 2=21,a 4-a 3=22,…,a n -a n -1=2n -2,∴累加得:a n -a 1=20+21+…+2n -2=1-2n -11-2=2n -1-1,∴a n =2n -1+1.∴1a n =12n -1+1<12n -1(n ≥2),n =1时,S n =12<32成立; ∴当n ≥2时,S n =12+12+122+…+12n -1=12+12⎝⎛⎭⎫1-12n -11-12=32-12n -1<32. 5.(2017·江西重点中学一模)数列{a n }满足a 1=1,a 2=5,a n +2=2a n +1-a n +1 (1)设b n =a n +1-a n ,证明{b n }是等差数列,并求{b n }的通项公式; (2)设c n =tan b n ·tan b n +1,求数列{c n }的前n 项和S n . (1)证明:由a n +2=2a n +1-a n +1得, a n +2-a n +1=a n +1-a n +1,由b n =a n +1-a n 得,b n +1=b n +1,即b n +1-b n =1, 又b 1=a 2-a 1=5-1=4,所以{b n }是首项为4,公差为1的等差数列.且b n =b 1+(n -1)d =4+n -1=n +3;(2)解:c n =tan b n ·tan b n +1=tan (n +3)·tan (n +4), 由tan[(n +4)-(n +3)]=tan (n +4)-tan (n +3)1+tan (n +4)tan (n +3),可得tan(n +3)·tan(n +4)=tan (n +4)-tan (n +3)tan 1-1,即有数列{c n }的前n 项和S n =tan 5-tan 4tan 1+tan 6-tan 5tan 1+…+tan (n +4)-tan (n +3)tan 1-n=tan (n +4)-tan 4tan 1-n .6.(2017·南充二模)设各项均为正数的数列{a n }和{b n }满足:对任意n ∈N *,a n ,b n ,a n+1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,b 1=2,a 2=3. (1)证明数列{b n }是等差数列; (2)求数列{1a n}前n 项的和.(1)证明:∵对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列, ∴2b n =a n +a n +1,a 2n +1=b n ·b n +1,a n >0, ∴a n +1=b n b n +1, ∴2b n =b n -1b n +b n b n +1, ∴2b n =b n -1+b n +1. ∴数列{b n }是等差数列.(2)解:a 1=1,b 1=2,a 2=3.由(1)可得:32=2b 2,解得:b 2=92.∴公差d =b 2-b 1=92-2=22. b n =2+22(n -1)=2×n +12. ∴b n =(n +1)22.∴a 2n +1=b n ·b n +1=(n +1)22×(n +2)22,a n +1>0.∴a n +1=(n +1)(n +2)2,∴n ≥2时,a n =n (n +1)2.n =1时也成立.∴a n =n (n +1)2.n ∈N *.∴1a n =2⎝⎛⎭⎫1n -1n +1. ∴数列{1a n}前n 项的和=2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =2⎝⎛⎭⎫1-1n +1=2n n +1.。
解答题规范练(二)1.已知函数f (x )=23sin x cos x -2cos 2x +1. (1)求函数f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若满足f (B )=2,a =8,c =5,求cos A 的值.2.如图,四棱锥P ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H PB C 的余弦值.3.已知函数f (x )=ln xx.(1)若关于x 的不等式f (x )≤m 恒成立,求实数的m 最小值; (2)对任意的x 1,x 2∈(0,2)且x 1<x 2,若存在x 0∈(x 1,x 2),使得f ′(x 0)=f (x 2)-f (x 1)x 2-x 1,求证:x 0<x 1x 2.4.已知抛物线C:y2=4x上动点P(x1,y1),点A在射线x-2y+8=0(y≥0)上,满足P A的中点Q在抛物线C上.(1)若直线P A的斜率为1,求点P的坐标;(2)若射线l上存在不同于A的另一点B,使得PB的中点也在抛物线C上,求|AB|的最大值.5.已知数列{a n}的各项均为正数,且满足a21+a22+a23+…+a2n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)若a21a2+a1+a22a3+a2+a23a4+a3+…+a2na n+1+a n>n-22(n∈N*,n≥2)恒成立,求n的取值范围.解答题规范练(二)1.解:(1)f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6,由题意2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得k π-π6≤x ≤k π+π3,k ∈Z ,所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (B )=2sin ⎝⎛⎭⎫2B -π6=2,所以B =π3,所以b 2=a 2+c 2-2ac cos B =49, 解得b =7.所以cos A =b 2+c 2-a 22bc =17.2.解:(1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,所以CD =2,所以BC ⊥BD . 因为PD ⊥底面ABCD ,所以PD ⊥BC , 又PD ∩BD =D ,所以BC ⊥平面PBD , 所以平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角, 所以tan ∠BPC =63, 所以PB =3,PD =1.由CH →=2HD →及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎫0,23,0.设平面HPB 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧HP →·n =0,HB →·n =0,即⎩⎨⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2). 设平面PBC 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧PB →·m =0,BC →·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0,取x 2=1,则m =(1,1,2). 又cos 〈m ,n 〉=m ·n |m ||n |=-217,结合图形知,二面角H PBC 的余弦值为217. 3.解:(1)由f ′(x )=1-ln xx 2=0解得x =e. 当x ∈(0,e)时,f ′(x )>0,f (x )单调递增; 当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减; 所以f (x )max =f (e)=1e.因为关于x 的不等式f (x )≤m 恒成立, 所以f (x )max ≤m ,所以m ≥1e ,即m 的最小值为1e.(2)证明:因为对任意的x 1,x 2∈(0,2),若存在x 0∈(x 1,x 2),使得f ′(x 0)=f (x 2)-f (x 1)x 2-x 1,即1-ln x 0x 20=f (x 2)-f (x 1)x 2-x 1, 所以1-ln x 0x 20(x 2-x 1)-[f (x 2)-f (x 1)]=0.令F (x )=1-ln xx 2(x 2-x 1)-[f (x 2)-f (x 1)],则有F (x 0)=0,所以F ′(x )=2ln x -3x 3(x 2-x 1),当x ∈(0,2)时,2ln x -3<2ln 2-3<0, 又有x 2-x 1>0,所以F ′(x )<0,即F (x )在(0,2)上是减函数. 又因为F (x 1x 2)=1-ln x 1x 2x 1x 2(x 2-x 1)-[f (x 2)-f (x 1)]=1-ln x 1x 2x 1x 2(x 2-x 1)-⎝⎛⎭⎫ln x 2x 2-ln x 1x 1=1x 1⎝⎛⎭⎫1+ln x 1x 2-1x 2⎝⎛⎭⎫1+ln x 2x 1,令x 2x 1=t >1,所以F (x 1x 2) =1x 2⎣⎡⎦⎤t ·⎝⎛⎭⎫1-12ln t -⎝⎛⎭⎫1+12ln t , 设h (t )=t ·⎝⎛⎭⎫1-12ln t -⎝⎛⎭⎫1+12ln t , 所以h ′(t )=t -t ln t -12t,设k (t )=t -t ln t -1, 所以k ′(t )=-ln t <0(t >1), 所以k (t )在(1,+∞)上是减函数,所以k (t )<k (1)=0.所以h ′(t )<0,所以h (t )在(1,+∞)上是减函数, 所以h (t )<h (1)=0.所以F (x 1x 2)=1x 2h (t )<0=F (x 0),因为F (x )在(0,2)上是减函数,所以x 0<x 1x 2.4.解:(1)设直线P A 的方程为y =x +b ,则A (8-2b ,8-b ).设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =x +b y 2=4x得y 2-4y +4b =0,所以 Δ=16-16b >0,b <1,⎩⎪⎨⎪⎧y 1+y 2=4y 1y 2=4b,又y 1+8-b =2y 2,解得 ⎩⎪⎨⎪⎧b =0y 1=0y 2=4或⎩⎪⎨⎪⎧b =-24y 1=-8y 2=12, 经检验都是方程的解,所以P (0,0)或P (16,-8).(2)设A (2t 1-8,t 1),B (2t 2-8,t 2),t 1,t 2≥0.则由P A 的中点Q ⎝⎛⎭⎫y 218+t 1-4,t 1+y 12在抛物线C 上,可得⎝⎛⎭⎫t 1+y 122=4⎝⎛⎭⎫y 218+t 1-4,整理得t 21+(2y 1-16)t 1+64-y 21=0, 同理t 22+(2y 1-16)t 2+64-y 21=0,所以t 1,t 2是方程t 2+(2y 1-16)t +64-y 21=0的两个不相等的非负根.所以⎩⎪⎨⎪⎧Δ=(2y 1-16)2-4(64-y 21)>0t 1+t 2=16-2y 1>0t 1t 2=64-y 21≥0,所以-8≤y 1<0.于是|AB |=5|t 1-t 2|=252y 21-16y 1≤325,当且仅当y 1=-8时取等号. 所以|AB |的最大值为32 5.5.解:(1)由题设a n >0,当n =1时,a 1=2;当n ≥2时,a 2n =2n -2n -1=2n -1,所以a n =2n -12.又a 1=2不满足a n =2n -12,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =12n -12,n ≥2.(2)由(1)知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =12n -12,n ≥2,故a 2na n +1+a n =2n -1(2)n +(2)n -1=2n -1(2)n -1·(2+1)=(2-1)·2n -12(n ≥2),记S n =a 21a 2+a 1+a 22a 3+a 2+a 23a 4+a 3+…+a 2n a n +1+a n , 则当n ≥2时,S n =22+(2-1)[2+(2)2+…+(2)n -1]=22+(2-1)·2[1-(2)n -1]1-2=2n 2-22,故S n=⎩⎨⎧22,n =12n 2-22,n ≥2.当n ∈N *,n ≥2时,要使得2n 2-22>n -22恒成立,即2n >n 2恒成立. 由于当n =4时,2n =n 2,考察函数f (x )=2x -x 2的单调性,易证当x >4时,函数f (x )=2x-x 2单调递增,且x =4时,f (x )=0,所以当n ≥5时,a 21a 2+a 1+a 22a 3+a 2+a 23a 4+a 3+…+a 2na n +1+a n >n -22恒成立,故所求n 的取值范围是n ≥5.。