Z-空间上的有界线性泛函的性质
- 格式:pdf
- 大小:152.18 KB
- 文档页数:3
泛函数泛函数又称泛函,通常实(复)值函数概念的发展。
通常的函数在Rn或Cn(n是自然数)中的集合上定义。
泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。
通俗地说,泛函数是以函数作为变元的函数。
泛函数概念的产生与变分学问题的研究发展有密切关系。
设Ω为R中的区域,Г1表示边界嬠Ω的片断,表示一函数集合。
考虑对应,式中F为具有2n+1个自变数的函数:为寻求J(u)的局部极值,在一定条件下取J(u)的加托变分。
如果在u=u0达到局部极值,则u0适合欧拉方程δJ(u)=0。
在应用中,常以数学或物理的某个微分方程为背景产生一定泛函数,使原问题化成泛函数极值问题。
当代分析学中,变分方法有广泛应用。
一般把问题化成Tx=0的形式,即对应于某泛函数φ的欧拉方程,其中φ定义在一巴拿赫空间X中的开集S上且加托可微:算子T 称为梯度算子,φ称为T 的场位。
人们常遇到二阶微分系统,由此产生二次泛函数极值问题,是当代变分法常见的研究对象。
泛函数φ:S嶅X→R(X 为拓扑空间)称为在x∈S处下半连续,如果对每个实数r<φx,有x的邻域U(x),使得r<φz,凬z∈U(x)∩S。
称φ在x∈S处下半序列连续,如果对每个序列。
其连续性及有界性如同对算子相应的性质所做的规定。
设φ是定义在线性集合S上的实(复)值泛函数。
如果φ(x+y)=φ(x)+φ(y),φ称为加性的;如果φ(λx)=λφ(x),λ∈R(C)称为齐性的;如果同时有加性及齐性称为线性的。
当φ取实值时,加性得放松为次加性,其定义为:φ(x+y)≤φ(x)+φ(y);齐性得放松为正齐性,其定义为:ƒ(λx)=λƒ(x)(λ≥0);如果同时有次加性及齐性,则称φ具有次线性;如果对于λ∈(0,1),有φ(λx+(1-λ)y)≤λφ(x)+(1-λ)φ(y),则称φ为凸的;如果当x≠y时上式中的≤必为<,则称φ为严格凸的。
在一些问题中,容许凸泛函数φ取值+∞,但φ扝+∞,这时称φ为真凸的。
数学中的泛函分析和函数空间泛函分析是数学中的一个分支,主要研究数学分析中的函数空间及其上的线性算子。
函数空间是指由一组函数构成的集合,可以是普通的实数或复数函数,也可以是更为抽象的函数集合。
泛函分析在多个领域中都有广泛应用,如物理、工程、机器学习等。
一、函数空间的定义和性质函数空间是一组函数的集合,它们具有特定的性质。
其中最重要的性质是线性性,即两个函数的线性组合也必须属于该函数空间。
此外,函数空间通常还需要满足几个基本的性质:闭合性、完备性和有界性。
闭合性指的是某个函数空间上的任意线性组合以及极限都必须在该空间中,否则该函数空间不是闭合的。
完备性指的是该函数空间中的任意Cauchy序列必须收敛于该函数空间中的某个函数。
有界性指的是函数空间中的所有函数必须有界。
二、典型的函数空间1. Lp空间Lp空间是函数空间中的一种,它包含了所有的可测函数,并且这些函数的p次方可积,如L2空间就是二次可积函数的集合。
Lp 空间的基本性质是线性性、闭合性和完备性。
2. Sobolev空间Sobolev空间是一种典型的函数空间,它包含了所有具有有限导数的函数。
Sobolev空间的重要性在于它是函数空间中最为广泛应用的一个,特别是在偏微分方程的研究中。
3. Hilbert空间Hilbert空间是一种基于内积定义的函数空间,它是完备的内积空间。
Hilbert空间拥有了向量空间的所有性质,同时还具有内积的性质,它的基本性质是线性性、闭合性、完备性和有界性。
三、函数空间上的线性算子函数空间上的线性算子是泛函分析中研究的重要内容之一,它们是一类将一个函数映射到另一个函数的算子。
函数空间上的线性算子具有很多重要的性质,例如连续性、可逆性、紧性等。
在实际应用中,函数空间上的线性算子非常重要。
例如,在机器学习中,神经网络模型可以看作是函数空间上的线性算子,即将输入数据映射到输出空间中的函数。
四、总结泛函分析是数学中的一个重要分支,它主要研究的是函数空间及其上的线性算子。
泛函分析知识总结泛函分析知识总结与举例、应⽤学习泛函分析主要学习了五⼤主要内容:⼀、度量空间和赋范线性空间;⼆、有界线性算⼦和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算⼦的谱。
本⽂主要对前⾯两⼤内容进⾏总结、举例、应⽤。
⼀、度量空间和赋范线性空间(⼀)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧⽒空间n R (有限维空间)的推⼴,所以学好它有助于后⾯知识的学习和理解。
1.度量定义:设X 是⼀个集合,若对于X 中任意两个元素x ,y,都有唯⼀确定的实数d(x,y)与之对应,⽽且这⼀对应关系满⾜下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (⾮负性) 2°d(x,y)= d(y,x) (对称性)3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常⽤的⽅法)注意:⑴定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满⾜1°、2°、3°都称为度量。
这⾥“度量”这个名称已由现实⽣活中的意义引申到⼀般情况,它⽤来描述X 中两个事物接近的程度,⽽条件1°、2°、3°被认为是作为⼀个度量所必须满⾜的最本质的性质。
⑵度量空间中由集合X 和度量函数d 所组成,在同⼀个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶集合X 不⼀定是数集,也不⼀定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷在称呼度量空间(X,d)时可以省略度量函数d ,⽽称“度量空间X ” 。
泛函中三大定理的认识泛函中三大定理及其应用泛函分析科学体系的建立得益于20世纪初关于巴拿赫空间的三大基本定理,即Hahn-Banach 定理,共鸣定理和开映射、逆算子及闭图像定理。
其中:一致有界定理,该定理描述一族有界算子的性质;谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学数学描述中起核心作用;罕-巴拿赫定理(Hahn-Banach Theorem )研究了如何保范地将某算子从某子空间延拓到整个空间。
另一个相关结果则是描述对偶空间非平凡性的;开映射定理和闭图像定理。
1、Hahn-Banach 延拓定理定理:设G 为线性赋范空间X 的线性子空间,f 是G 上的任一线性有界泛函,则存在X 上的线性有界泛函F ,满足:(1) 当x G ∈时,()()F x f x =; (2) XGF f=;其中XF表示F 作为X 上的线性泛函时的范数;Gf 表示G 上的线性泛函的范数.延拓定理被应用于Riesz 定理、Liouville 定理的证明及二次共轭空间等的研究中.2、逆算子定理在微积分课程中介绍过反函数的概念,并且知道“单调函数必存在反函数”,将此概念和结论推广到更一般的空间.定义1逆算子(广义上):设X 和Y 是同一数域K 上的线性赋范空间,G X ?,算子T :G Y →,T 的定义域为()D T G =;值域为()R T .用1T -表示从()()R T D T →的逆映射(蕴含T 是单射),则称1T -为T 的逆算子(invertiable operator).定义2正则算子:设X 和Y 是同一数域K 上的线性赋范空间,若算子T :()G X Y ?→满足(1)T 是可逆算子; (2) T 是满射,即()R T Y =; (3) 1T -是线性有界算子,则称T 为正则算子(normal operator).注:①若T 是线性算子,1T -是线性算子吗?②若T 是线性有界算子,1T -是线性有界算子吗?性质1 若T :()G X Y ?→是线性算子,则1T -是线性算子.证明:12,y y Y ∈,,αβ∈K ,由T 线性性知:1111212(())T T y y T y T y αβαβ---+--1111212()TT y y TT y TT y αβαβ---=+--1212()y y y y αβαβ=+--0=由于T 可逆,即T 不是零算子,于是1111212()T y y T y T y αβαβ---+=+,故1T -是线性算子.□定理2逆算子定理:设T 是Banach 空间X 到Banach 空间Y 上的双射(既单又满)、线性有界算子,则1T -是线性有界算子.例1 设线性赋范空间X 上有两个范数1?和2?,如果1(,)X ?和2(,)X ?均是Banach 空间,而且2?比1?强,那么范数1?和2?等价.(等价范数定理)证明:设I 是从由2(,)X ?到1(,)X ?上的恒等映射,由于范数2?比1?强,所以存在0M >,使得x X ?∈有112Ix x M x=≤于是I 是线性有界算子,加之I 既是单射又满射,因此根据逆算子定理知1I -是线性有界算子,即存在0M'>,使得x X ?∈有1212I xx M'x -=≤.故范数1?和2?等价。
泛函分析中的八大空间泛函分析绪论总结参考教材是孙炯老师的《泛函分析》❞泛函分析学习目标1、了解和掌握空间理论(距离、赋范、内积空间)和线性算子理论(线性算子空间、线性算子谱分析)中基本概念和理论。
2、运用全新的、现代数学的视点审视、处理数学基础课程中的一些问题。
3、将分析中的具体问题抽象到一种更加纯粹的代数、拓扑形式中加以研究,综合运用分析、代数、几何手段处理问题。
❞泛函分析研究对象与方法泛函分析综合分析、代数、几何的观点和方法来研究无穷维空间上的函数、算子和极限理论,处理和解决数学研究中最关心的一些基本问题。
泛函分析的特点是把古典分析的基本概念和方法一般化、并将这些概念和方法几何化。
解析几何的创立,将代数问题几何化、几何问题代数化,那么这种模式可类比的推广到泛函分析的研究中。
❞(1)建立一个新的空间框架,空间中元素包括函数、运算。
「注」:空间中的元素?空间的结构(距离、范数、内积)(2)在新的空间框架下,研究解决分析、代数、几何中的问题,把分析中的问题结合几何、代数的方法加以处理。
「注」:泛函分析主要研究无穷维空间到无穷维空间的映射、运算,因此关注无穷维空间的性质,收敛性问题(如加法与无穷级数的区别)一些个人思考在三维实向量空间中进行了坐标分解,这样可以更清楚的表示这个向量的相关一些信息,那么空间的几何结构变得非常明了;另外将一个矩阵映射进行了分解,那么它的作用效果,也变得很明了。
所以自然联想到,无穷维空间能否有这样的几何结构(坐标系、正交性、元素能否分解?)、其中的映射又能否分解?但是在这其中就会遇到新的问题,也就是无穷项相加,就会有收敛性的问题。
❞泛函分析主要内容(1)空间、极限的概念,讨论他们的性质.包括:距离空间、赋范空间、内积空间、Hilbert空间.(2)研究线性算子(线性算子空间).包括:有界线性算子、有界线性算子的重要性质、共轭空间。
其中:一致有界原则、开映射定理、闭图像定理、Hahn-Banach定理.(3)线性算子的谱理论.线性算子的谱分解从结构上展示了线性算子的基本运算特征,特别是自共轭算子的谱分解,与有限维空间对称矩阵的分解很类似.❞定义1:设有集合,且存在映射,使得对任意的都有:1.非负性:;2.对称性:;3.三角不等式:映射称为集合上的一个度量,称为度量空间.度量函数有时也用表示.下边我们给出一些常用的度量空间:1.,度量函数为经典度量.这样的实空间就称为欧式空间.2.(平凡度量)在任何一个集合上,我们都可以定义上述度量,因此任何一个集合上都可以让其变为一个度量空间.1.(空间) 所有的方勒贝格可积函数,定义度量:1.(空间) 所有的在可测的本性有界的函数,定义度量:表示它的本性上界.1.(空间和空间) 元素是数列:.2.3.(连续函数空间) 如果不做声明时,我们的定义的度量是:4.当然还可以有其他度量:有了度量函数后,我们可以定义收敛性:定义2:设为距离空间中的一个点列(或称序列), 这里如果存在中的点, 使得当时, , , 则称点列收敛于, 记为有时也简记为称为的极限.注意到,这里一定要要求在集合中!命题1:设是距离空间中的收敛点列,则下列性质成立:(i) 的极限唯一;(ii) 对任意的, 数列有界.(iii) 如果收敛,那么它的任意子列也收敛.定义3:距离空间中的点列叫做基本点列或柯西点列,若对任给的, 存在, 使得当时,如果中的任一基本点列必收敛于中的某一点,则称为完备的距离空间.注意到:一个空间是否完备与它的集合和度量都有关系,比如:按照最大值定义的度量是完备的,但是按照积分定义的度量不完备,在比如上配备欧式度量,点列是基本列但是不收敛,因为不在集合中.一个不完备的空间,我们可以想方设法的添加一些元素使其完备,然而是否任何的不完备空间都能这样做使其完备呢?这就要需要我们的完备化定理了!在此之前,我们需要引入一些其他有必要的东西!定义4设是两个度量空间, 如果存在映射:满足:(1):是满射;(2):.则称和是等距同构的, 称为等距同构映射, 有时简称等距同构。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
有界变差函数空间有界变差函数空间是指一类具有有界变差性质的函数的集合。
它在函数分析和概率论中都有重要的应用。
下面我们将从几个方面来介绍有界变差函数空间的相关内容。
1. 定义和性质有界变差函数空间是由具有有界变差性质的函数所组成的空间。
一个函数f(x)在区间[a, b]上是有界变差函数,如果它在[a, b]上是有界的,并且对于[a, b]上的任意分割a=x0 < x1 < ... < xn=b,都有:V(f, [a, b]) = ∑|f(xi) - f(xi-1)| ≤ M,其中M为常数,V(f, [a, b])为函数f(x)在区间[a, b]上的总变差。
有界变差函数的性质有:- 有界性:有界变差函数是有界的,即存在常数M使得|f(x)| ≤M对于所有的x成立。
- 线性组合:有界变差函数的线性组合仍然是有界变差函数。
- 范数:可以定义有界变差函数的范数为∥f∥ = sup|f(x)| + V(f, [a, b])。
2. 完备性有界变差函数空间可以构成一个完备的巴拿赫空间。
这意味着对于任意的Cauchy序列,都存在一个有界变差函数作为极限。
这个性质使得有界变差函数空间成为一个重要的函数空间,可以用来定义其他空间、研究特定的函数子集等。
3. 应用有界变差函数空间在函数分析和概率论中有广泛的应用。
以下是一些具体的应用领域:- 碎形分析:有界变差函数空间中的函数可以用来描述分形和多分形的性质,如分形维度、分形测度等。
- 随机过程:有界变差函数空间可以用来定义和研究具有随机变差的随机过程,如布朗运动和分数布朗运动。
- 泛函分析:有界变差函数空间中的函数可以作为泛函分析中的对象,用来定义范数、内积等,从而研究函数空间的性质和结构。
需要注意的是,有界变差函数空间并不是一种标准的函数空间,它更多地是一个概念或者一类函数的集合。
因此,在具体的应用中,需要根据具体的需求和问题,选择适当的有界变差函数空间的子集或者扩展。
泛函分析中的定理泛函分析是数学中重要的一个分支,研究的是无限维空间上的泛函和函数序列的性质及其应用。
在泛函分析中,有很多重要的定理和结果,下面我们来介绍一些。
1. 资格定理(Hahn-Banach Theorem):资格定理是泛函分析中的基础定理之一、它表明,在实或复的赋范空间中,对于任意一个线性泛函 f,如果它在一个线性子空间 M 上的限制所满足的条件可以表示为一个线性不等式,那么总是存在一个线性泛函 F,它在整个空间上与 f 一致,并且满足给定的限制条件。
资格定理的应用十分广泛,例如可以用来证明一些存在性定理,如存在性定理。
2. 化大定理(Banach-Alaoglu Theorem):化大定理是泛函分析中的基本定理之一,它描述了拓扑空间上单位球面上的点列(依范数拓扑)的一些性质,并且证明了它在乘积空间中的相对紧致性。
化大定理的一个重要应用是弱收敛性的刻画,即如果一个序列具有其中一种趋向,那么可以通过化大定理证明它在一些拓扑意义上收敛于一些点。
3. 谱定理(Spectral Theorem):谱定理是泛函分析中的一个重要定理,描述了自伴算子(或称为厄密算子)在希尔伯特空间上的一些性质。
谱定理指出,一个自伴算子的谱分解具有简洁的形式,在一定条件下,可以通过一个单位正交基来展开。
谱定理的一个重要应用是量子力学中的哈密顿算子的谱分解。
4. 开映射定理(Open Mapping Theorem):开映射定理是泛函分析中一个重要的定理,表明如果一个线性映射将一个开邻域映射成一个非空邻域,那么这个映射就是一个开映射。
开映射定理是泛函分析中非常有用的工具,它可以用来证明闭图像定理,即一个连续线性映射的图像是闭的。
5. 闭图像定理(Closed Graph Theorem):闭图像定理是泛函分析中一个重要的定理,它表明如果一个连续线性映射的图像是闭的,那么它的图像和定义域之间的关系也是闭的。
闭图像定理是泛函分析中很有用的工具,它可以用来证明一些重要的结果,如开映射定理、逆映射定理等。
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
泛函分析中的算子空间理论在泛函分析中,算子空间理论是一个重要的研究领域。
算子空间是指由一组线性算子所组成的空间,它在泛函分析的许多问题中发挥着重要的作用。
本文将以介绍算子空间的定义、性质和应用为主线,对泛函分析中的算子空间理论进行探讨。
一、算子空间的定义和基本性质在泛函分析中,算子空间是指由一组线性算子所组成的空间,通常用符号进行表示。
对于任意给定的线性算子,我们可以定义表示这个算子的函数空间。
常见的算子空间有有界线性算子空间、紧算子空间、弱算子拓扑空间等。
1. 有界线性算子空间有界线性算子空间是指由一组有界线性算子组成的空间。
对于两个线性算子的乘积,其范数一般是有上界的,即存在一个常数使得乘积算子的范数不超过这个常数。
有界线性算子空间在泛函分析和算子理论中得到了广泛的应用。
2. 紧算子空间紧算子空间是指由一组紧线性算子组成的空间。
紧算子是一类具有一些特殊性质的线性算子,它在算子空间中具有重要的地位。
紧算子空间的研究,可以用于描述一些物理现象、优化问题等。
3. 弱算子拓扑空间弱算子拓扑空间是指由一组弱算子拓扑所组成的空间。
弱算子拓扑是泛函分析中一类特殊的拓扑结构,对于算子的连续性、收敛性等性质的研究具有重要意义。
弱算子拓扑空间的研究可应用于函数逼近、极限理论等领域。
二、算子空间的应用算子空间理论在实际问题中具有广泛的应用价值。
以下主要介绍两个典型的应用:1. 物理问题中的算子空间在量子力学、电磁场理论等物理学领域中,算子空间理论被广泛应用。
量子力学中的波函数、算子和测量都可以用算子空间的概念进行描述。
在电磁场理论中,线性算子空间可以用于描述电磁场的传播、辐射以及相互作用等问题。
2. 优化问题中的算子空间算子空间在优化理论中也具有重要的应用。
在优化问题中,往往需要对一类函数进行优化,这类函数可以通过算子空间的概念进行描述。
算子空间提供了一种对函数进行优化的新的视角,可以为优化问题的求解提供一种新的方法和思路。
基础知识1.1度量空间一、基本概念 1.距离定义:设R 是一个非空集合,若对R 中任意一对元素x ,y 都有给定的一个实数d (x ,y ) 与它们对应,而且d 适合如下条件: (1) d(x ,y)≥0且d (x ,y )=0 x=y(2) 三角不等式d (x ,z )≤d (x ,y )+d (y ,z )则称d (x ,y )是元素x ,y 之间的距离,并称R 按d (x ,y )成为度量空间或距离空间,记(R ,d )R 中的元素称为点。
由性质(1)(2)令z=x ,可推出距离还有对称性 即(3) d (x ,y )=d (y ,x )(4) 另外还有与(2)等价的不等式|d (x ,y )-d (y ,z )|≤d (x ,z )例1:平面任意两点)p 1(X 1,y 1) p 2(x 2,y 2)(不是距离)例2:[a ,b]上黎曼绝对可积的函数的集合R ,对其中任意两点f ,g 按距离 d (f ,g )=⎰-ba|x g x f |)()(dx 可证:R 按照d 成为一个度量空间(黎曼可积可改为连续函数)另外 R 上还可以有另外一个度量空间:d (f ,g )=],[x max b a ∈|f (x ),g (x )|记该度量空间为c[a ,b]2.极限定义1.1.2:设R 是一个度量空间X n (n=1,2,…) 及x ∈R ,加入n →∞ 时, 数列d (X n ,X )→0 则称{ X n }按距离d 收敛于x 记为∞→n lim X n =X或X n →X 此时称{X n }是R 中的收敛点列,x 称为点列{ X n }的极限 定义1.1.3:(基本点列)设{ X n }是度量空间(R ,d )中的一个点列。
若 { X n }满足N ∃>∀,0ε 当m ,n>N 时 有d (x x n m ,)<ε 则称{ X n }为R 中的基本点列(也称为柯西列)可以证明收敛点列一定是基本列 证明:若x x0n→(n →∞)即N ∃>∀,0ε 当m ,n>N 时 有d ( x x 0n ,)<2ε d (x x m 0,)<2ε d (xx mn,)≤d (xx 0n,)+d (x x m,)<ε∴{X n }是基本列但反之,不成立 例如 R=(0,+∞)X n =n1∈R (n=1,2^…){ X n }是基本列但{ X n }不是收敛列,因为R 中没有x , d (X n ,X )→0 (n →∞)又如3,3.1,3.14,3.141……是有理数集Q 中的基本列但不是Q 中的收敛列定义1.1.4 (完备性)若度量空间R 中的基本列都是收敛列则称R 是完备的度量空间,设A 是R 中的子集,若A 按R 的度量成为一个完备的度量空间,则称A 是R 的一个完备子集。
第三章有界线性算子第三章有界线性算子一有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。
如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。
第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
例3.2 [],x C a b ∀∈,定义()()ta Tx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。